ex9.py: Generalized symmetric-definite eigenproblem#
This example computes eigenvalues and eigenvectors of a generalized symmetric-definite eigenvalue problem, where the first matrix is the discrete Laplacian in two dimensions and the second matrix is quasi diagonal.
The full source code for this demo can be downloaded here.
Initialization is similar to previous examples.
try: range = xrange
except: pass
import sys, slepc4py
slepc4py.init(sys.argv)
from petsc4py import PETSc
from slepc4py import SLEPc
Print = PETSc.Sys.Print
This function builds the discretized Laplacian operator in 2 dimensions.
def Laplacian2D(m, n):
# Create matrix for 2D Laplacian operator
A = PETSc.Mat().create()
A.setSizes([m*n, m*n])
A.setFromOptions()
# Fill matrix
hx = 1.0/(m-1) # x grid spacing
hy = 1.0/(n-1) # y grid spacing
diagv = 2.0*hy/hx + 2.0*hx/hy
offdx = -1.0*hy/hx
offdy = -1.0*hx/hy
Istart, Iend = A.getOwnershipRange()
for I in range(Istart, Iend):
A[I,I] = diagv
i = I//n # map row number to
j = I - i*n # grid coordinates
if i> 0 : J = I-n; A[I,J] = offdx
if i< m-1: J = I+n; A[I,J] = offdx
if j> 0 : J = I-1; A[I,J] = offdy
if j< n-1: J = I+1; A[I,J] = offdy
A.assemble()
return A
This function builds a quasi-diagonal matrix. It is two times the identity
matrix except for the 2x2 leading submatrix [6 -1; -1 1].
def QuasiDiagonal(N):
# Create matrix
B = PETSc.Mat().create()
B.setSizes([N, N])
B.setFromOptions()
# Fill matrix
Istart, Iend = B.getOwnershipRange()
for I in range(Istart, Iend):
B[I,I] = 2.0
if Istart==0:
B[0,0] = 6.0
B[0,1] = -1.0
B[1,0] = -1.0
B[1,1] = 1.0
B.assemble()
return B
The following function receives the two matrices and solves the
eigenproblem. In this example we illustrate how to pass objects
that have been created beforehand, instead of extracting the internal
objects. We are using a spectral transformation of type ST.Type.PRECOND
and a Block Jacobi preconditioner. We want to compute the leftmost
eigenvalues. The selected eigensolver is LOBPCG, which is appropriate
for this use case. After the solve, we print the computed solution.
def solve_eigensystem(A, B, problem_type=SLEPc.EPS.ProblemType.GHEP):
# Create the results vectors
xr, xi = A.createVecs()
pc = PETSc.PC().create()
# pc.setType(pc.Type.HYPRE)
pc.setType(pc.Type.BJACOBI)
ksp = PETSc.KSP().create()
ksp.setType(ksp.Type.PREONLY)
ksp.setPC( pc )
F = SLEPc.ST().create()
F.setType(F.Type.PRECOND)
F.setKSP( ksp )
F.setShift(0)
# Setup the eigensolver
E = SLEPc.EPS().create()
E.setST(F)
E.setOperators(A,B)
E.setType(E.Type.LOBPCG)
E.setDimensions(10,PETSc.DECIDE)
E.setWhichEigenpairs(E.Which.SMALLEST_REAL)
E.setProblemType( problem_type )
E.setFromOptions()
# Solve the eigensystem
E.solve()
Print("")
its = E.getIterationNumber()
Print("Number of iterations of the method: %i" % its)
sol_type = E.getType()
Print("Solution method: %s" % sol_type)
nev, ncv, mpd = E.getDimensions()
Print("Number of requested eigenvalues: %i" % nev)
tol, maxit = E.getTolerances()
Print("Stopping condition: tol=%.4g, maxit=%d" % (tol, maxit))
nconv = E.getConverged()
Print("Number of converged eigenpairs: %d" % nconv)
if nconv > 0:
Print("")
Print(" k ||Ax-kx||/||kx|| ")
Print("----------------- ------------------")
for i in range(nconv):
k = E.getEigenpair(i, xr, xi)
error = E.computeError(i)
if k.imag != 0.0:
Print(" %9f%+9f j %12g" % (k.real, k.imag, error))
else:
Print(" %12f %12g" % (k.real, error))
Print("")
The main program simply processes three user-defined command-line options and calls the other functions.
def main():
opts = PETSc.Options()
N = opts.getInt('N', 10)
m = opts.getInt('m', N)
n = opts.getInt('n', m)
Print("Symmetric-definite Eigenproblem, N=%d (%dx%d grid)" % (m*n, m, n))
A = Laplacian2D(m,n)
B = QuasiDiagonal(m*n)
solve_eigensystem(A,B)
if __name__ == '__main__':
main()