EPS_BSE#
A structured Bethe-Salpeter eigenvalue problem.
Notes#
The problem is formulated as \(Hx=\lambda x\), where \(H\) has a Bethe-Salpeter structure,
\[\begin{split}H = \begin{bmatrix}
R & C \\
-C^* & -R^T
\end{bmatrix},\end{split}\]
where \(R\) is Hermitian and \(C\) is complex symmetric. Can also be used in
the case of real matrices.
A description of the properties of this problem can be found in [Alvarruiz et al., 2025] and references therein.
References#
[Alv25]
F. Alvarruiz, B. Mellado-Pinto, and J. E. Roman. Variants of thick-restart Lanczos for the Bethe-Salpeter eigenvalue problem. arXiv:2503.20920 : retrieved 27 May 2025, 2025. doi:10.48550/arXiv.2503.20920.
See Also#
EPS: Eigenvalue Problem Solver, Structured Eigenvalue Problems, EPSProblemType, EPSSetProblemType()
Level#
intermediate
Location#
Index of all EPS routines Table of Contents for all manual pages Index of all manual pages