ex9.py: Generalized symmetric-definite eigenproblem =================================================== This example computes eigenvalues and eigenvectors of a generalized symmetric-definite eigenvalue problem, where the first matrix is the discrete Laplacian in two dimensions and the second matrix is quasi diagonal. The full source code for this demo can be `downloaded here <../_static/ex9.py>`__. Initialization is similar to previous examples. :: try: range = xrange except: pass import sys, slepc4py slepc4py.init(sys.argv) from petsc4py import PETSc from slepc4py import SLEPc Print = PETSc.Sys.Print This function builds the discretized Laplacian operator in 2 dimensions. :: def Laplacian2D(m, n): # Create matrix for 2D Laplacian operator A = PETSc.Mat().create() A.setSizes([m*n, m*n]) A.setFromOptions() # Fill matrix hx = 1.0/(m-1) # x grid spacing hy = 1.0/(n-1) # y grid spacing diagv = 2.0*hy/hx + 2.0*hx/hy offdx = -1.0*hy/hx offdy = -1.0*hx/hy Istart, Iend = A.getOwnershipRange() for I in range(Istart, Iend): A[I,I] = diagv i = I//n # map row number to j = I - i*n # grid coordinates if i> 0 : J = I-n; A[I,J] = offdx if i< m-1: J = I+n; A[I,J] = offdx if j> 0 : J = I-1; A[I,J] = offdy if j< n-1: J = I+1; A[I,J] = offdy A.assemble() return A This function builds a quasi-diagonal matrix. It is two times the identity matrix except for the 2x2 leading submatrix ``[6 -1; -1 1]``. :: def QuasiDiagonal(N): # Create matrix B = PETSc.Mat().create() B.setSizes([N, N]) B.setFromOptions() # Fill matrix Istart, Iend = B.getOwnershipRange() for I in range(Istart, Iend): B[I,I] = 2.0 if Istart==0: B[0,0] = 6.0 B[0,1] = -1.0 B[1,0] = -1.0 B[1,1] = 1.0 B.assemble() return B The following function receives the two matrices and solves the eigenproblem. In this example we illustrate how to pass objects that have been created beforehand, instead of extracting the internal objects. We are using a spectral transformation of type `ST.Type.PRECOND` and a Block Jacobi preconditioner. We want to compute the leftmost eigenvalues. The selected eigensolver is LOBPCG, which is appropriate for this use case. After the solve, we print the computed solution. :: def solve_eigensystem(A, B, problem_type=SLEPc.EPS.ProblemType.GHEP): # Create the results vectors xr, xi = A.createVecs() pc = PETSc.PC().create() # pc.setType(pc.Type.HYPRE) pc.setType(pc.Type.BJACOBI) ksp = PETSc.KSP().create() ksp.setType(ksp.Type.PREONLY) ksp.setPC( pc ) F = SLEPc.ST().create() F.setType(F.Type.PRECOND) F.setKSP( ksp ) F.setShift(0) # Setup the eigensolver E = SLEPc.EPS().create() E.setST(F) E.setOperators(A,B) E.setType(E.Type.LOBPCG) E.setDimensions(10,PETSc.DECIDE) E.setWhichEigenpairs(E.Which.SMALLEST_REAL) E.setProblemType( problem_type ) E.setFromOptions() # Solve the eigensystem E.solve() Print("") its = E.getIterationNumber() Print("Number of iterations of the method: %i" % its) sol_type = E.getType() Print("Solution method: %s" % sol_type) nev, ncv, mpd = E.getDimensions() Print("Number of requested eigenvalues: %i" % nev) tol, maxit = E.getTolerances() Print("Stopping condition: tol=%.4g, maxit=%d" % (tol, maxit)) nconv = E.getConverged() Print("Number of converged eigenpairs: %d" % nconv) if nconv > 0: Print("") Print(" k ||Ax-kx||/||kx|| ") Print("----------------- ------------------") for i in range(nconv): k = E.getEigenpair(i, xr, xi) error = E.computeError(i) if k.imag != 0.0: Print(" %9f%+9f j %12g" % (k.real, k.imag, error)) else: Print(" %12f %12g" % (k.real, error)) Print("") The main program simply processes three user-defined command-line options and calls the other functions. :: def main(): opts = PETSc.Options() N = opts.getInt('N', 10) m = opts.getInt('m', N) n = opts.getInt('n', m) Print("Symmetric-definite Eigenproblem, N=%d (%dx%d grid)" % (m*n, m, n)) A = Laplacian2D(m,n) B = QuasiDiagonal(m*n) solve_eigensystem(A,B) if __name__ == '__main__': main()