Actual source code: epssolve.c

  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    EPS routines related to the solution process
 12: */

 14: #include <slepc/private/epsimpl.h>
 15: #include <slepc/private/bvimpl.h>
 16: #include <petscdraw.h>

 18: PetscErrorCode EPSComputeVectors(EPS eps)
 19: {
 20:   PetscFunctionBegin;
 21:   EPSCheckSolved(eps,1);
 22:   if (eps->state==EPS_STATE_SOLVED) PetscTryTypeMethod(eps,computevectors);
 23:   eps->state = EPS_STATE_EIGENVECTORS;
 24:   PetscFunctionReturn(PETSC_SUCCESS);
 25: }

 27: static PetscErrorCode EPSComputeValues(EPS eps)
 28: {
 29:   PetscBool      injective,iscomp,isfilter;
 30:   PetscInt       i,n,aux,nconv0;
 31:   Mat            A,B=NULL,G,Z;

 33:   PetscFunctionBegin;
 34:   switch (eps->categ) {
 35:     case EPS_CATEGORY_KRYLOV:
 36:     case EPS_CATEGORY_OTHER:
 37:       PetscCall(STIsInjective(eps->st,&injective));
 38:       if (injective) {
 39:         /* one-to-one mapping: backtransform eigenvalues */
 40:         PetscUseTypeMethod(eps,backtransform);
 41:       } else {
 42:         /* compute eigenvalues from Rayleigh quotient */
 43:         PetscCall(DSGetDimensions(eps->ds,&n,NULL,NULL,NULL));
 44:         if (!n) break;
 45:         PetscCall(EPSGetOperators(eps,&A,&B));
 46:         PetscCall(BVSetActiveColumns(eps->V,0,n));
 47:         PetscCall(DSGetCompact(eps->ds,&iscomp));
 48:         PetscCall(DSSetCompact(eps->ds,PETSC_FALSE));
 49:         PetscCall(DSGetMat(eps->ds,DS_MAT_A,&G));
 50:         PetscCall(BVMatProject(eps->V,A,eps->V,G));
 51:         PetscCall(DSRestoreMat(eps->ds,DS_MAT_A,&G));
 52:         if (B) {
 53:           PetscCall(DSGetMat(eps->ds,DS_MAT_B,&G));
 54:           PetscCall(BVMatProject(eps->V,B,eps->V,G));
 55:           PetscCall(DSRestoreMat(eps->ds,DS_MAT_B,&G));
 56:         }
 57:         PetscCall(DSSolve(eps->ds,eps->eigr,eps->eigi));
 58:         PetscCall(DSSort(eps->ds,eps->eigr,eps->eigi,NULL,NULL,NULL));
 59:         PetscCall(DSSynchronize(eps->ds,eps->eigr,eps->eigi));
 60:         PetscCall(DSSetCompact(eps->ds,iscomp));
 61:         if (eps->ishermitian && (!eps->isgeneralized || eps->ispositive)) { /* V = V * Z */
 62:           PetscCall(DSVectors(eps->ds,DS_MAT_X,NULL,NULL));
 63:           PetscCall(DSGetMat(eps->ds,DS_MAT_X,&Z));
 64:           PetscCall(BVMultInPlace(eps->V,Z,0,n));
 65:           PetscCall(DSRestoreMat(eps->ds,DS_MAT_X,&Z));
 66:         }
 67:         /* in case of STFILTER discard computed eigenvalues that lie outside the wanted interval */
 68:         PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STFILTER,&isfilter));
 69:         if (isfilter) {
 70:           nconv0 = eps->nconv;
 71:           for (i=0;i<eps->nconv;i++) {
 72:             if (PetscRealPart(eps->eigr[eps->perm[i]])<eps->inta || PetscRealPart(eps->eigr[eps->perm[i]])>eps->intb) {
 73:               eps->nconv--;
 74:               if (i<eps->nconv) { SlepcSwap(eps->perm[i],eps->perm[eps->nconv],aux); i--; }
 75:             }
 76:           }
 77:           if (nconv0>eps->nconv) PetscCall(PetscInfo(eps,"Discarded %" PetscInt_FMT " computed eigenvalues lying outside the interval\n",nconv0-eps->nconv));
 78:         }
 79:       }
 80:       break;
 81:     case EPS_CATEGORY_PRECOND:
 82:     case EPS_CATEGORY_CONTOUR:
 83:       /* eigenvalues already available as an output of the solver */
 84:       break;
 85:   }
 86:   PetscFunctionReturn(PETSC_SUCCESS);
 87: }

 89: /*@
 90:    EPSSolve - Solves the eigensystem.

 92:    Collective

 94:    Input Parameter:
 95: .  eps - the linear eigensolver context

 97:    Options Database Keys:
 98: +  -eps_view             - print information about the solver once the solve is complete
 99: .  -eps_view_pre         - print information about the solver before the solve starts
100: .  -eps_view_mat0        - view the first matrix ($A$)
101: .  -eps_view_mat1        - view the second matrix ($B$)
102: .  -eps_view_vectors     - view the computed eigenvectors
103: .  -eps_view_values      - view the computed eigenvalues
104: .  -eps_converged_reason - print reason for convergence/divergence, and number of iterations
105: .  -eps_error_absolute   - print absolute errors of each eigenpair
106: .  -eps_error_relative   - print relative errors of each eigenpair
107: -  -eps_error_backward   - print backward errors of each eigenpair

109:    Notes:
110:    The problem matrices are specified with `EPSSetOperators()`.

112:    `EPSSolve()` will return without generating an error regardless of whether
113:    all requested solutions were computed or not. Call `EPSGetConverged()` to get the
114:    actual number of computed solutions, and `EPSGetConvergedReason()` to determine if
115:    the solver converged or failed and why.

117:    All the command-line options listed above admit an optional argument specifying
118:    the viewer type and options. For instance, use `-eps_view_mat0 binary:amatrix.bin`
119:    to save the $A$ matrix to a binary file, `-eps_view_values draw` to draw the computed
120:    eigenvalues graphically, or `-eps_error_relative :myerr.m:ascii_matlab` to save
121:    the errors in a file that can be executed in Matlab.

123:    Level: beginner

125: .seealso: [](ch:eps), `EPSCreate()`, `EPSSetUp()`, `EPSDestroy()`, `EPSSetOperators()`, `EPSGetConverged()`, `EPSGetConvergedReason()`
126: @*/
127: PetscErrorCode EPSSolve(EPS eps)
128: {
129:   PetscInt       i;
130:   PetscBool      hasname;
131:   STMatMode      matmode;
132:   Mat            A,B;

134:   PetscFunctionBegin;
136:   if (eps->state>=EPS_STATE_SOLVED) PetscFunctionReturn(PETSC_SUCCESS);
137:   PetscCall(PetscLogEventBegin(EPS_Solve,eps,0,0,0));

139:   /* Call setup */
140:   PetscCall(EPSSetUp(eps));

142:   /* Safeguard for matrices of size 0 */
143:   if (eps->n == 0) {
144:     eps->nconv  = 0;
145:     eps->reason = EPS_CONVERGED_TOL;
146:     eps->state  = EPS_STATE_SOLVED;
147:     PetscFunctionReturn(PETSC_SUCCESS);
148:   }

150:   eps->nconv = 0;
151:   eps->its   = 0;
152:   for (i=0;i<eps->ncv;i++) {
153:     eps->eigr[i]   = 0.0;
154:     eps->eigi[i]   = 0.0;
155:     eps->errest[i] = 0.0;
156:     eps->perm[i]   = i;
157:   }
158:   PetscCall(EPSViewFromOptions(eps,NULL,"-eps_view_pre"));
159:   PetscCall(RGViewFromOptions(eps->rg,NULL,"-rg_view"));

161:   /* Call solver */
162:   PetscUseTypeMethod(eps,solve);
163:   PetscCheck(eps->reason,PetscObjectComm((PetscObject)eps),PETSC_ERR_PLIB,"Internal error, solver returned without setting converged reason");
164:   eps->state = EPS_STATE_SOLVED;

166:   /* Only the first nconv columns contain useful information (except in CISS) */
167:   PetscCall(BVSetActiveColumns(eps->V,0,eps->nconv));
168:   if (eps->twosided) PetscCall(BVSetActiveColumns(eps->W,0,eps->nconv));

170:   /* If inplace, purify eigenvectors before reverting operator */
171:   PetscCall(STGetMatMode(eps->st,&matmode));
172:   if (matmode == ST_MATMODE_INPLACE && eps->ispositive) PetscCall(EPSComputeVectors(eps));
173:   PetscCall(STPostSolve(eps->st));

175:   /* Map eigenvalues back to the original problem if appropriate */
176:   PetscCall(EPSComputeValues(eps));

178: #if !defined(PETSC_USE_COMPLEX)
179:   /* Reorder conjugate eigenvalues (positive imaginary first) */
180:   for (i=0;i<eps->nconv-1;i++) {
181:     if (eps->eigi[i] != 0 && (eps->problem_type!=EPS_HAMILT || eps->eigr[i]!=0)) {
182:       /* conjugate eigenvalues */
183:       if (eps->eigi[i] < 0) {
184:         eps->eigi[i] = -eps->eigi[i];
185:         eps->eigi[i+1] = -eps->eigi[i+1];
186:         /* the next correction only works with eigenvectors */
187:         PetscCall(EPSComputeVectors(eps));
188:         PetscCall(BVScaleColumn(eps->V,i+1,-1.0));
189:         if (eps->W) PetscCall(BVScaleColumn(eps->W,i+1,-1.0));
190:       }
191:       i++;
192:     }
193:   }
194: #endif

196:   /* Sort eigenvalues according to eps->which parameter */
197:   if (eps->problem_type==EPS_HAMILT) PetscCall(SlepcSortEigenvaluesSpecial(eps->sc,eps->nconv,eps->eigr,eps->eigi,eps->perm));
198:   else PetscCall(SlepcSortEigenvalues(eps->sc,eps->nconv,eps->eigr,eps->eigi,eps->perm));
199:   PetscCall(PetscLogEventEnd(EPS_Solve,eps,0,0,0));

201:   /* Various viewers */
202:   PetscCall(EPSViewFromOptions(eps,NULL,"-eps_view"));
203:   PetscCall(EPSConvergedReasonViewFromOptions(eps));
204:   PetscCall(EPSErrorViewFromOptions(eps));
205:   PetscCall(EPSValuesViewFromOptions(eps));
206:   PetscCall(EPSVectorsViewFromOptions(eps));

208:   PetscCall(PetscOptionsHasName(((PetscObject)eps)->options,((PetscObject)eps)->prefix,"-eps_view_mat0",&hasname));
209:   if (hasname) {
210:     PetscCall(EPSGetOperators(eps,&A,NULL));
211:     PetscCall(MatViewFromOptions(A,(PetscObject)eps,"-eps_view_mat0"));
212:   }
213:   if (eps->isgeneralized) {
214:     PetscCall(PetscOptionsHasName(((PetscObject)eps)->options,((PetscObject)eps)->prefix,"-eps_view_mat1",&hasname));
215:     if (hasname) {
216:       PetscCall(EPSGetOperators(eps,NULL,&B));
217:       PetscCall(MatViewFromOptions(B,(PetscObject)eps,"-eps_view_mat1"));
218:     }
219:   }

221:   /* Remove deflation and initial subspaces */
222:   if (eps->nds) {
223:     PetscCall(BVSetNumConstraints(eps->V,0));
224:     eps->nds = 0;
225:   }
226:   eps->nini = 0;
227:   PetscFunctionReturn(PETSC_SUCCESS);
228: }

230: /*@
231:    EPSGetIterationNumber - Gets the current iteration number. If the
232:    call to `EPSSolve()` is complete, then it returns the number of iterations
233:    carried out by the solution method.

235:    Not Collective

237:    Input Parameter:
238: .  eps - the linear eigensolver context

240:    Output Parameter:
241: .  its - number of iterations

243:    Note:
244:    During the $i$-th iteration this call returns $i-1$. If `EPSSolve()` is
245:    complete, then parameter `its` contains either the iteration number at
246:    which convergence was successfully reached, or failure was detected.
247:    Call `EPSGetConvergedReason()` to determine if the solver converged or
248:    failed and why.

250:    Level: intermediate

252: .seealso: [](ch:eps), `EPSGetConvergedReason()`, `EPSSetTolerances()`
253: @*/
254: PetscErrorCode EPSGetIterationNumber(EPS eps,PetscInt *its)
255: {
256:   PetscFunctionBegin;
258:   PetscAssertPointer(its,2);
259:   *its = eps->its;
260:   PetscFunctionReturn(PETSC_SUCCESS);
261: }

263: /*@
264:    EPSGetConverged - Gets the number of converged eigenpairs.

266:    Not Collective

268:    Input Parameter:
269: .  eps - the linear eigensolver context

271:    Output Parameter:
272: .  nconv - number of converged eigenpairs

274:    Notes:
275:    This function should be called after `EPSSolve()` has finished.

277:    The value `nconv` may be different from the number of requested solutions
278:    `nev`, but not larger than `ncv`, see `EPSSetDimensions()`.

280:    Level: beginner

282: .seealso: [](ch:eps), `EPSSetDimensions()`, `EPSSolve()`, `EPSGetEigenpair()`
283: @*/
284: PetscErrorCode EPSGetConverged(EPS eps,PetscInt *nconv)
285: {
286:   PetscFunctionBegin;
288:   PetscAssertPointer(nconv,2);
289:   EPSCheckSolved(eps,1);
290:   PetscCall(EPS_GetActualConverged(eps,nconv));
291:   PetscFunctionReturn(PETSC_SUCCESS);
292: }

294: /*@
295:    EPSGetConvergedReason - Gets the reason why the `EPSSolve()` iteration was
296:    stopped.

298:    Not Collective

300:    Input Parameter:
301: .  eps - the linear eigensolver context

303:    Output Parameter:
304: .  reason - negative value indicates diverged, positive value converged, see
305:             `EPSConvergedReason` for the possible values

307:    Options Database Key:
308: .  -eps_converged_reason - print reason for convergence/divergence, and number of iterations

310:    Note:
311:    If this routine is called before or doing the `EPSSolve()` the value of
312:    `EPS_CONVERGED_ITERATING` is returned.

314:    Level: intermediate

316: .seealso: [](ch:eps), `EPSSetTolerances()`, `EPSSolve()`, `EPSConvergedReason`
317: @*/
318: PetscErrorCode EPSGetConvergedReason(EPS eps,EPSConvergedReason *reason)
319: {
320:   PetscFunctionBegin;
322:   PetscAssertPointer(reason,2);
323:   EPSCheckSolved(eps,1);
324:   *reason = eps->reason;
325:   PetscFunctionReturn(PETSC_SUCCESS);
326: }

328: /*@
329:    EPSGetInvariantSubspace - Gets an orthonormal basis of the computed invariant
330:    subspace.

332:    Collective

334:    Input Parameter:
335: .  eps - the linear eigensolver context

337:    Output Parameter:
338: .  v - an array of vectors

340:    Notes:
341:    This function should be called after `EPSSolve()` has finished.

343:    The user should provide in `v` an array of `nconv` vectors, where `nconv`
344:    is the value returned by `EPSGetConverged()`.

346:    The first $k$ vectors returned in `v` span an invariant subspace associated
347:    with the first $k$ computed eigenvalues (note that this is not true if the
348:    $k$-th eigenvalue is complex and matrix $A$ is real; in this case the first
349:    $k+1$ vectors should be used). An invariant subspace $X$ of $A$ satisfies
350:    $Ax\in X, \forall x\in X$ (a similar definition applies for generalized
351:    eigenproblems).

353:    Level: intermediate

355: .seealso: [](ch:eps), `EPSGetEigenpair()`, `EPSGetConverged()`, `EPSSolve()`
356: @*/
357: PetscErrorCode EPSGetInvariantSubspace(EPS eps,Vec v[])
358: {
359:   PetscInt       i;
360:   BV             V=eps->V;
361:   Vec            w;

363:   PetscFunctionBegin;
365:   PetscAssertPointer(v,2);
367:   EPSCheckSolved(eps,1);
368:   PetscCheck(eps->ishermitian || eps->state!=EPS_STATE_EIGENVECTORS,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONGSTATE,"EPSGetInvariantSubspace must be called before EPSGetEigenpair,EPSGetEigenvector or EPSComputeError");
369:   if (eps->balance!=EPS_BALANCE_NONE && eps->D) {
370:     PetscCall(BVDuplicateResize(eps->V,eps->nconv,&V));
371:     PetscCall(BVSetActiveColumns(eps->V,0,eps->nconv));
372:     PetscCall(BVCopy(eps->V,V));
373:     for (i=0;i<eps->nconv;i++) {
374:       PetscCall(BVGetColumn(V,i,&w));
375:       PetscCall(VecPointwiseDivide(w,w,eps->D));
376:       PetscCall(BVRestoreColumn(V,i,&w));
377:     }
378:     PetscCall(BVOrthogonalize(V,NULL));
379:   }
380:   for (i=0;i<eps->nconv;i++) PetscCall(BVCopyVec(V,i,v[i]));
381:   if (eps->balance!=EPS_BALANCE_NONE && eps->D) PetscCall(BVDestroy(&V));
382:   PetscFunctionReturn(PETSC_SUCCESS);
383: }

385: /*@
386:    EPSGetEigenpair - Gets the `i`-th solution of the eigenproblem as computed by
387:    `EPSSolve()`. The solution consists in both the eigenvalue and the eigenvector.

389:    Collective

391:    Input Parameters:
392: +  eps - the linear eigensolver context
393: -  i   - index of the solution

395:    Output Parameters:
396: +  eigr - real part of eigenvalue
397: .  eigi - imaginary part of eigenvalue
398: .  Vr   - real part of eigenvector
399: -  Vi   - imaginary part of eigenvector

401:    Notes:
402:    It is allowed to pass `NULL` for `Vr` and `Vi`, if the eigenvector is not
403:    required. Otherwise, the caller must provide valid `Vec` objects, i.e.,
404:    they must be created by the calling program with e.g. `MatCreateVecs()`.

406:    If the eigenvalue is real, then `eigi` and `Vi` are set to zero. If PETSc is
407:    configured with complex scalars the eigenvalue is stored
408:    directly in `eigr` (`eigi` is set to zero) and the eigenvector in `Vr` (`Vi` is
409:    set to zero). In both cases, the user can pass `NULL` in `eigi` and `Vi`.

411:    The index `i` should be a value between 0 and `nconv`-1 (see `EPSGetConverged()`).
412:    Eigenpairs are indexed according to the ordering criterion established
413:    with `EPSSetWhichEigenpairs()`.

415:    The 2-norm of the eigenvector is one unless the problem is generalized
416:    Hermitian. In this case the eigenvector is normalized with respect to the
417:    norm defined by the $B$ matrix.

419:    Level: beginner

421: .seealso: [](ch:eps), `EPSGetEigenvalue()`, `EPSGetEigenvector()`, `EPSGetLeftEigenvector()`, `EPSSolve()`, `EPSGetConverged()`, `EPSSetWhichEigenpairs()`, `EPSGetInvariantSubspace()`
422: @*/
423: PetscErrorCode EPSGetEigenpair(EPS eps,PetscInt i,PetscScalar *eigr,PetscScalar *eigi,Vec Vr,Vec Vi)
424: {
425:   PetscInt nconv;

427:   PetscFunctionBegin;
430:   EPSCheckSolved(eps,1);
431:   PetscCheck(i>=0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The index cannot be negative");
432:   PetscCall(EPS_GetActualConverged(eps,&nconv));
433:   PetscCheck(i<nconv,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The index can be nconv-1 at most, see EPSGetConverged()");
434:   PetscCall(EPSGetEigenvalue(eps,i,eigr,eigi));
435:   if (Vr || Vi) PetscCall(EPSGetEigenvector(eps,i,Vr,Vi));
436:   PetscFunctionReturn(PETSC_SUCCESS);
437: }

439: /*@
440:    EPSGetEigenvalue - Gets the `i`-th eigenvalue as computed by `EPSSolve()`.

442:    Not Collective

444:    Input Parameters:
445: +  eps - the linear eigensolver context
446: -  i   - index of the solution

448:    Output Parameters:
449: +  eigr - real part of eigenvalue
450: -  eigi - imaginary part of eigenvalue

452:    Notes:
453:    If the eigenvalue is real, then `eigi` is set to zero. If PETSc is
454:    configured with complex scalars the eigenvalue is stored
455:    directly in `eigr` (`eigi` is set to zero).

457:    The index `i` should be a value between 0 and `nconv`-1 (see `EPSGetConverged()`).
458:    Eigenpairs are indexed according to the ordering criterion established
459:    with `EPSSetWhichEigenpairs()`.

461:    Level: beginner

463: .seealso: [](ch:eps), `EPSSolve()`, `EPSGetConverged()`, `EPSSetWhichEigenpairs()`, `EPSGetEigenpair()`
464: @*/
465: PetscErrorCode EPSGetEigenvalue(EPS eps,PetscInt i,PetscScalar *eigr,PetscScalar *eigi)
466: {
467:   PetscInt  k,nconv;
468: #if !defined(PETSC_USE_COMPLEX)
469:   PetscInt  k2, iquad;
470: #endif

472:   PetscFunctionBegin;
474:   EPSCheckSolved(eps,1);
475:   PetscCheck(i>=0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The index cannot be negative");
476:   PetscCall(EPS_GetActualConverged(eps,&nconv));
477:   PetscCheck(i<nconv,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The index can be nconv-1 at most, see EPSGetConverged()");
478:   if (nconv==eps->nconv) {
479:     k = eps->perm[i];
480: #if defined(PETSC_USE_COMPLEX)
481:     if (eigr) *eigr = eps->eigr[k];
482:     if (eigi) *eigi = 0;
483: #else
484:     if (eigr) *eigr = eps->eigr[k];
485:     if (eigi) *eigi = eps->eigi[k];
486: #endif
487:   } else {
488:     PetscCheck(eps->problem_type==EPS_BSE || eps->problem_type==EPS_HAMILT,PetscObjectComm((PetscObject)eps),PETSC_ERR_PLIB,"Problem type should be BSE or Hamiltonian");
489:     if (eps->problem_type==EPS_BSE) {
490:       /* BSE problem, even index is +lambda, odd index is -lambda */
491:       k = eps->perm[i/2];
492: #if defined(PETSC_USE_COMPLEX)
493:       if (eigr) *eigr = (i%2)? -eps->eigr[k]: eps->eigr[k];
494:       if (eigi) *eigi = 0;
495: #else
496:       if (eigr) *eigr = (i%2)? -eps->eigr[k]: eps->eigr[k];
497:       if (eigi) *eigi = eps->eigi[k];
498: #endif
499:     } else if (eps->problem_type==EPS_HAMILT) {
500:       /* Hamiltonian eigenproblem */
501:       k = eps->perm[i/2];
502: #if defined(PETSC_USE_COMPLEX)
503:       if (eigr) *eigr = (i%2)? -eps->eigr[k]: eps->eigr[k];
504:       if (eigi) *eigi = 0;
505: #else
506:       if (eps->eigi[k]==0.0) { /* real eigenvalue */
507:         if (eigr) *eigr = (i%2)? -eps->eigr[k]: eps->eigr[k];
508:         if (eigi) *eigi = 0.0;
509:       } else if (eps->eigr[k]==0.0) { /* purely imaginary eigenvalue */
510:         if (eigr) *eigr = 0.0;
511:         if (eigi) *eigi = (i%2)? -eps->eigi[k]: eps->eigi[k];
512:       } else { /* quadruple eigenvalue (-conj(lambda),-lambda,lambda,conj(lambda)) */
513:         iquad = i%2;  /* index within the 4 values */
514:         if (i>1) {
515:           k2 = eps->perm[(i-2)/2];
516:           if (eps->eigr[k]==eps->eigr[k2] && eps->eigi[k]==-eps->eigi[k2]) iquad += 2;
517:         }
518:         if (eigr) *eigr = (iquad<2)? -eps->eigr[k]: eps->eigr[k];
519:         if (eigi) *eigi = (iquad%3)? -eps->eigi[k]: eps->eigi[k];
520:       }
521: #endif
522:     }
523:   }
524:   PetscFunctionReturn(PETSC_SUCCESS);
525: }

527: /*@
528:    EPSGetEigenvector - Gets the `i`-th right eigenvector as computed by `EPSSolve()`.

530:    Collective

532:    Input Parameters:
533: +  eps - the linear eigensolver context
534: -  i   - index of the solution

536:    Output Parameters:
537: +  Vr   - real part of eigenvector
538: -  Vi   - imaginary part of eigenvector

540:    Notes:
541:    The caller must provide valid `Vec` objects, i.e., they must be created
542:    by the calling program with e.g. `MatCreateVecs()`.

544:    If the corresponding eigenvalue is real, then `Vi` is set to zero. If PETSc is
545:    configured with complex scalars the eigenvector is stored
546:    directly in `Vr` (`Vi` is set to zero). In any case, the user can pass `NULL` in `Vr`
547:    or `Vi` if one of them is not required.

549:    The index `i` should be a value between 0 and `nconv`-1 (see `EPSGetConverged()`).
550:    Eigenpairs are indexed according to the ordering criterion established
551:    with `EPSSetWhichEigenpairs()`.

553:    The 2-norm of the eigenvector is one unless the problem is generalized
554:    Hermitian. In this case the eigenvector is normalized with respect to the
555:    norm defined by the $B$ matrix.

557:    Level: beginner

559: .seealso: [](ch:eps), `EPSSolve()`, `EPSGetConverged()`, `EPSSetWhichEigenpairs()`, `EPSGetEigenpair()`, `EPSGetLeftEigenvector()`
560: @*/
561: PetscErrorCode EPSGetEigenvector(EPS eps,PetscInt i,Vec Vr,Vec Vi)
562: {
563:   PetscInt nconv;

565:   PetscFunctionBegin;
570:   EPSCheckSolved(eps,1);
571:   PetscCheck(i>=0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The index cannot be negative");
572:   PetscCall(EPS_GetActualConverged(eps,&nconv));
573:   PetscCheck(i<nconv,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The index can be nconv-1 at most, see EPSGetConverged()");
574:   PetscCall(EPSComputeVectors(eps));
575:   PetscCall(EPS_GetEigenvector(eps,eps->V,i,Vr,Vi));
576:   PetscFunctionReturn(PETSC_SUCCESS);
577: }

579: /*@
580:    EPSGetLeftEigenvector - Gets the `i`-th left eigenvector as computed by `EPSSolve()`.

582:    Collective

584:    Input Parameters:
585: +  eps - the linear eigensolver context
586: -  i   - index of the solution

588:    Output Parameters:
589: +  Wr   - real part of left eigenvector
590: -  Wi   - imaginary part of left eigenvector

592:    Notes:
593:    The caller must provide valid `Vec` objects, i.e., they must be created
594:    by the calling program with e.g. `MatCreateVecs()`.

596:    If the corresponding eigenvalue is real, then `Wi` is set to zero. If PETSc is
597:    configured with complex scalars the eigenvector is stored directly in `Wr`
598:    (`Wi` is set to zero). In any case, the user can pass `NULL` in `Wr` or `Wi` if
599:    one of them is not required.

601:    The index `i` should be a value between 0 and `nconv`-1 (see `EPSGetConverged()`).
602:    Eigensolutions are indexed according to the ordering criterion established
603:    with `EPSSetWhichEigenpairs()`.

605:    Left eigenvectors are available only if the `twosided` flag was set, see
606:    `EPSSetTwoSided()`.

608:    Level: intermediate

610: .seealso: [](ch:eps), `EPSGetEigenvector()`, `EPSGetConverged()`, `EPSSetWhichEigenpairs()`, `EPSSetTwoSided()`
611: @*/
612: PetscErrorCode EPSGetLeftEigenvector(EPS eps,PetscInt i,Vec Wr,Vec Wi)
613: {
614:   PetscInt    nconv;
615:   PetscBool   trivial;
616:   Mat         H;
617:   IS          is[2];
618:   Vec         v;

620:   PetscFunctionBegin;
625:   EPSCheckSolved(eps,1);
626:   PetscCheck(i>=0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The index cannot be negative");
627:   PetscCall(EPS_GetActualConverged(eps,&nconv));
628:   PetscCheck(i<nconv,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The index can be nconv-1 at most, see EPSGetConverged()");

630:   trivial = (eps->problem_type==EPS_HEP || eps->problem_type==EPS_GHEP || eps->problem_type==EPS_BSE)? PETSC_TRUE: PETSC_FALSE;
631:   if (!trivial) PetscCheck(eps->twosided,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONGSTATE,"Must request left vectors with EPSSetTwoSided");

633:   PetscCall(EPSComputeVectors(eps));
634:   if (trivial) {
635:     PetscCall(EPS_GetEigenvector(eps,eps->V,i,Wr,Wi));
636:     if (eps->problem_type==EPS_BSE) {   /* change sign of bottom part of the vector */
637:       PetscCall(STGetMatrix(eps->st,0,&H));
638:       PetscCall(MatNestGetISs(H,is,NULL));
639:       if (Wr) {
640:         PetscCall(VecGetSubVector(Wr,is[1],&v));
641:         PetscCall(VecScale(v,-1.0));
642:         PetscCall(VecRestoreSubVector(Wr,is[1],&v));
643:       }
644: #if !defined(PETSC_USE_COMPLEX)
645:       if (Wi) {
646:         PetscCall(VecGetSubVector(Wi,is[1],&v));
647:         PetscCall(VecScale(v,-1.0));
648:         PetscCall(VecRestoreSubVector(Wi,is[1],&v));
649:       }
650: #endif
651:     }
652:   } else {
653:     PetscCall(EPS_GetEigenvector(eps,eps->W,i,Wr,Wi));
654:   }
655:   PetscFunctionReturn(PETSC_SUCCESS);
656: }

658: /*@
659:    EPSGetErrorEstimate - Returns the error estimate associated to the `i`-th
660:    computed eigenpair.

662:    Not Collective

664:    Input Parameters:
665: +  eps - the linear eigensolver context
666: -  i   - index of eigenpair

668:    Output Parameter:
669: .  errest - the error estimate

671:    Note:
672:    This is the error estimate used internally by the eigensolver. The actual
673:    error bound can be computed with `EPSComputeError()`. See discussion at
674:    section [](#sec:errbnd).

676:    Level: advanced

678: .seealso: [](ch:eps), [](#sec:errbnd), `EPSComputeError()`
679: @*/
680: PetscErrorCode EPSGetErrorEstimate(EPS eps,PetscInt i,PetscReal *errest)
681: {
682:   PetscInt nconv;

684:   PetscFunctionBegin;
686:   PetscAssertPointer(errest,3);
687:   EPSCheckSolved(eps,1);
688:   PetscCheck(i>=0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The index cannot be negative");
689:   PetscCall(EPS_GetActualConverged(eps,&nconv));
690:   PetscCheck(i<nconv,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The index can be nconv-1 at most, see EPSGetConverged()");
691:   if (nconv==eps->nconv) {
692:     *errest = eps->errest[eps->perm[i]];
693:   } else {
694:     PetscCheck(eps->problem_type==EPS_BSE,PetscObjectComm((PetscObject)eps),PETSC_ERR_PLIB,"Problem type should be BSE");
695:     /* BSE problem, even index is +lambda, odd index is -lambda, assume both have same error */
696:     *errest = eps->errest[eps->perm[i/2]];
697:   }
698:   PetscFunctionReturn(PETSC_SUCCESS);
699: }

701: /*
702:    EPSComputeResidualNorm_Private - Computes the norm of the residual vector
703:    associated with an eigenpair.

705:    Input Parameters:
706:      trans - whether A' must be used instead of A
707:      kr,ki - eigenvalue
708:      xr,xi - eigenvector
709:      z     - three work vectors (the second one not referenced in complex scalars)
710: */
711: PetscErrorCode EPSComputeResidualNorm_Private(EPS eps,PetscBool trans,PetscScalar kr,PetscScalar ki,Vec xr,Vec xi,Vec *z,PetscReal *norm)
712: {
713:   PetscInt       nmat;
714:   Mat            A,B;
715:   Vec            u,w;
716:   PetscScalar    alpha;
717: #if !defined(PETSC_USE_COMPLEX)
718:   Vec            v;
719:   PetscReal      ni,nr;
720: #endif
721:   PetscErrorCode (*matmult)(Mat,Vec,Vec) = trans? MatMultHermitianTranspose: MatMult;

723:   PetscFunctionBegin;
724:   u = z[0]; w = z[2];
725:   PetscCall(STGetNumMatrices(eps->st,&nmat));
726:   PetscCall(STGetMatrix(eps->st,0,&A));
727:   if (nmat>1) PetscCall(STGetMatrix(eps->st,1,&B));

729: #if !defined(PETSC_USE_COMPLEX)
730:   v = z[1];
731:   if (ki == 0 || PetscAbsScalar(ki) < PetscAbsScalar(kr*PETSC_MACHINE_EPSILON)) {
732: #endif
733:     PetscCall((*matmult)(A,xr,u));                          /* u=A*x */
734:     if (PetscAbsScalar(kr) > PETSC_MACHINE_EPSILON) {
735:       if (nmat>1) PetscCall((*matmult)(B,xr,w));
736:       else PetscCall(VecCopy(xr,w));                        /* w=B*x */
737:       alpha = trans? -PetscConj(kr): -kr;
738:       PetscCall(VecAXPY(u,alpha,w));                        /* u=A*x-k*B*x */
739:     }
740:     PetscCall(VecNorm(u,NORM_2,norm));
741: #if !defined(PETSC_USE_COMPLEX)
742:   } else {
743:     PetscCall((*matmult)(A,xr,u));                          /* u=A*xr */
744:     if (SlepcAbsEigenvalue(kr,ki) > PETSC_MACHINE_EPSILON) {
745:       if (nmat>1) PetscCall((*matmult)(B,xr,v));
746:       else PetscCall(VecCopy(xr,v));                        /* v=B*xr */
747:       PetscCall(VecAXPY(u,-kr,v));                          /* u=A*xr-kr*B*xr */
748:       if (nmat>1) PetscCall((*matmult)(B,xi,w));
749:       else PetscCall(VecCopy(xi,w));                        /* w=B*xi */
750:       PetscCall(VecAXPY(u,trans?-ki:ki,w));                 /* u=A*xr-kr*B*xr+ki*B*xi */
751:     }
752:     PetscCall(VecNorm(u,NORM_2,&nr));
753:     PetscCall((*matmult)(A,xi,u));                          /* u=A*xi */
754:     if (SlepcAbsEigenvalue(kr,ki) > PETSC_MACHINE_EPSILON) {
755:       PetscCall(VecAXPY(u,-kr,w));                          /* u=A*xi-kr*B*xi */
756:       PetscCall(VecAXPY(u,trans?ki:-ki,v));                 /* u=A*xi-kr*B*xi-ki*B*xr */
757:     }
758:     PetscCall(VecNorm(u,NORM_2,&ni));
759:     *norm = SlepcAbsEigenvalue(nr,ni);
760:   }
761: #endif
762:   PetscFunctionReturn(PETSC_SUCCESS);
763: }

765: /*@
766:    EPSComputeError - Computes the error (based on the residual norm) associated
767:    with the `i`-th computed eigenpair.

769:    Collective

771:    Input Parameters:
772: +  eps  - the linear eigensolver context
773: .  i    - the solution index
774: -  type - the type of error to compute, see `EPSErrorType`

776:    Output Parameter:
777: .  error - the error

779:    Notes:
780:    The error can be computed in various ways, all of them based on the residual
781:    norm $\|Ax-\lambda Bx\|_2$ where $(\lambda,x)$ is the approximate eigenpair.

783:    If the computation of left eigenvectors was enabled with `EPSSetTwoSided()`,
784:    then the error will be computed using the maximum of the value above and
785:    the left residual norm $\|y^*A-\lambda y^*B\|_2$, where $y$ is the approximate left
786:    eigenvector.

788:    Level: beginner

790: .seealso: [](ch:eps), `EPSErrorType`, `EPSSolve()`, `EPSGetErrorEstimate()`, `EPSSetTwoSided()`
791: @*/
792: PetscErrorCode EPSComputeError(EPS eps,PetscInt i,EPSErrorType type,PetscReal *error)
793: {
794:   Mat            A,B;
795:   Vec            xr,xi,w[3];
796:   PetscReal      t,vecnorm=1.0,errorl;
797:   PetscScalar    kr,ki;
798:   PetscBool      flg;

800:   PetscFunctionBegin;
804:   PetscAssertPointer(error,4);
805:   EPSCheckSolved(eps,1);

807:   /* allocate work vectors */
808: #if defined(PETSC_USE_COMPLEX)
809:   PetscCall(EPSSetWorkVecs(eps,3));
810:   xi   = NULL;
811:   w[1] = NULL;
812: #else
813:   PetscCall(EPSSetWorkVecs(eps,5));
814:   xi   = eps->work[3];
815:   w[1] = eps->work[4];
816: #endif
817:   xr   = eps->work[0];
818:   w[0] = eps->work[1];
819:   w[2] = eps->work[2];

821:   /* compute residual norm */
822:   PetscCall(EPSGetEigenpair(eps,i,&kr,&ki,xr,xi));
823:   PetscCall(EPSComputeResidualNorm_Private(eps,PETSC_FALSE,kr,ki,xr,xi,w,error));

825:   /* compute 2-norm of eigenvector */
826:   if (eps->problem_type==EPS_GHEP) PetscCall(VecNorm(xr,NORM_2,&vecnorm));

828:   /* if two-sided, compute left residual norm and take the maximum */
829:   if (eps->twosided) {
830:     PetscCall(EPSGetLeftEigenvector(eps,i,xr,xi));
831:     PetscCall(EPSComputeResidualNorm_Private(eps,PETSC_TRUE,kr,ki,xr,xi,w,&errorl));
832:     *error = PetscMax(*error,errorl);
833:   }

835:   /* compute error */
836:   switch (type) {
837:     case EPS_ERROR_ABSOLUTE:
838:       break;
839:     case EPS_ERROR_RELATIVE:
840:       *error /= SlepcAbsEigenvalue(kr,ki)*vecnorm;
841:       break;
842:     case EPS_ERROR_BACKWARD:
843:       /* initialization of matrix norms */
844:       if (!eps->nrma) {
845:         PetscCall(STGetMatrix(eps->st,0,&A));
846:         PetscCall(MatHasOperation(A,MATOP_NORM,&flg));
847:         PetscCheck(flg,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"The computation of backward errors requires a matrix norm operation");
848:         PetscCall(MatNorm(A,NORM_INFINITY,&eps->nrma));
849:       }
850:       if (eps->isgeneralized) {
851:         if (!eps->nrmb) {
852:           PetscCall(STGetMatrix(eps->st,1,&B));
853:           PetscCall(MatHasOperation(B,MATOP_NORM,&flg));
854:           PetscCheck(flg,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"The computation of backward errors requires a matrix norm operation");
855:           PetscCall(MatNorm(B,NORM_INFINITY,&eps->nrmb));
856:         }
857:       } else eps->nrmb = 1.0;
858:       t = SlepcAbsEigenvalue(kr,ki);
859:       *error /= (eps->nrma+t*eps->nrmb)*vecnorm;
860:       break;
861:     default:
862:       SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid error type");
863:   }
864:   PetscFunctionReturn(PETSC_SUCCESS);
865: }

867: /*
868:    EPSGetStartVector - Generate a suitable vector to be used as the starting vector
869:    for the recurrence that builds the right subspace.

871:    Collective

873:    Input Parameters:
874: +  eps - the linear eigensolver context
875: -  i   - iteration number

877:    Output Parameter:
878: .  breakdown - flag indicating that a breakdown has occurred

880:    Notes:
881:    The start vector is computed from another vector: for the first step (i=0),
882:    the first initial vector is used (see EPSSetInitialSpace()); otherwise a random
883:    vector is created. Then this vector is forced to be in the range of OP (only
884:    for generalized definite problems) and orthonormalized with respect to all
885:    V-vectors up to i-1. The resulting vector is placed in V[i].

887:    The flag breakdown is set to true if either i=0 and the vector belongs to the
888:    deflation space, or i>0 and the vector is linearly dependent with respect
889:    to the V-vectors.
890: */
891: PetscErrorCode EPSGetStartVector(EPS eps,PetscInt i,PetscBool *breakdown)
892: {
893:   PetscReal      norm;
894:   PetscBool      lindep;
895:   Vec            w,z;

897:   PetscFunctionBegin;

901:   /* For the first step, use the first initial vector, otherwise a random one */
902:   if (i>0 || eps->nini==0) PetscCall(BVSetRandomColumn(eps->V,i));

904:   /* Force the vector to be in the range of OP for generalized problems with B-inner product */
905:   if (eps->ispositive || (eps->isgeneralized && eps->ishermitian)) {
906:     PetscCall(BVCreateVec(eps->V,&w));
907:     PetscCall(BVCopyVec(eps->V,i,w));
908:     PetscCall(BVGetColumn(eps->V,i,&z));
909:     PetscCall(STApply(eps->st,w,z));
910:     PetscCall(BVRestoreColumn(eps->V,i,&z));
911:     PetscCall(VecDestroy(&w));
912:   }

914:   /* Orthonormalize the vector with respect to previous vectors */
915:   PetscCall(BVOrthogonalizeColumn(eps->V,i,NULL,&norm,&lindep));
916:   if (breakdown) *breakdown = lindep;
917:   else if (lindep || norm == 0.0) {
918:     PetscCheck(i,PetscObjectComm((PetscObject)eps),PETSC_ERR_PLIB,"Initial vector is zero or belongs to the deflation space");
919:     PetscCheck(!i,PetscObjectComm((PetscObject)eps),PETSC_ERR_CONV_FAILED,"Unable to generate more start vectors");
920:   }
921:   PetscCall(BVScaleColumn(eps->V,i,1.0/norm));
922:   PetscFunctionReturn(PETSC_SUCCESS);
923: }

925: /*
926:    EPSGetLeftStartVector - Generate a suitable vector to be used as the left starting
927:    vector for the recurrence that builds the left subspace. See EPSGetStartVector().
928: */
929: PetscErrorCode EPSGetLeftStartVector(EPS eps,PetscInt i,PetscBool *breakdown)
930: {
931:   PetscReal      norm;
932:   PetscBool      lindep;
933:   Vec            w,z;

935:   PetscFunctionBegin;

939:   /* For the first step, use the first initial vector, otherwise a random one */
940:   if (i>0 || eps->ninil==0) PetscCall(BVSetRandomColumn(eps->W,i));

942:   /* Force the vector to be in the range of OP' for generalized problems with B-inner product */
943:   if (eps->ispositive || (eps->isgeneralized && eps->ishermitian)) {
944:     PetscCall(BVCreateVec(eps->W,&w));
945:     PetscCall(BVCopyVec(eps->W,i,w));
946:     PetscCall(BVGetColumn(eps->W,i,&z));
947:     PetscCall(STApplyHermitianTranspose(eps->st,w,z));
948:     PetscCall(BVRestoreColumn(eps->W,i,&z));
949:     PetscCall(VecDestroy(&w));
950:   }

952:   /* Orthonormalize the vector with respect to previous vectors */
953:   PetscCall(BVOrthogonalizeColumn(eps->W,i,NULL,&norm,&lindep));
954:   if (breakdown) *breakdown = lindep;
955:   else if (lindep || norm == 0.0) {
956:     PetscCheck(i,PetscObjectComm((PetscObject)eps),PETSC_ERR_PLIB,"Left initial vector is zero");
957:     PetscCheck(!i,PetscObjectComm((PetscObject)eps),PETSC_ERR_CONV_FAILED,"Unable to generate more left start vectors");
958:   }
959:   PetscCall(BVScaleColumn(eps->W,i,1.0/norm));
960:   PetscFunctionReturn(PETSC_SUCCESS);
961: }