Actual source code: pjd.c
slepc-3.22.2 2024-12-02
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: SLEPc polynomial eigensolver: "jd"
13: Method: Jacobi-Davidson
15: Algorithm:
17: Jacobi-Davidson for polynomial eigenvalue problems.
19: References:
21: [1] C. Campos and J.E. Roman, "A polynomial Jacobi-Davidson solver
22: with support for non-monomial bases and deflation", BIT Numer.
23: Math. 60:295-318, 2020.
25: [2] G.L.G. Sleijpen et al., "Jacobi-Davidson type methods for
26: generalized eigenproblems and polynomial eigenproblems", BIT
27: 36(3):595-633, 1996.
29: [3] Feng-Nan Hwang, Zih-Hao Wei, Tsung-Ming Huang, Weichung Wang,
30: "A Parallel Additive Schwarz Preconditioned Jacobi-Davidson
31: Algorithm for Polynomial Eigenvalue Problems in Quantum Dot
32: Simulation", J. Comput. Phys. 229(8):2932-2947, 2010.
33: */
35: #include <slepc/private/pepimpl.h>
36: #include <slepcblaslapack.h>
38: static PetscBool cited = PETSC_FALSE;
39: static const char citation[] =
40: "@Article{slepc-slice-qep,\n"
41: " author = \"C. Campos and J. E. Roman\",\n"
42: " title = \"A polynomial {Jacobi-Davidson} solver with support for non-monomial bases and deflation\",\n"
43: " journal = \"{BIT} Numer. Math.\",\n"
44: " volume = \"60\",\n"
45: " pages = \"295--318\",\n"
46: " year = \"2020,\"\n"
47: " doi = \"https://doi.org/10.1007/s10543-019-00778-z\"\n"
48: "}\n";
50: typedef struct {
51: PetscReal keep; /* restart parameter */
52: PetscReal fix; /* fix parameter */
53: PetscBool reusepc; /* flag indicating whether pc is rebuilt or not */
54: BV V; /* work basis vectors to store the search space */
55: BV W; /* work basis vectors to store the test space */
56: BV *TV; /* work basis vectors to store T*V (each TV[i] is the coefficient for \lambda^i of T*V for the extended T) */
57: BV *AX; /* work basis vectors to store A_i*X for locked eigenvectors */
58: BV N[2]; /* auxiliary work BVs */
59: BV X; /* locked eigenvectors */
60: PetscScalar *T; /* matrix of the invariant pair */
61: PetscScalar *Tj; /* matrix containing the powers of the invariant pair matrix */
62: PetscScalar *XpX; /* X^H*X */
63: PetscInt ld; /* leading dimension for Tj and XpX */
64: PC pcshell; /* preconditioner including basic precond+projector */
65: Mat Pshell; /* auxiliary shell matrix */
66: PetscInt nlock; /* number of locked vectors in the invariant pair */
67: Vec vtempl; /* reference nested vector */
68: PetscInt midx; /* minimality index */
69: PetscInt mmidx; /* maximum allowed minimality index */
70: PEPJDProjection proj; /* projection type (orthogonal, harmonic) */
71: } PEP_JD;
73: typedef struct {
74: PEP pep;
75: PC pc; /* basic preconditioner */
76: Vec Bp[2]; /* preconditioned residual of derivative polynomial, B\p */
77: Vec u[2]; /* Ritz vector */
78: PetscScalar gamma[2]; /* precomputed scalar u'*B\p */
79: PetscScalar theta;
80: PetscScalar *M;
81: PetscScalar *ps;
82: PetscInt ld;
83: Vec *work;
84: Mat PPr;
85: BV X;
86: PetscInt n;
87: } PEP_JD_PCSHELL;
89: typedef struct {
90: Mat Pr,Pi; /* matrix polynomial evaluated at theta */
91: PEP pep;
92: Vec *work;
93: PetscScalar theta[2];
94: } PEP_JD_MATSHELL;
96: /*
97: Duplicate and resize auxiliary basis
98: */
99: static PetscErrorCode PEPJDDuplicateBasis(PEP pep,BV *basis)
100: {
101: PEP_JD *pjd = (PEP_JD*)pep->data;
102: PetscInt nloc,m;
103: BVType type;
104: BVOrthogType otype;
105: BVOrthogRefineType oref;
106: PetscReal oeta;
107: BVOrthogBlockType oblock;
108: VecType vtype;
110: PetscFunctionBegin;
111: if (pjd->ld>1) {
112: PetscCall(BVCreate(PetscObjectComm((PetscObject)pep),basis));
113: PetscCall(BVGetSizes(pep->V,&nloc,NULL,&m));
114: nloc += pjd->ld-1;
115: PetscCall(BVSetSizes(*basis,nloc,PETSC_DECIDE,m));
116: PetscCall(BVGetType(pep->V,&type));
117: PetscCall(BVSetType(*basis,type));
118: PetscCall(BVGetVecType(pep->V,&vtype));
119: PetscCall(BVSetVecType(*basis,vtype));
120: PetscCall(BVGetOrthogonalization(pep->V,&otype,&oref,&oeta,&oblock));
121: PetscCall(BVSetOrthogonalization(*basis,otype,oref,oeta,oblock));
122: PetscCall(PetscObjectStateIncrease((PetscObject)*basis));
123: } else PetscCall(BVDuplicate(pep->V,basis));
124: PetscFunctionReturn(PETSC_SUCCESS);
125: }
127: static PetscErrorCode PEPSetUp_JD(PEP pep)
128: {
129: PEP_JD *pjd = (PEP_JD*)pep->data;
130: PetscBool isprecond,flg;
131: PetscRandom rand;
132: PetscInt i;
134: PetscFunctionBegin;
135: PetscCall(PEPSetDimensions_Default(pep,pep->nev,&pep->ncv,&pep->mpd));
136: if (pep->max_it==PETSC_DETERMINE) pep->max_it = PetscMax(100,2*pep->n/pep->ncv);
137: if (!pep->which) pep->which = PEP_TARGET_MAGNITUDE;
138: PetscCheck(pep->which==PEP_TARGET_MAGNITUDE || pep->which==PEP_TARGET_REAL || pep->which==PEP_TARGET_IMAGINARY,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"The JD solver supports only target which, see PEPSetWhichEigenpairs()");
140: PetscCall(PetscObjectTypeCompare((PetscObject)pep->st,STPRECOND,&isprecond));
141: PetscCheck(isprecond,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"The JD solver only works with PRECOND spectral transformation");
143: PetscCall(STGetTransform(pep->st,&flg));
144: PetscCheck(!flg,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"The JD solver requires the ST transform flag unset, see STSetTransform()");
145: PEPCheckIgnored(pep,PEP_FEATURE_EXTRACT);
147: if (!pjd->mmidx) pjd->mmidx = pep->nmat-1;
148: pjd->mmidx = PetscMin(pjd->mmidx,pep->nmat-1);
149: if (!pjd->keep) pjd->keep = 0.5;
150: PetscCall(PEPBasisCoefficients(pep,pep->pbc));
151: PetscCall(PEPAllocateSolution(pep,0));
152: PetscCall(BVGetRandomContext(pep->V,&rand)); /* make sure the random context is available when duplicating */
153: PetscCall(PEPSetWorkVecs(pep,5));
154: pjd->ld = pep->nev;
155: #if !defined (PETSC_USE_COMPLEX)
156: pjd->ld++;
157: #endif
158: PetscCall(PetscMalloc2(pep->nmat,&pjd->TV,pep->nmat,&pjd->AX));
159: for (i=0;i<pep->nmat;i++) PetscCall(PEPJDDuplicateBasis(pep,pjd->TV+i));
160: if (pjd->ld>1) {
161: PetscCall(PEPJDDuplicateBasis(pep,&pjd->V));
162: PetscCall(BVSetFromOptions(pjd->V));
163: for (i=0;i<pep->nmat;i++) PetscCall(BVDuplicateResize(pep->V,pjd->ld-1,pjd->AX+i));
164: PetscCall(BVDuplicateResize(pep->V,pjd->ld-1,pjd->N));
165: PetscCall(BVDuplicateResize(pep->V,pjd->ld-1,pjd->N+1));
166: pjd->X = pep->V;
167: PetscCall(PetscCalloc3(pjd->ld*pjd->ld,&pjd->XpX,pep->ncv*pep->ncv,&pjd->T,pjd->ld*pjd->ld*pep->nmat,&pjd->Tj));
168: } else pjd->V = pep->V;
169: if (pjd->proj==PEP_JD_PROJECTION_HARMONIC) PetscCall(PEPJDDuplicateBasis(pep,&pjd->W));
170: else pjd->W = pjd->V;
171: PetscCall(DSSetType(pep->ds,DSPEP));
172: PetscCall(DSPEPSetDegree(pep->ds,pep->nmat-1));
173: if (pep->basis!=PEP_BASIS_MONOMIAL) PetscCall(DSPEPSetCoefficients(pep->ds,pep->pbc));
174: PetscCall(DSAllocate(pep->ds,pep->ncv));
175: PetscFunctionReturn(PETSC_SUCCESS);
176: }
178: /*
179: Updates columns (low to (high-1)) of TV[i]
180: */
181: static PetscErrorCode PEPJDUpdateTV(PEP pep,PetscInt low,PetscInt high,Vec *w)
182: {
183: PEP_JD *pjd = (PEP_JD*)pep->data;
184: PetscInt pp,col,i,nloc,nconv;
185: Vec v1,v2,t1,t2;
186: PetscScalar *array1,*array2,*x2,*xx,*N,*Np,*y2=NULL,zero=0.0,sone=1.0,*pT,fact,*psc;
187: PetscReal *cg,*ca,*cb;
188: PetscMPIInt rk,np;
189: PetscBLASInt n_,ld_,one=1;
190: Mat T;
191: BV pbv;
193: PetscFunctionBegin;
194: ca = pep->pbc; cb = ca+pep->nmat; cg = cb + pep->nmat;
195: nconv = pjd->nlock;
196: PetscCall(PetscMalloc5(nconv,&x2,nconv,&xx,nconv*nconv,&pT,nconv*nconv,&N,nconv*nconv,&Np));
197: PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)pep),&rk));
198: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pep),&np));
199: PetscCall(BVGetSizes(pep->V,&nloc,NULL,NULL));
200: t1 = w[0];
201: t2 = w[1];
202: PetscCall(PetscBLASIntCast(pjd->nlock,&n_));
203: PetscCall(PetscBLASIntCast(pjd->ld,&ld_));
204: if (nconv) {
205: for (i=0;i<nconv;i++) PetscCall(PetscArraycpy(pT+i*nconv,pjd->T+i*pep->ncv,nconv));
206: PetscCall(MatCreateSeqDense(PETSC_COMM_SELF,nconv,nconv,pT,&T));
207: }
208: for (col=low;col<high;col++) {
209: PetscCall(BVGetColumn(pjd->V,col,&v1));
210: PetscCall(VecGetArray(v1,&array1));
211: if (nconv>0) {
212: for (i=0;i<nconv;i++) x2[i] = array1[nloc+i]* PetscSqrtReal(np);
213: }
214: PetscCall(VecPlaceArray(t1,array1));
215: if (nconv) {
216: PetscCall(BVSetActiveColumns(pjd->N[0],0,nconv));
217: PetscCall(BVSetActiveColumns(pjd->N[1],0,nconv));
218: PetscCall(BVDotVec(pjd->X,t1,xx));
219: }
220: for (pp=pep->nmat-1;pp>=0;pp--) {
221: PetscCall(BVGetColumn(pjd->TV[pp],col,&v2));
222: PetscCall(VecGetArray(v2,&array2));
223: PetscCall(VecPlaceArray(t2,array2));
224: PetscCall(MatMult(pep->A[pp],t1,t2));
225: if (nconv) {
226: if (pp<pep->nmat-3) {
227: PetscCall(BVMult(pjd->N[0],1.0,-cg[pp+2],pjd->AX[pp+1],NULL));
228: PetscCall(MatShift(T,-cb[pp+1]));
229: PetscCall(BVMult(pjd->N[0],1.0/ca[pp],1.0/ca[pp],pjd->N[1],T));
230: pbv = pjd->N[0]; pjd->N[0] = pjd->N[1]; pjd->N[1] = pbv;
231: PetscCall(BVMultVec(pjd->N[1],1.0,1.0,t2,x2));
232: PetscCall(MatShift(T,cb[pp+1]));
233: } else if (pp==pep->nmat-3) {
234: PetscCall(BVCopy(pjd->AX[pp+2],pjd->N[0]));
235: PetscCall(BVScale(pjd->N[0],1/ca[pp+1]));
236: PetscCall(BVCopy(pjd->AX[pp+1],pjd->N[1]));
237: PetscCall(MatShift(T,-cb[pp+1]));
238: PetscCall(BVMult(pjd->N[1],1.0/ca[pp],1.0/ca[pp],pjd->N[0],T));
239: PetscCall(BVMultVec(pjd->N[1],1.0,1.0,t2,x2));
240: PetscCall(MatShift(T,cb[pp+1]));
241: } else if (pp==pep->nmat-2) PetscCall(BVMultVec(pjd->AX[pp+1],1.0/ca[pp],1.0,t2,x2));
242: if (pp<pjd->midx) {
243: y2 = array2+nloc;
244: PetscCallBLAS("BLASgemv",BLASgemv_("C",&n_,&n_,&sone,pjd->Tj+pjd->ld*pjd->ld*pp,&ld_,xx,&one,&zero,y2,&one));
245: if (pp<pjd->midx-2) {
246: fact = -cg[pp+2];
247: PetscCallBLAS("BLASgemm",BLASgemm_("C","N",&n_,&n_,&n_,&sone,pjd->Tj+(pp+1)*pjd->ld*pjd->ld,&ld_,pjd->XpX,&ld_,&fact,Np,&n_));
248: fact = 1/ca[pp];
249: PetscCall(MatShift(T,-cb[pp+1]));
250: PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&fact,N,&n_,pT,&n_,&fact,Np,&n_));
251: PetscCall(MatShift(T,cb[pp+1]));
252: psc = Np; Np = N; N = psc;
253: PetscCallBLAS("BLASgemv",BLASgemv_("N",&n_,&n_,&sone,N,&n_,x2,&one,&sone,y2,&one));
254: } else if (pp==pjd->midx-2) {
255: fact = 1/ca[pp];
256: PetscCallBLAS("BLASgemm",BLASgemm_("C","N",&n_,&n_,&n_,&fact,pjd->Tj+(pp+1)*pjd->ld*pjd->ld,&ld_,pjd->XpX,&ld_,&zero,N,&n_));
257: PetscCallBLAS("BLASgemv",BLASgemv_("N",&n_,&n_,&sone,N,&n_,x2,&one,&sone,y2,&one));
258: } else if (pp==pjd->midx-1) PetscCall(PetscArrayzero(Np,nconv*nconv));
259: }
260: for (i=0;i<nconv;i++) array2[nloc+i] /= PetscSqrtReal(np);
261: }
262: PetscCall(VecResetArray(t2));
263: PetscCall(VecRestoreArray(v2,&array2));
264: PetscCall(BVRestoreColumn(pjd->TV[pp],col,&v2));
265: }
266: PetscCall(VecResetArray(t1));
267: PetscCall(VecRestoreArray(v1,&array1));
268: PetscCall(BVRestoreColumn(pjd->V,col,&v1));
269: }
270: if (nconv) PetscCall(MatDestroy(&T));
271: PetscCall(PetscFree5(x2,xx,pT,N,Np));
272: PetscFunctionReturn(PETSC_SUCCESS);
273: }
275: /*
276: RRQR of X. Xin*P=Xou*R. Rank of R is rk
277: */
278: static PetscErrorCode PEPJDOrthogonalize(PetscInt row,PetscInt col,PetscScalar *X,PetscInt ldx,PetscInt *rk,PetscInt *P,PetscScalar *R,PetscInt ldr)
279: {
280: PetscInt i,j,n,r;
281: PetscBLASInt row_,col_,ldx_,*p,lwork,info,n_;
282: PetscScalar *tau,*work;
283: PetscReal tol,*rwork;
285: PetscFunctionBegin;
286: PetscCall(PetscBLASIntCast(row,&row_));
287: PetscCall(PetscBLASIntCast(col,&col_));
288: PetscCall(PetscBLASIntCast(ldx,&ldx_));
289: PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
290: n = PetscMin(row,col);
291: PetscCall(PetscBLASIntCast(n,&n_));
292: lwork = 3*col_+1;
293: PetscCall(PetscMalloc4(col,&p,n,&tau,lwork,&work,2*col,&rwork));
294: for (i=1;i<col;i++) p[i] = 0;
295: p[0] = 1;
297: /* rank revealing QR */
298: #if defined(PETSC_USE_COMPLEX)
299: PetscCallBLAS("LAPACKgeqp3",LAPACKgeqp3_(&row_,&col_,X,&ldx_,p,tau,work,&lwork,rwork,&info));
300: #else
301: PetscCallBLAS("LAPACKgeqp3",LAPACKgeqp3_(&row_,&col_,X,&ldx_,p,tau,work,&lwork,&info));
302: #endif
303: SlepcCheckLapackInfo("geqp3",info);
304: if (P) for (i=0;i<col;i++) P[i] = p[i]-1;
306: /* rank computation */
307: tol = PetscMax(row,col)*PETSC_MACHINE_EPSILON*PetscAbsScalar(X[0]);
308: r = 1;
309: for (i=1;i<n;i++) {
310: if (PetscAbsScalar(X[i+ldx*i])>tol) r++;
311: else break;
312: }
313: if (rk) *rk=r;
315: /* copy upper triangular matrix if requested */
316: if (R) {
317: for (i=0;i<r;i++) {
318: PetscCall(PetscArrayzero(R+i*ldr,r));
319: for (j=0;j<=i;j++) R[i*ldr+j] = X[i*ldx+j];
320: }
321: }
322: PetscCallBLAS("LAPACKorgqr",LAPACKorgqr_(&row_,&n_,&n_,X,&ldx_,tau,work,&lwork,&info));
323: SlepcCheckLapackInfo("orgqr",info);
324: PetscCall(PetscFPTrapPop());
325: PetscCall(PetscFree4(p,tau,work,rwork));
326: PetscFunctionReturn(PETSC_SUCCESS);
327: }
329: /*
330: Application of extended preconditioner
331: */
332: static PetscErrorCode PEPJDExtendedPCApply(PC pc,Vec x,Vec y)
333: {
334: PetscInt i,j,nloc,n,ld=0;
335: PetscMPIInt np;
336: Vec tx,ty;
337: PEP_JD_PCSHELL *ctx;
338: const PetscScalar *array1;
339: PetscScalar *x2=NULL,*t=NULL,*ps=NULL,*array2,zero=0.0,sone=1.0;
340: PetscBLASInt one=1,ld_,n_,ncv_;
341: PEP_JD *pjd=NULL;
343: PetscFunctionBegin;
344: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pc),&np));
345: PetscCall(PCShellGetContext(pc,&ctx));
346: n = ctx->n;
347: if (n) {
348: pjd = (PEP_JD*)ctx->pep->data;
349: ps = ctx->ps;
350: ld = pjd->ld;
351: PetscCall(PetscMalloc2(n,&x2,n,&t));
352: PetscCall(VecGetLocalSize(ctx->work[0],&nloc));
353: PetscCall(VecGetArrayRead(x,&array1));
354: for (i=0;i<n;i++) x2[i] = array1[nloc+i]* PetscSqrtReal(np);
355: PetscCall(VecRestoreArrayRead(x,&array1));
356: }
358: /* y = B\x apply PC */
359: tx = ctx->work[0];
360: ty = ctx->work[1];
361: PetscCall(VecGetArrayRead(x,&array1));
362: PetscCall(VecPlaceArray(tx,array1));
363: PetscCall(VecGetArray(y,&array2));
364: PetscCall(VecPlaceArray(ty,array2));
365: PetscCall(PCApply(ctx->pc,tx,ty));
366: if (n) {
367: PetscCall(PetscBLASIntCast(ld,&ld_));
368: PetscCall(PetscBLASIntCast(n,&n_));
369: for (i=0;i<n;i++) {
370: t[i] = 0.0;
371: for (j=0;j<n;j++) t[i] += ctx->M[i+j*ld]*x2[j];
372: }
373: if (pjd->midx==1) {
374: PetscCall(PetscBLASIntCast(ctx->pep->ncv,&ncv_));
375: for (i=0;i<n;i++) pjd->T[i*(1+ctx->pep->ncv)] -= ctx->theta;
376: PetscCallBLAS("BLASgemv",BLASgemv_("N",&n_,&n_,&sone,pjd->T,&ncv_,t,&one,&zero,x2,&one));
377: for (i=0;i<n;i++) pjd->T[i*(1+ctx->pep->ncv)] += ctx->theta;
378: for (i=0;i<n;i++) array2[nloc+i] = x2[i];
379: for (i=0;i<n;i++) x2[i] = -t[i];
380: } else {
381: for (i=0;i<n;i++) array2[nloc+i] = t[i];
382: PetscCallBLAS("BLASgemv",BLASgemv_("N",&n_,&n_,&sone,ps,&ld_,t,&one,&zero,x2,&one));
383: }
384: for (i=0;i<n;i++) array2[nloc+i] /= PetscSqrtReal(np);
385: PetscCall(BVSetActiveColumns(pjd->X,0,n));
386: PetscCall(BVMultVec(pjd->X,-1.0,1.0,ty,x2));
387: PetscCall(PetscFree2(x2,t));
388: }
389: PetscCall(VecResetArray(tx));
390: PetscCall(VecResetArray(ty));
391: PetscCall(VecRestoreArrayRead(x,&array1));
392: PetscCall(VecRestoreArray(y,&array2));
393: PetscFunctionReturn(PETSC_SUCCESS);
394: }
396: /*
397: Application of shell preconditioner:
398: y = B\x - eta*B\p, with eta = (u'*B\x)/(u'*B\p)
399: */
400: static PetscErrorCode PCShellApply_PEPJD(PC pc,Vec x,Vec y)
401: {
402: PetscScalar rr,eta;
403: PEP_JD_PCSHELL *ctx;
404: PetscInt sz;
405: const Vec *xs,*ys;
406: #if !defined(PETSC_USE_COMPLEX)
407: PetscScalar rx,xr,xx;
408: #endif
410: PetscFunctionBegin;
411: PetscCall(PCShellGetContext(pc,&ctx));
412: PetscCall(VecCompGetSubVecs(x,&sz,&xs));
413: PetscCall(VecCompGetSubVecs(y,NULL,&ys));
414: /* y = B\x apply extended PC */
415: PetscCall(PEPJDExtendedPCApply(pc,xs[0],ys[0]));
416: #if !defined(PETSC_USE_COMPLEX)
417: if (sz==2) PetscCall(PEPJDExtendedPCApply(pc,xs[1],ys[1]));
418: #endif
420: /* Compute eta = u'*y / u'*Bp */
421: PetscCall(VecDot(ys[0],ctx->u[0],&rr));
422: eta = -rr*ctx->gamma[0];
423: #if !defined(PETSC_USE_COMPLEX)
424: if (sz==2) {
425: PetscCall(VecDot(ys[0],ctx->u[1],&xr));
426: PetscCall(VecDot(ys[1],ctx->u[0],&rx));
427: PetscCall(VecDot(ys[1],ctx->u[1],&xx));
428: eta += -ctx->gamma[0]*xx-ctx->gamma[1]*(-xr+rx);
429: }
430: #endif
431: eta /= ctx->gamma[0]*ctx->gamma[0]+ctx->gamma[1]*ctx->gamma[1];
433: /* y = y - eta*Bp */
434: PetscCall(VecAXPY(ys[0],eta,ctx->Bp[0]));
435: #if !defined(PETSC_USE_COMPLEX)
436: if (sz==2) {
437: PetscCall(VecAXPY(ys[1],eta,ctx->Bp[1]));
438: eta = -ctx->gamma[1]*(rr+xx)+ctx->gamma[0]*(-xr+rx);
439: eta /= ctx->gamma[0]*ctx->gamma[0]+ctx->gamma[1]*ctx->gamma[1];
440: PetscCall(VecAXPY(ys[0],eta,ctx->Bp[1]));
441: PetscCall(VecAXPY(ys[1],-eta,ctx->Bp[0]));
442: }
443: #endif
444: PetscFunctionReturn(PETSC_SUCCESS);
445: }
447: static PetscErrorCode PEPJDCopyToExtendedVec(PEP pep,Vec v,PetscScalar *a,PetscInt na,PetscInt off,Vec vex,PetscBool back)
448: {
449: PetscMPIInt np,rk,count;
450: PetscScalar *array1,*array2;
451: PetscInt nloc;
453: PetscFunctionBegin;
454: PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)pep),&rk));
455: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pep),&np));
456: PetscCall(BVGetSizes(pep->V,&nloc,NULL,NULL));
457: if (v) {
458: PetscCall(VecGetArray(v,&array1));
459: PetscCall(VecGetArray(vex,&array2));
460: if (back) PetscCall(PetscArraycpy(array1,array2,nloc));
461: else PetscCall(PetscArraycpy(array2,array1,nloc));
462: PetscCall(VecRestoreArray(v,&array1));
463: PetscCall(VecRestoreArray(vex,&array2));
464: }
465: if (a) {
466: PetscCall(VecGetArray(vex,&array2));
467: if (back) {
468: PetscCall(PetscArraycpy(a,array2+nloc+off,na));
469: PetscCall(PetscMPIIntCast(na,&count));
470: PetscCallMPI(MPI_Bcast(a,count,MPIU_SCALAR,np-1,PetscObjectComm((PetscObject)pep)));
471: } else {
472: PetscCall(PetscArraycpy(array2+nloc+off,a,na));
473: PetscCall(PetscMPIIntCast(na,&count));
474: PetscCallMPI(MPI_Bcast(array2+nloc+off,count,MPIU_SCALAR,np-1,PetscObjectComm((PetscObject)pep)));
475: }
476: PetscCall(VecRestoreArray(vex,&array2));
477: }
478: PetscFunctionReturn(PETSC_SUCCESS);
479: }
481: /* Computes Phi^hat(lambda) times a vector or its derivative (depends on beval)
482: if no vector is provided returns a matrix
483: */
484: static PetscErrorCode PEPJDEvaluateHatBasis(PEP pep,PetscInt n,PetscScalar *H,PetscInt ldh,PetscScalar *beval,PetscScalar *t,PetscInt idx,PetscScalar *qpp,PetscScalar *qp,PetscScalar *q)
485: {
486: PetscInt j,i;
487: PetscBLASInt n_,ldh_,one=1;
488: PetscReal *a,*b,*g;
489: PetscScalar sone=1.0,zero=0.0;
491: PetscFunctionBegin;
492: a = pep->pbc; b=a+pep->nmat; g=b+pep->nmat;
493: PetscCall(PetscBLASIntCast(n,&n_));
494: PetscCall(PetscBLASIntCast(ldh,&ldh_));
495: if (idx<1) PetscCall(PetscArrayzero(q,t?n:n*n));
496: else if (idx==1) {
497: if (t) {for (j=0;j<n;j++) q[j] = t[j]*beval[idx-1]/a[0];}
498: else {
499: PetscCall(PetscArrayzero(q,n*n));
500: for (j=0;j<n;j++) q[(j+1)*n] = beval[idx-1]/a[0];
501: }
502: } else {
503: if (t) {
504: PetscCallBLAS("BLASgemv",BLASgemv_("N",&n_,&n_,&sone,H,&ldh_,qp,&one,&zero,q,&one));
505: for (j=0;j<n;j++) {
506: q[j] += beval[idx-1]*t[j]-b[idx-1]*qp[j]-g[idx-1]*qpp[j];
507: q[j] /= a[idx-1];
508: }
509: } else {
510: PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&sone,H,&ldh_,qp,&n_,&zero,q,&n_));
511: for (j=0;j<n;j++) {
512: q[j+n*j] += beval[idx-1];
513: for (i=0;i<n;i++) {
514: q[i+n*j] += -b[idx-1]*qp[j*n+i]-g[idx-1]*qpp[j*n+i];
515: q[i+n*j] /= a[idx-1];
516: }
517: }
518: }
519: }
520: PetscFunctionReturn(PETSC_SUCCESS);
521: }
523: static PetscErrorCode PEPJDComputeResidual(PEP pep,PetscBool derivative,PetscInt sz,Vec *u,PetscScalar *theta,Vec *p,Vec *work)
524: {
525: PEP_JD *pjd = (PEP_JD*)pep->data;
526: PetscMPIInt rk,np,count;
527: Vec tu,tp,w;
528: PetscScalar *dval,*dvali,*array1,*array2,*x2=NULL,*y2,*qj=NULL,*tt=NULL,*xx=NULL,*xxi=NULL,sone=1.0;
529: PetscInt i,j,nconv,nloc;
530: PetscBLASInt n,ld,one=1;
531: #if !defined(PETSC_USE_COMPLEX)
532: Vec tui=NULL,tpi=NULL;
533: PetscScalar *x2i=NULL,*qji=NULL,*qq,*y2i,*arrayi1,*arrayi2;
534: #endif
536: PetscFunctionBegin;
537: nconv = pjd->nlock;
538: if (!nconv) PetscCall(PetscMalloc1(2*sz*pep->nmat,&dval));
539: else {
540: PetscCall(PetscMalloc5(2*pep->nmat,&dval,2*nconv,&xx,nconv,&tt,sz*nconv,&x2,(sz==2?3:1)*nconv*pep->nmat,&qj));
541: PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)pep),&rk));
542: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pep),&np));
543: PetscCall(BVGetSizes(pep->V,&nloc,NULL,NULL));
544: PetscCall(VecGetArray(u[0],&array1));
545: for (i=0;i<nconv;i++) x2[i] = array1[nloc+i]*PetscSqrtReal(np);
546: PetscCall(VecRestoreArray(u[0],&array1));
547: #if !defined(PETSC_USE_COMPLEX)
548: if (sz==2) {
549: x2i = x2+nconv;
550: PetscCall(VecGetArray(u[1],&arrayi1));
551: for (i=0;i<nconv;i++) x2i[i] = arrayi1[nloc+i]*PetscSqrtReal(np);
552: PetscCall(VecRestoreArray(u[1],&arrayi1));
553: }
554: #endif
555: }
556: dvali = dval+pep->nmat;
557: tu = work[0];
558: tp = work[1];
559: w = work[2];
560: PetscCall(VecGetArray(u[0],&array1));
561: PetscCall(VecPlaceArray(tu,array1));
562: PetscCall(VecGetArray(p[0],&array2));
563: PetscCall(VecPlaceArray(tp,array2));
564: PetscCall(VecSet(tp,0.0));
565: #if !defined(PETSC_USE_COMPLEX)
566: if (sz==2) {
567: tui = work[3];
568: tpi = work[4];
569: PetscCall(VecGetArray(u[1],&arrayi1));
570: PetscCall(VecPlaceArray(tui,arrayi1));
571: PetscCall(VecGetArray(p[1],&arrayi2));
572: PetscCall(VecPlaceArray(tpi,arrayi2));
573: PetscCall(VecSet(tpi,0.0));
574: }
575: #endif
576: if (derivative) PetscCall(PEPEvaluateBasisDerivative(pep,theta[0],theta[1],dval,dvali));
577: else PetscCall(PEPEvaluateBasis(pep,theta[0],theta[1],dval,dvali));
578: for (i=derivative?1:0;i<pep->nmat;i++) {
579: PetscCall(MatMult(pep->A[i],tu,w));
580: PetscCall(VecAXPY(tp,dval[i],w));
581: #if !defined(PETSC_USE_COMPLEX)
582: if (sz==2) {
583: PetscCall(VecAXPY(tpi,dvali[i],w));
584: PetscCall(MatMult(pep->A[i],tui,w));
585: PetscCall(VecAXPY(tpi,dval[i],w));
586: PetscCall(VecAXPY(tp,-dvali[i],w));
587: }
588: #endif
589: }
590: if (nconv) {
591: for (i=0;i<pep->nmat;i++) PetscCall(PEPJDEvaluateHatBasis(pep,nconv,pjd->T,pep->ncv,dval,x2,i,i>1?qj+(i-2)*nconv:NULL,i>0?qj+(i-1)*nconv:NULL,qj+i*nconv));
592: #if !defined(PETSC_USE_COMPLEX)
593: if (sz==2) {
594: qji = qj+nconv*pep->nmat;
595: qq = qji+nconv*pep->nmat;
596: for (i=0;i<pep->nmat;i++) PetscCall(PEPJDEvaluateHatBasis(pep,nconv,pjd->T,pep->ncv,dvali,x2i,i,i>1?qji+(i-2)*nconv:NULL,i>0?qji+(i-1)*nconv:NULL,qji+i*nconv));
597: for (i=0;i<nconv*pep->nmat;i++) qj[i] -= qji[i];
598: for (i=0;i<pep->nmat;i++) {
599: PetscCall(PEPJDEvaluateHatBasis(pep,nconv,pjd->T,pep->ncv,dval,x2i,i,i>1?qji+(i-2)*nconv:NULL,i>0?qji+(i-1)*nconv:NULL,qji+i*nconv));
600: PetscCall(PEPJDEvaluateHatBasis(pep,nconv,pjd->T,pep->ncv,dvali,x2,i,i>1?qq+(i-2)*nconv:NULL,i>0?qq+(i-1)*nconv:NULL,qq+i*nconv));
601: }
602: for (i=0;i<nconv*pep->nmat;i++) qji[i] += qq[i];
603: for (i=derivative?2:1;i<pep->nmat;i++) PetscCall(BVMultVec(pjd->AX[i],1.0,1.0,tpi,qji+i*nconv));
604: }
605: #endif
606: for (i=derivative?2:1;i<pep->nmat;i++) PetscCall(BVMultVec(pjd->AX[i],1.0,1.0,tp,qj+i*nconv));
608: /* extended vector part */
609: PetscCall(BVSetActiveColumns(pjd->X,0,nconv));
610: PetscCall(BVDotVec(pjd->X,tu,xx));
611: xxi = xx+nconv;
612: #if !defined(PETSC_USE_COMPLEX)
613: if (sz==2) PetscCall(BVDotVec(pjd->X,tui,xxi));
614: #endif
615: if (sz==1) PetscCall(PetscArrayzero(xxi,nconv));
616: if (rk==np-1) {
617: PetscCall(PetscBLASIntCast(nconv,&n));
618: PetscCall(PetscBLASIntCast(pjd->ld,&ld));
619: y2 = array2+nloc;
620: PetscCall(PetscArrayzero(y2,nconv));
621: for (j=derivative?1:0;j<pjd->midx;j++) {
622: for (i=0;i<nconv;i++) tt[i] = dval[j]*xx[i]-dvali[j]*xxi[i];
623: PetscCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&sone,pjd->XpX,&ld,qj+j*nconv,&one,&sone,tt,&one));
624: PetscCallBLAS("BLASgemv",BLASgemv_("C",&n,&n,&sone,pjd->Tj+j*ld*ld,&ld,tt,&one,&sone,y2,&one));
625: }
626: for (i=0;i<nconv;i++) array2[nloc+i] /= PetscSqrtReal(np);
627: #if !defined(PETSC_USE_COMPLEX)
628: if (sz==2) {
629: y2i = arrayi2+nloc;
630: PetscCall(PetscArrayzero(y2i,nconv));
631: for (j=derivative?1:0;j<pjd->midx;j++) {
632: for (i=0;i<nconv;i++) tt[i] = dval[j]*xxi[i]+dvali[j]*xx[i];
633: PetscCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&sone,pjd->XpX,&ld,qji+j*nconv,&one,&sone,tt,&one));
634: PetscCallBLAS("BLASgemv",BLASgemv_("C",&n,&n,&sone,pjd->Tj+j*ld*ld,&ld,tt,&one,&sone,y2i,&one));
635: }
636: for (i=0;i<nconv;i++) arrayi2[nloc+i] /= PetscSqrtReal(np);
637: }
638: #endif
639: }
640: PetscCall(PetscMPIIntCast(nconv,&count));
641: PetscCallMPI(MPI_Bcast(array2+nloc,count,MPIU_SCALAR,np-1,PetscObjectComm((PetscObject)pep)));
642: #if !defined(PETSC_USE_COMPLEX)
643: if (sz==2) PetscCallMPI(MPI_Bcast(arrayi2+nloc,count,MPIU_SCALAR,np-1,PetscObjectComm((PetscObject)pep)));
644: #endif
645: }
646: if (nconv) PetscCall(PetscFree5(dval,xx,tt,x2,qj));
647: else PetscCall(PetscFree(dval));
648: PetscCall(VecResetArray(tu));
649: PetscCall(VecRestoreArray(u[0],&array1));
650: PetscCall(VecResetArray(tp));
651: PetscCall(VecRestoreArray(p[0],&array2));
652: #if !defined(PETSC_USE_COMPLEX)
653: if (sz==2) {
654: PetscCall(VecResetArray(tui));
655: PetscCall(VecRestoreArray(u[1],&arrayi1));
656: PetscCall(VecResetArray(tpi));
657: PetscCall(VecRestoreArray(p[1],&arrayi2));
658: }
659: #endif
660: PetscFunctionReturn(PETSC_SUCCESS);
661: }
663: static PetscErrorCode PEPJDProcessInitialSpace(PEP pep,Vec *w)
664: {
665: PEP_JD *pjd = (PEP_JD*)pep->data;
666: PetscScalar *tt,target[2];
667: Vec vg,wg;
668: PetscInt i;
669: PetscReal norm;
671: PetscFunctionBegin;
672: PetscCall(PetscMalloc1(pjd->ld-1,&tt));
673: PetscCheck(pep->nini==0,PETSC_COMM_SELF,PETSC_ERR_SUP,"Support for initial vectors not implemented yet");
674: PetscCall(BVSetRandomColumn(pjd->V,0));
675: for (i=0;i<pjd->ld-1;i++) tt[i] = 0.0;
676: PetscCall(BVGetColumn(pjd->V,0,&vg));
677: PetscCall(PEPJDCopyToExtendedVec(pep,NULL,tt,pjd->ld-1,0,vg,PETSC_FALSE));
678: PetscCall(BVRestoreColumn(pjd->V,0,&vg));
679: PetscCall(BVNormColumn(pjd->V,0,NORM_2,&norm));
680: PetscCall(BVScaleColumn(pjd->V,0,1.0/norm));
681: if (pjd->proj==PEP_JD_PROJECTION_HARMONIC) {
682: PetscCall(BVGetColumn(pjd->V,0,&vg));
683: PetscCall(BVGetColumn(pjd->W,0,&wg));
684: PetscCall(VecSet(wg,0.0));
685: target[0] = pep->target; target[1] = 0.0;
686: PetscCall(PEPJDComputeResidual(pep,PETSC_TRUE,1,&vg,target,&wg,w));
687: PetscCall(BVRestoreColumn(pjd->W,0,&wg));
688: PetscCall(BVRestoreColumn(pjd->V,0,&vg));
689: PetscCall(BVNormColumn(pjd->W,0,NORM_2,&norm));
690: PetscCall(BVScaleColumn(pjd->W,0,1.0/norm));
691: }
692: PetscCall(PetscFree(tt));
693: PetscFunctionReturn(PETSC_SUCCESS);
694: }
696: static PetscErrorCode MatMult_PEPJD(Mat P,Vec x,Vec y)
697: {
698: PEP_JD_MATSHELL *matctx;
699: PEP_JD *pjd;
700: PetscInt i,j,nconv,nloc,nmat,ldt,ncv,sz;
701: Vec tx,ty;
702: const Vec *xs,*ys;
703: PetscScalar *array1,*array2,*x2=NULL,*y2,*tt=NULL,*xx=NULL,*xxi,theta[2],sone=1.0,*qj,*val,*vali=NULL;
704: PetscBLASInt n,ld,one=1;
705: PetscMPIInt np;
706: #if !defined(PETSC_USE_COMPLEX)
707: Vec txi=NULL,tyi=NULL;
708: PetscScalar *x2i=NULL,*qji=NULL,*qq,*y2i,*arrayi1,*arrayi2;
709: #endif
711: PetscFunctionBegin;
712: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)P),&np));
713: PetscCall(MatShellGetContext(P,&matctx));
714: pjd = (PEP_JD*)matctx->pep->data;
715: nconv = pjd->nlock;
716: nmat = matctx->pep->nmat;
717: ncv = matctx->pep->ncv;
718: ldt = pjd->ld;
719: PetscCall(VecCompGetSubVecs(x,&sz,&xs));
720: PetscCall(VecCompGetSubVecs(y,NULL,&ys));
721: theta[0] = matctx->theta[0];
722: theta[1] = (sz==2)?matctx->theta[1]:0.0;
723: if (nconv>0) {
724: PetscCall(PetscMalloc5(nconv,&tt,sz*nconv,&x2,(sz==2?3:1)*nconv*nmat,&qj,2*nconv,&xx,2*nmat,&val));
725: PetscCall(BVGetSizes(matctx->pep->V,&nloc,NULL,NULL));
726: PetscCall(VecGetArray(xs[0],&array1));
727: for (i=0;i<nconv;i++) x2[i] = array1[nloc+i]* PetscSqrtReal(np);
728: PetscCall(VecRestoreArray(xs[0],&array1));
729: #if !defined(PETSC_USE_COMPLEX)
730: if (sz==2) {
731: x2i = x2+nconv;
732: PetscCall(VecGetArray(xs[1],&arrayi1));
733: for (i=0;i<nconv;i++) x2i[i] = arrayi1[nloc+i]* PetscSqrtReal(np);
734: PetscCall(VecRestoreArray(xs[1],&arrayi1));
735: }
736: #endif
737: vali = val+nmat;
738: }
739: tx = matctx->work[0];
740: ty = matctx->work[1];
741: PetscCall(VecGetArray(xs[0],&array1));
742: PetscCall(VecPlaceArray(tx,array1));
743: PetscCall(VecGetArray(ys[0],&array2));
744: PetscCall(VecPlaceArray(ty,array2));
745: PetscCall(MatMult(matctx->Pr,tx,ty));
746: #if !defined(PETSC_USE_COMPLEX)
747: if (sz==2) {
748: txi = matctx->work[2];
749: tyi = matctx->work[3];
750: PetscCall(VecGetArray(xs[1],&arrayi1));
751: PetscCall(VecPlaceArray(txi,arrayi1));
752: PetscCall(VecGetArray(ys[1],&arrayi2));
753: PetscCall(VecPlaceArray(tyi,arrayi2));
754: PetscCall(MatMult(matctx->Pr,txi,tyi));
755: if (theta[1]!=0.0) {
756: PetscCall(MatMult(matctx->Pi,txi,matctx->work[4]));
757: PetscCall(VecAXPY(ty,-1.0,matctx->work[4]));
758: PetscCall(MatMult(matctx->Pi,tx,matctx->work[4]));
759: PetscCall(VecAXPY(tyi,1.0,matctx->work[4]));
760: }
761: }
762: #endif
763: if (nconv>0) {
764: PetscCall(PEPEvaluateBasis(matctx->pep,theta[0],theta[1],val,vali));
765: for (i=0;i<nmat;i++) PetscCall(PEPJDEvaluateHatBasis(matctx->pep,nconv,pjd->T,ncv,val,x2,i,i>1?qj+(i-2)*nconv:NULL,i>0?qj+(i-1)*nconv:NULL,qj+i*nconv));
766: #if !defined(PETSC_USE_COMPLEX)
767: if (sz==2) {
768: qji = qj+nconv*nmat;
769: qq = qji+nconv*nmat;
770: for (i=0;i<nmat;i++) PetscCall(PEPJDEvaluateHatBasis(matctx->pep,nconv,pjd->T,matctx->pep->ncv,vali,x2i,i,i>1?qji+(i-2)*nconv:NULL,i>0?qji+(i-1)*nconv:NULL,qji+i*nconv));
771: for (i=0;i<nconv*nmat;i++) qj[i] -= qji[i];
772: for (i=0;i<nmat;i++) {
773: PetscCall(PEPJDEvaluateHatBasis(matctx->pep,nconv,pjd->T,matctx->pep->ncv,val,x2i,i,i>1?qji+(i-2)*nconv:NULL,i>0?qji+(i-1)*nconv:NULL,qji+i*nconv));
774: PetscCall(PEPJDEvaluateHatBasis(matctx->pep,nconv,pjd->T,matctx->pep->ncv,vali,x2,i,i>1?qq+(i-2)*nconv:NULL,i>0?qq+(i-1)*nconv:NULL,qq+i*nconv));
775: }
776: for (i=0;i<nconv*nmat;i++) qji[i] += qq[i];
777: for (i=1;i<matctx->pep->nmat;i++) PetscCall(BVMultVec(pjd->AX[i],1.0,1.0,tyi,qji+i*nconv));
778: }
779: #endif
780: for (i=1;i<nmat;i++) PetscCall(BVMultVec(pjd->AX[i],1.0,1.0,ty,qj+i*nconv));
782: /* extended vector part */
783: PetscCall(BVSetActiveColumns(pjd->X,0,nconv));
784: PetscCall(BVDotVec(pjd->X,tx,xx));
785: xxi = xx+nconv;
786: #if !defined(PETSC_USE_COMPLEX)
787: if (sz==2) PetscCall(BVDotVec(pjd->X,txi,xxi));
788: #endif
789: if (sz==1) PetscCall(PetscArrayzero(xxi,nconv));
790: PetscCall(PetscBLASIntCast(pjd->nlock,&n));
791: PetscCall(PetscBLASIntCast(ldt,&ld));
792: y2 = array2+nloc;
793: PetscCall(PetscArrayzero(y2,nconv));
794: for (j=0;j<pjd->midx;j++) {
795: for (i=0;i<nconv;i++) tt[i] = val[j]*xx[i]-vali[j]*xxi[i];
796: PetscCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&sone,pjd->XpX,&ld,qj+j*nconv,&one,&sone,tt,&one));
797: PetscCallBLAS("BLASgemv",BLASgemv_("C",&n,&n,&sone,pjd->Tj+j*ld*ld,&ld,tt,&one,&sone,y2,&one));
798: }
799: #if !defined(PETSC_USE_COMPLEX)
800: if (sz==2) {
801: y2i = arrayi2+nloc;
802: PetscCall(PetscArrayzero(y2i,nconv));
803: for (j=0;j<pjd->midx;j++) {
804: for (i=0;i<nconv;i++) tt[i] = val[j]*xxi[i]+vali[j]*xx[i];
805: PetscCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&sone,pjd->XpX,&ld,qji+j*nconv,&one,&sone,tt,&one));
806: PetscCallBLAS("BLASgemv",BLASgemv_("C",&n,&n,&sone,pjd->Tj+j*ld*ld,&ld,tt,&one,&sone,y2i,&one));
807: }
808: for (i=0;i<nconv;i++) arrayi2[nloc+i] /= PetscSqrtReal(np);
809: }
810: #endif
811: for (i=0;i<nconv;i++) array2[nloc+i] /= PetscSqrtReal(np);
812: PetscCall(PetscFree5(tt,x2,qj,xx,val));
813: }
814: PetscCall(VecResetArray(tx));
815: PetscCall(VecRestoreArray(xs[0],&array1));
816: PetscCall(VecResetArray(ty));
817: PetscCall(VecRestoreArray(ys[0],&array2));
818: #if !defined(PETSC_USE_COMPLEX)
819: if (sz==2) {
820: PetscCall(VecResetArray(txi));
821: PetscCall(VecRestoreArray(xs[1],&arrayi1));
822: PetscCall(VecResetArray(tyi));
823: PetscCall(VecRestoreArray(ys[1],&arrayi2));
824: }
825: #endif
826: PetscFunctionReturn(PETSC_SUCCESS);
827: }
829: static PetscErrorCode MatCreateVecs_PEPJD(Mat A,Vec *right,Vec *left)
830: {
831: PEP_JD_MATSHELL *matctx;
832: PEP_JD *pjd;
833: PetscInt kspsf=1,i;
834: Vec v[2];
836: PetscFunctionBegin;
837: PetscCall(MatShellGetContext(A,&matctx));
838: pjd = (PEP_JD*)matctx->pep->data;
839: #if !defined (PETSC_USE_COMPLEX)
840: kspsf = 2;
841: #endif
842: for (i=0;i<kspsf;i++) PetscCall(BVCreateVec(pjd->V,v+i));
843: if (right) PetscCall(VecCreateCompWithVecs(v,kspsf,pjd->vtempl,right));
844: if (left) PetscCall(VecCreateCompWithVecs(v,kspsf,pjd->vtempl,left));
845: for (i=0;i<kspsf;i++) PetscCall(VecDestroy(&v[i]));
846: PetscFunctionReturn(PETSC_SUCCESS);
847: }
849: static PetscErrorCode PEPJDUpdateExtendedPC(PEP pep,PetscScalar theta)
850: {
851: PEP_JD *pjd = (PEP_JD*)pep->data;
852: PEP_JD_PCSHELL *pcctx;
853: PetscInt i,j,k,n=pjd->nlock,ld=pjd->ld,deg=pep->nmat-1;
854: PetscScalar *M,*ps,*work,*U,*V,*S,*Sp,*Spp,snone=-1.0,sone=1.0,zero=0.0,*val;
855: PetscReal tol,maxeig=0.0,*sg,*rwork;
856: PetscBLASInt n_,info,ld_,*p,lw_,rk=0;
858: PetscFunctionBegin;
859: if (n) {
860: PetscCall(PCShellGetContext(pjd->pcshell,&pcctx));
861: pcctx->theta = theta;
862: pcctx->n = n;
863: M = pcctx->M;
864: PetscCall(PetscBLASIntCast(n,&n_));
865: PetscCall(PetscBLASIntCast(ld,&ld_));
866: PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
867: if (pjd->midx==1) {
868: PetscCall(PetscArraycpy(M,pjd->XpX,ld*ld));
869: PetscCall(PetscCalloc2(10*n,&work,n,&p));
870: } else {
871: ps = pcctx->ps;
872: PetscCall(PetscCalloc7(2*n*n,&U,3*n*n,&S,n,&sg,10*n,&work,5*n,&rwork,n,&p,deg+1,&val));
873: V = U+n*n;
874: /* pseudo-inverse */
875: for (j=0;j<n;j++) {
876: for (i=0;i<n;i++) S[n*j+i] = -pjd->T[pep->ncv*j+i];
877: S[n*j+j] += theta;
878: }
879: lw_ = 10*n_;
880: #if !defined (PETSC_USE_COMPLEX)
881: PetscCallBLAS("LAPACKgesvd",LAPACKgesvd_("S","S",&n_,&n_,S,&n_,sg,U,&n_,V,&n_,work,&lw_,&info));
882: #else
883: PetscCallBLAS("LAPACKgesvd",LAPACKgesvd_("S","S",&n_,&n_,S,&n_,sg,U,&n_,V,&n_,work,&lw_,rwork,&info));
884: #endif
885: SlepcCheckLapackInfo("gesvd",info);
886: for (i=0;i<n;i++) maxeig = PetscMax(maxeig,sg[i]);
887: tol = 10*PETSC_MACHINE_EPSILON*n*maxeig;
888: for (j=0;j<n;j++) {
889: if (sg[j]>tol) {
890: for (i=0;i<n;i++) U[j*n+i] /= sg[j];
891: rk++;
892: } else break;
893: }
894: PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&rk,&sone,U,&n_,V,&n_,&zero,ps,&ld_));
896: /* compute M */
897: PetscCall(PEPEvaluateBasis(pep,theta,0.0,val,NULL));
898: PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&snone,pjd->XpX,&ld_,ps,&ld_,&zero,M,&ld_));
899: PetscCall(PetscArrayzero(S,2*n*n));
900: Sp = S+n*n;
901: for (j=0;j<n;j++) S[j*(n+1)] = 1.0;
902: for (k=1;k<pjd->midx;k++) {
903: for (j=0;j<n;j++) for (i=0;i<n;i++) V[j*n+i] = S[j*n+i] - ps[j*ld+i]*val[k];
904: PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&sone,pjd->XpX,&ld_,V,&n_,&zero,U,&n_));
905: PetscCallBLAS("BLASgemm",BLASgemm_("C","N",&n_,&n_,&n_,&sone,pjd->Tj+k*ld*ld,&ld_,U,&n_,&sone,M,&ld_));
906: Spp = Sp; Sp = S;
907: PetscCall(PEPJDEvaluateHatBasis(pep,n,pjd->T,pep->ncv,val,NULL,k+1,Spp,Sp,S));
908: }
909: }
910: /* inverse */
911: PetscCallBLAS("LAPACKgetrf",LAPACKgetrf_(&n_,&n_,M,&ld_,p,&info));
912: SlepcCheckLapackInfo("getrf",info);
913: PetscCallBLAS("LAPACKgetri",LAPACKgetri_(&n_,M,&ld_,p,work,&n_,&info));
914: SlepcCheckLapackInfo("getri",info);
915: PetscCall(PetscFPTrapPop());
916: if (pjd->midx==1) PetscCall(PetscFree2(work,p));
917: else PetscCall(PetscFree7(U,S,sg,work,rwork,p,val));
918: }
919: PetscFunctionReturn(PETSC_SUCCESS);
920: }
922: static PetscErrorCode PEPJDMatSetUp(PEP pep,PetscInt sz,PetscScalar *theta)
923: {
924: PEP_JD *pjd = (PEP_JD*)pep->data;
925: PEP_JD_MATSHELL *matctx;
926: PEP_JD_PCSHELL *pcctx;
927: MatStructure str;
928: PetscScalar *vals,*valsi;
929: PetscBool skipmat=PETSC_FALSE;
930: PetscInt i;
931: Mat Pr=NULL;
933: PetscFunctionBegin;
934: if (sz==2 && theta[1]==0.0) sz = 1;
935: PetscCall(MatShellGetContext(pjd->Pshell,&matctx));
936: PetscCall(PCShellGetContext(pjd->pcshell,&pcctx));
937: if (matctx->Pr && matctx->theta[0]==theta[0] && ((!matctx->Pi && sz==1) || (sz==2 && matctx->theta[1]==theta[1]))) {
938: if (pcctx->n == pjd->nlock) PetscFunctionReturn(PETSC_SUCCESS);
939: skipmat = PETSC_TRUE;
940: }
941: if (!skipmat) {
942: PetscCall(PetscMalloc2(pep->nmat,&vals,pep->nmat,&valsi));
943: PetscCall(STGetMatStructure(pep->st,&str));
944: PetscCall(PEPEvaluateBasis(pep,theta[0],theta[1],vals,valsi));
945: if (!matctx->Pr) PetscCall(MatDuplicate(pep->A[0],MAT_COPY_VALUES,&matctx->Pr));
946: else PetscCall(MatCopy(pep->A[0],matctx->Pr,str));
947: for (i=1;i<pep->nmat;i++) PetscCall(MatAXPY(matctx->Pr,vals[i],pep->A[i],str));
948: if (!pjd->reusepc) {
949: if (pcctx->PPr && sz==2) {
950: PetscCall(MatCopy(matctx->Pr,pcctx->PPr,str));
951: Pr = pcctx->PPr;
952: } else Pr = matctx->Pr;
953: }
954: matctx->theta[0] = theta[0];
955: #if !defined(PETSC_USE_COMPLEX)
956: if (sz==2) {
957: if (!matctx->Pi) PetscCall(MatDuplicate(pep->A[0],MAT_COPY_VALUES,&matctx->Pi));
958: else PetscCall(MatCopy(pep->A[1],matctx->Pi,str));
959: PetscCall(MatScale(matctx->Pi,valsi[1]));
960: for (i=2;i<pep->nmat;i++) PetscCall(MatAXPY(matctx->Pi,valsi[i],pep->A[i],str));
961: matctx->theta[1] = theta[1];
962: }
963: #endif
964: PetscCall(PetscFree2(vals,valsi));
965: }
966: if (!pjd->reusepc) {
967: if (!skipmat) {
968: PetscCall(PCSetOperators(pcctx->pc,Pr,Pr));
969: PetscCall(PCSetUp(pcctx->pc));
970: }
971: PetscCall(PEPJDUpdateExtendedPC(pep,theta[0]));
972: }
973: PetscFunctionReturn(PETSC_SUCCESS);
974: }
976: static PetscErrorCode PEPJDCreateShellPC(PEP pep,Vec *ww)
977: {
978: PEP_JD *pjd = (PEP_JD*)pep->data;
979: PEP_JD_PCSHELL *pcctx;
980: PEP_JD_MATSHELL *matctx;
981: KSP ksp;
982: PetscInt nloc,mloc,kspsf=1;
983: Vec v[2];
984: PetscScalar target[2];
985: Mat Pr;
987: PetscFunctionBegin;
988: /* Create the reference vector */
989: PetscCall(BVGetColumn(pjd->V,0,&v[0]));
990: v[1] = v[0];
991: #if !defined (PETSC_USE_COMPLEX)
992: kspsf = 2;
993: #endif
994: PetscCall(VecCreateCompWithVecs(v,kspsf,NULL,&pjd->vtempl));
995: PetscCall(BVRestoreColumn(pjd->V,0,&v[0]));
997: /* Replace preconditioner with one containing projectors */
998: PetscCall(PCCreate(PetscObjectComm((PetscObject)pep),&pjd->pcshell));
999: PetscCall(PCSetType(pjd->pcshell,PCSHELL));
1000: PetscCall(PCShellSetName(pjd->pcshell,"PCPEPJD"));
1001: PetscCall(PCShellSetApply(pjd->pcshell,PCShellApply_PEPJD));
1002: PetscCall(PetscNew(&pcctx));
1003: PetscCall(PCShellSetContext(pjd->pcshell,pcctx));
1004: PetscCall(STGetKSP(pep->st,&ksp));
1005: PetscCall(BVCreateVec(pjd->V,&pcctx->Bp[0]));
1006: PetscCall(VecDuplicate(pcctx->Bp[0],&pcctx->Bp[1]));
1007: PetscCall(KSPGetPC(ksp,&pcctx->pc));
1008: PetscCall(PetscObjectReference((PetscObject)pcctx->pc));
1009: PetscCall(MatGetLocalSize(pep->A[0],&mloc,&nloc));
1010: if (pjd->ld>1) {
1011: nloc += pjd->ld-1; mloc += pjd->ld-1;
1012: }
1013: PetscCall(PetscNew(&matctx));
1014: PetscCall(MatCreateShell(PetscObjectComm((PetscObject)pep),kspsf*nloc,kspsf*mloc,PETSC_DETERMINE,PETSC_DETERMINE,matctx,&pjd->Pshell));
1015: PetscCall(MatShellSetOperation(pjd->Pshell,MATOP_MULT,(void(*)(void))MatMult_PEPJD));
1016: PetscCall(MatShellSetOperation(pjd->Pshell,MATOP_CREATE_VECS,(void(*)(void))MatCreateVecs_PEPJD));
1017: matctx->pep = pep;
1018: target[0] = pep->target; target[1] = 0.0;
1019: PetscCall(PEPJDMatSetUp(pep,1,target));
1020: Pr = matctx->Pr;
1021: pcctx->PPr = NULL;
1022: #if !defined(PETSC_USE_COMPLEX)
1023: if (!pjd->reusepc) {
1024: PetscCall(MatDuplicate(matctx->Pr,MAT_COPY_VALUES,&pcctx->PPr));
1025: Pr = pcctx->PPr;
1026: }
1027: #endif
1028: PetscCall(PCSetOperators(pcctx->pc,Pr,Pr));
1029: PetscCall(PCSetErrorIfFailure(pcctx->pc,PETSC_TRUE));
1030: PetscCall(KSPSetPC(ksp,pjd->pcshell));
1031: if (pjd->reusepc) {
1032: PetscCall(PCSetReusePreconditioner(pcctx->pc,PETSC_TRUE));
1033: PetscCall(KSPSetReusePreconditioner(ksp,PETSC_TRUE));
1034: }
1035: PetscCall(PEP_KSPSetOperators(ksp,pjd->Pshell,pjd->Pshell));
1036: PetscCall(KSPSetUp(ksp));
1037: if (pjd->ld>1) {
1038: PetscCall(PetscMalloc2(pjd->ld*pjd->ld,&pcctx->M,pjd->ld*pjd->ld,&pcctx->ps));
1039: pcctx->pep = pep;
1040: }
1041: matctx->work = ww;
1042: pcctx->work = ww;
1043: PetscFunctionReturn(PETSC_SUCCESS);
1044: }
1046: static PetscErrorCode PEPJDEigenvectors(PEP pep)
1047: {
1048: PEP_JD *pjd = (PEP_JD*)pep->data;
1049: PetscBLASInt ld,nconv,info,nc;
1050: PetscScalar *Z;
1051: PetscReal *wr;
1052: Mat U;
1053: #if defined(PETSC_USE_COMPLEX)
1054: PetscScalar *w;
1055: #endif
1057: PetscFunctionBegin;
1058: PetscCall(PetscBLASIntCast(pep->ncv,&ld));
1059: PetscCall(PetscBLASIntCast(pep->nconv,&nconv));
1060: PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
1061: #if !defined(PETSC_USE_COMPLEX)
1062: PetscCall(PetscMalloc2(pep->nconv*pep->nconv,&Z,3*pep->ncv,&wr));
1063: PetscCallBLAS("LAPACKtrevc",LAPACKtrevc_("R","A",NULL,&nconv,pjd->T,&ld,NULL,&nconv,Z,&nconv,&nconv,&nc,wr,&info));
1064: #else
1065: PetscCall(PetscMalloc3(pep->nconv*pep->nconv,&Z,3*pep->ncv,&wr,2*pep->ncv,&w));
1066: PetscCallBLAS("LAPACKtrevc",LAPACKtrevc_("R","A",NULL,&nconv,pjd->T,&ld,NULL,&nconv,Z,&nconv,&nconv,&nc,w,wr,&info));
1067: #endif
1068: PetscCall(PetscFPTrapPop());
1069: SlepcCheckLapackInfo("trevc",info);
1070: PetscCall(MatCreateSeqDense(PETSC_COMM_SELF,nconv,nconv,Z,&U));
1071: PetscCall(BVSetActiveColumns(pjd->X,0,pep->nconv));
1072: PetscCall(BVMultInPlace(pjd->X,U,0,pep->nconv));
1073: PetscCall(BVNormalize(pjd->X,pep->eigi));
1074: PetscCall(MatDestroy(&U));
1075: #if !defined(PETSC_USE_COMPLEX)
1076: PetscCall(PetscFree2(Z,wr));
1077: #else
1078: PetscCall(PetscFree3(Z,wr,w));
1079: #endif
1080: PetscFunctionReturn(PETSC_SUCCESS);
1081: }
1083: static PetscErrorCode PEPJDLockConverged(PEP pep,PetscInt *nv,PetscInt sz)
1084: {
1085: PEP_JD *pjd = (PEP_JD*)pep->data;
1086: PetscInt j,i,*P,ldds,rk=0,nvv=*nv;
1087: Vec v,x,w;
1088: PetscScalar *R,*r,*pX,target[2];
1089: Mat X;
1090: PetscBLASInt sz_,rk_,nv_,info;
1091: PetscMPIInt np;
1093: PetscFunctionBegin;
1094: /* update AX and XpX */
1095: for (i=sz;i>0;i--) {
1096: PetscCall(BVGetColumn(pjd->X,pjd->nlock-i,&x));
1097: for (j=0;j<pep->nmat;j++) {
1098: PetscCall(BVGetColumn(pjd->AX[j],pjd->nlock-i,&v));
1099: PetscCall(MatMult(pep->A[j],x,v));
1100: PetscCall(BVRestoreColumn(pjd->AX[j],pjd->nlock-i,&v));
1101: PetscCall(BVSetActiveColumns(pjd->AX[j],0,pjd->nlock-i+1));
1102: }
1103: PetscCall(BVRestoreColumn(pjd->X,pjd->nlock-i,&x));
1104: PetscCall(BVDotColumn(pjd->X,(pjd->nlock-i),pjd->XpX+(pjd->nlock-i)*pjd->ld));
1105: pjd->XpX[(pjd->nlock-i)*(1+pjd->ld)] = 1.0;
1106: for (j=0;j<pjd->nlock-i;j++) pjd->XpX[j*pjd->ld+pjd->nlock-i] = PetscConj(pjd->XpX[(pjd->nlock-i)*pjd->ld+j]);
1107: }
1109: /* minimality index */
1110: pjd->midx = PetscMin(pjd->mmidx,pjd->nlock);
1112: /* evaluate the polynomial basis in T */
1113: PetscCall(PetscArrayzero(pjd->Tj,pjd->ld*pjd->ld*pep->nmat));
1114: for (j=0;j<pep->nmat;j++) PetscCall(PEPEvaluateBasisMat(pep,pjd->nlock,pjd->T,pep->ncv,j,(j>1)?pjd->Tj+(j-2)*pjd->ld*pjd->ld:NULL,pjd->ld,j?pjd->Tj+(j-1)*pjd->ld*pjd->ld:NULL,pjd->ld,pjd->Tj+j*pjd->ld*pjd->ld,pjd->ld));
1116: /* Extend search space */
1117: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pep),&np));
1118: PetscCall(PetscCalloc3(nvv,&P,nvv*nvv,&R,nvv*sz,&r));
1119: PetscCall(DSGetLeadingDimension(pep->ds,&ldds));
1120: PetscCall(DSGetArray(pep->ds,DS_MAT_X,&pX));
1121: PetscCall(PEPJDOrthogonalize(nvv,nvv,pX,ldds,&rk,P,R,nvv));
1122: for (j=0;j<sz;j++) {
1123: for (i=0;i<rk;i++) r[i*sz+j] = PetscConj(R[nvv*i+j]*pep->eigr[P[i]]); /* first row scaled with permuted diagonal */
1124: }
1125: PetscCall(PetscBLASIntCast(rk,&rk_));
1126: PetscCall(PetscBLASIntCast(sz,&sz_));
1127: PetscCall(PetscBLASIntCast(nvv,&nv_));
1128: PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
1129: PetscCallBLAS("LAPACKtrtri",LAPACKtrtri_("U","N",&rk_,R,&nv_,&info));
1130: PetscCall(PetscFPTrapPop());
1131: SlepcCheckLapackInfo("trtri",info);
1132: for (i=0;i<sz;i++) PetscCallBLAS("BLAStrmv",BLAStrmv_("U","C","N",&rk_,R,&nv_,r+i,&sz_));
1133: for (i=0;i<sz*rk;i++) r[i] = PetscConj(r[i])/PetscSqrtReal(np); /* revert */
1134: PetscCall(BVSetActiveColumns(pjd->V,0,nvv));
1135: rk -= sz;
1136: for (j=0;j<rk;j++) PetscCall(PetscArraycpy(R+j*nvv,pX+(j+sz)*ldds,nvv));
1137: PetscCall(DSRestoreArray(pep->ds,DS_MAT_X,&pX));
1138: PetscCall(MatCreateSeqDense(PETSC_COMM_SELF,nvv,rk,R,&X));
1139: PetscCall(BVMultInPlace(pjd->V,X,0,rk));
1140: PetscCall(MatDestroy(&X));
1141: PetscCall(BVSetActiveColumns(pjd->V,0,rk));
1142: for (j=0;j<rk;j++) {
1143: PetscCall(BVGetColumn(pjd->V,j,&v));
1144: PetscCall(PEPJDCopyToExtendedVec(pep,NULL,r+sz*(j+sz),sz,pjd->nlock-sz,v,PETSC_FALSE));
1145: PetscCall(BVRestoreColumn(pjd->V,j,&v));
1146: }
1147: PetscCall(BVOrthogonalize(pjd->V,NULL));
1149: if (pjd->proj==PEP_JD_PROJECTION_HARMONIC) {
1150: for (j=0;j<rk;j++) {
1151: /* W = P(target)*V */
1152: PetscCall(BVGetColumn(pjd->W,j,&w));
1153: PetscCall(BVGetColumn(pjd->V,j,&v));
1154: target[0] = pep->target; target[1] = 0.0;
1155: PetscCall(PEPJDComputeResidual(pep,PETSC_FALSE,1,&v,target,&w,pep->work));
1156: PetscCall(BVRestoreColumn(pjd->V,j,&v));
1157: PetscCall(BVRestoreColumn(pjd->W,j,&w));
1158: }
1159: PetscCall(BVSetActiveColumns(pjd->W,0,rk));
1160: PetscCall(BVOrthogonalize(pjd->W,NULL));
1161: }
1162: *nv = rk;
1163: PetscCall(PetscFree3(P,R,r));
1164: PetscFunctionReturn(PETSC_SUCCESS);
1165: }
1167: static PetscErrorCode PEPJDSystemSetUp(PEP pep,PetscInt sz,PetscScalar *theta,Vec *u,Vec *p,Vec *ww)
1168: {
1169: PEP_JD *pjd = (PEP_JD*)pep->data;
1170: PEP_JD_PCSHELL *pcctx;
1171: #if !defined(PETSC_USE_COMPLEX)
1172: PetscScalar s[2];
1173: #endif
1175: PetscFunctionBegin;
1176: PetscCall(PCShellGetContext(pjd->pcshell,&pcctx));
1177: PetscCall(PEPJDMatSetUp(pep,sz,theta));
1178: pcctx->u[0] = u[0]; pcctx->u[1] = u[1];
1179: /* Compute r'. p is a work space vector */
1180: PetscCall(PEPJDComputeResidual(pep,PETSC_TRUE,sz,u,theta,p,ww));
1181: PetscCall(PEPJDExtendedPCApply(pjd->pcshell,p[0],pcctx->Bp[0]));
1182: PetscCall(VecDot(pcctx->Bp[0],u[0],pcctx->gamma));
1183: #if !defined(PETSC_USE_COMPLEX)
1184: if (sz==2) {
1185: PetscCall(PEPJDExtendedPCApply(pjd->pcshell,p[1],pcctx->Bp[1]));
1186: PetscCall(VecDot(pcctx->Bp[0],u[1],pcctx->gamma+1));
1187: PetscCall(VecMDot(pcctx->Bp[1],2,u,s));
1188: pcctx->gamma[0] += s[1];
1189: pcctx->gamma[1] = -pcctx->gamma[1]+s[0];
1190: }
1191: #endif
1192: if (sz==1) {
1193: PetscCall(VecZeroEntries(pcctx->Bp[1]));
1194: pcctx->gamma[1] = 0.0;
1195: }
1196: PetscFunctionReturn(PETSC_SUCCESS);
1197: }
1199: static PetscErrorCode PEPSolve_JD(PEP pep)
1200: {
1201: PEP_JD *pjd = (PEP_JD*)pep->data;
1202: PetscInt k,nv,nvc,ld,minv,dim,bupdated=0,sz=1,kspsf=1,idx,off,maxits,nloc;
1203: PetscMPIInt np,count;
1204: PetscScalar theta[2]={0.0,0.0},ritz[2]={0.0,0.0},*pX,*eig,*eigi,*array;
1205: PetscReal norm,*res,tol=0.0,rtol,abstol, dtol;
1206: PetscBool lindep,ini=PETSC_TRUE;
1207: Vec tc,t[2]={NULL,NULL},u[2]={NULL,NULL},p[2]={NULL,NULL};
1208: Vec rc,rr[2],r[2]={NULL,NULL},*ww=pep->work,v[2];
1209: Mat G,X,Y;
1210: KSP ksp;
1211: PEP_JD_PCSHELL *pcctx;
1212: PEP_JD_MATSHELL *matctx;
1213: #if !defined(PETSC_USE_COMPLEX)
1214: PetscReal norm1;
1215: #endif
1217: PetscFunctionBegin;
1218: PetscCall(PetscCitationsRegister(citation,&cited));
1219: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pep),&np));
1220: PetscCall(BVGetSizes(pep->V,&nloc,NULL,NULL));
1221: PetscCall(DSGetLeadingDimension(pep->ds,&ld));
1222: PetscCall(PetscCalloc3(pep->ncv+pep->nev,&eig,pep->ncv+pep->nev,&eigi,pep->ncv+pep->nev,&res));
1223: pjd->nlock = 0;
1224: PetscCall(STGetKSP(pep->st,&ksp));
1225: PetscCall(KSPGetTolerances(ksp,&rtol,&abstol,&dtol,&maxits));
1226: #if !defined (PETSC_USE_COMPLEX)
1227: kspsf = 2;
1228: #endif
1229: PetscCall(PEPJDProcessInitialSpace(pep,ww));
1230: nv = (pep->nini)?pep->nini:1;
1232: /* Replace preconditioner with one containing projectors */
1233: PetscCall(PEPJDCreateShellPC(pep,ww));
1234: PetscCall(PCShellGetContext(pjd->pcshell,&pcctx));
1236: /* Create auxiliary vectors */
1237: PetscCall(BVCreateVec(pjd->V,&u[0]));
1238: PetscCall(VecDuplicate(u[0],&p[0]));
1239: PetscCall(VecDuplicate(u[0],&r[0]));
1240: #if !defined (PETSC_USE_COMPLEX)
1241: PetscCall(VecDuplicate(u[0],&u[1]));
1242: PetscCall(VecDuplicate(u[0],&p[1]));
1243: PetscCall(VecDuplicate(u[0],&r[1]));
1244: #endif
1246: /* Restart loop */
1247: while (pep->reason == PEP_CONVERGED_ITERATING) {
1248: pep->its++;
1249: PetscCall(DSSetDimensions(pep->ds,nv,0,0));
1250: PetscCall(BVSetActiveColumns(pjd->V,bupdated,nv));
1251: PetscCall(PEPJDUpdateTV(pep,bupdated,nv,ww));
1252: if (pjd->proj==PEP_JD_PROJECTION_HARMONIC) PetscCall(BVSetActiveColumns(pjd->W,bupdated,nv));
1253: for (k=0;k<pep->nmat;k++) {
1254: PetscCall(BVSetActiveColumns(pjd->TV[k],bupdated,nv));
1255: PetscCall(DSGetMat(pep->ds,DSMatExtra[k],&G));
1256: PetscCall(BVMatProject(pjd->TV[k],NULL,pjd->W,G));
1257: PetscCall(DSRestoreMat(pep->ds,DSMatExtra[k],&G));
1258: }
1259: PetscCall(BVSetActiveColumns(pjd->V,0,nv));
1260: PetscCall(BVSetActiveColumns(pjd->W,0,nv));
1262: /* Solve projected problem */
1263: PetscCall(DSSetState(pep->ds,DS_STATE_RAW));
1264: PetscCall(DSSolve(pep->ds,pep->eigr,pep->eigi));
1265: PetscCall(DSSort(pep->ds,pep->eigr,pep->eigi,NULL,NULL,NULL));
1266: PetscCall(DSSynchronize(pep->ds,pep->eigr,pep->eigi));
1267: idx = 0;
1268: do {
1269: ritz[0] = pep->eigr[idx];
1270: #if !defined(PETSC_USE_COMPLEX)
1271: ritz[1] = pep->eigi[idx];
1272: sz = (ritz[1]==0.0)?1:2;
1273: #endif
1274: /* Compute Ritz vector u=V*X(:,1) */
1275: PetscCall(DSGetArray(pep->ds,DS_MAT_X,&pX));
1276: PetscCall(BVSetActiveColumns(pjd->V,0,nv));
1277: PetscCall(BVMultVec(pjd->V,1.0,0.0,u[0],pX+idx*ld));
1278: #if !defined(PETSC_USE_COMPLEX)
1279: if (sz==2) PetscCall(BVMultVec(pjd->V,1.0,0.0,u[1],pX+(idx+1)*ld));
1280: #endif
1281: PetscCall(DSRestoreArray(pep->ds,DS_MAT_X,&pX));
1282: PetscCall(PEPJDComputeResidual(pep,PETSC_FALSE,sz,u,ritz,r,ww));
1283: /* Check convergence */
1284: PetscCall(VecNorm(r[0],NORM_2,&norm));
1285: #if !defined(PETSC_USE_COMPLEX)
1286: if (sz==2) {
1287: PetscCall(VecNorm(r[1],NORM_2,&norm1));
1288: norm = SlepcAbs(norm,norm1);
1289: }
1290: #endif
1291: PetscCall((*pep->converged)(pep,ritz[0],ritz[1],norm,&pep->errest[pep->nconv],pep->convergedctx));
1292: if (sz==2) pep->errest[pep->nconv+1] = pep->errest[pep->nconv];
1293: if (ini) {
1294: tol = PetscMin(.1,pep->errest[pep->nconv]); ini = PETSC_FALSE;
1295: } else tol = PetscMin(pep->errest[pep->nconv],tol/2);
1296: PetscCall((*pep->stopping)(pep,pep->its,pep->max_it,(pep->errest[pep->nconv]<pep->tol)?pep->nconv+sz:pep->nconv,pep->nev,&pep->reason,pep->stoppingctx));
1297: if (pep->errest[pep->nconv]<pep->tol) {
1298: /* Ritz pair converged */
1299: ini = PETSC_TRUE;
1300: minv = PetscMin(nv,(PetscInt)(pjd->keep*pep->ncv));
1301: if (pjd->ld>1) {
1302: PetscCall(BVGetColumn(pjd->X,pep->nconv,&v[0]));
1303: PetscCall(PEPJDCopyToExtendedVec(pep,v[0],pjd->T+pep->ncv*pep->nconv,pjd->ld-1,0,u[0],PETSC_TRUE));
1304: PetscCall(BVRestoreColumn(pjd->X,pep->nconv,&v[0]));
1305: PetscCall(BVSetActiveColumns(pjd->X,0,pep->nconv+1));
1306: PetscCall(BVNormColumn(pjd->X,pep->nconv,NORM_2,&norm));
1307: PetscCall(BVScaleColumn(pjd->X,pep->nconv,1.0/norm));
1308: for (k=0;k<pep->nconv;k++) pjd->T[pep->ncv*pep->nconv+k] *= PetscSqrtReal(np)/norm;
1309: pjd->T[(pep->ncv+1)*pep->nconv] = ritz[0];
1310: eig[pep->nconv] = ritz[0];
1311: idx++;
1312: #if !defined(PETSC_USE_COMPLEX)
1313: if (sz==2) {
1314: PetscCall(BVGetColumn(pjd->X,pep->nconv+1,&v[0]));
1315: PetscCall(PEPJDCopyToExtendedVec(pep,v[0],pjd->T+pep->ncv*(pep->nconv+1),pjd->ld-1,0,u[1],PETSC_TRUE));
1316: PetscCall(BVRestoreColumn(pjd->X,pep->nconv+1,&v[0]));
1317: PetscCall(BVSetActiveColumns(pjd->X,0,pep->nconv+2));
1318: PetscCall(BVNormColumn(pjd->X,pep->nconv+1,NORM_2,&norm1));
1319: PetscCall(BVScaleColumn(pjd->X,pep->nconv+1,1.0/norm1));
1320: for (k=0;k<pep->nconv;k++) pjd->T[pep->ncv*(pep->nconv+1)+k] *= PetscSqrtReal(np)/norm1;
1321: pjd->T[(pep->ncv+1)*(pep->nconv+1)] = ritz[0];
1322: pjd->T[(pep->ncv+1)*pep->nconv+1] = -ritz[1]*norm1/norm;
1323: pjd->T[(pep->ncv+1)*(pep->nconv+1)-1] = ritz[1]*norm/norm1;
1324: eig[pep->nconv+1] = ritz[0];
1325: eigi[pep->nconv] = ritz[1]; eigi[pep->nconv+1] = -ritz[1];
1326: idx++;
1327: }
1328: #endif
1329: } else PetscCall(BVInsertVec(pep->V,pep->nconv,u[0]));
1330: pep->nconv += sz;
1331: }
1332: } while (pep->errest[pep->nconv]<pep->tol && pep->nconv<nv);
1334: if (pep->reason==PEP_CONVERGED_ITERATING) {
1335: nvc = nv;
1336: if (idx) {
1337: pjd->nlock +=idx;
1338: PetscCall(PEPJDLockConverged(pep,&nv,idx));
1339: }
1340: if (nv+sz>=pep->ncv-1) {
1341: /* Basis full, force restart */
1342: minv = PetscMin(nv,(PetscInt)(pjd->keep*pep->ncv));
1343: PetscCall(DSGetDimensions(pep->ds,&dim,NULL,NULL,NULL));
1344: PetscCall(DSGetArray(pep->ds,DS_MAT_X,&pX));
1345: PetscCall(PEPJDOrthogonalize(dim,minv,pX,ld,&minv,NULL,NULL,ld));
1346: PetscCall(DSRestoreArray(pep->ds,DS_MAT_X,&pX));
1347: PetscCall(DSGetArray(pep->ds,DS_MAT_Y,&pX));
1348: PetscCall(PEPJDOrthogonalize(dim,minv,pX,ld,&minv,NULL,NULL,ld));
1349: PetscCall(DSRestoreArray(pep->ds,DS_MAT_Y,&pX));
1350: PetscCall(DSGetMat(pep->ds,DS_MAT_X,&X));
1351: PetscCall(BVMultInPlace(pjd->V,X,0,minv));
1352: PetscCall(DSRestoreMat(pep->ds,DS_MAT_X,&X));
1353: if (pjd->proj==PEP_JD_PROJECTION_HARMONIC) {
1354: PetscCall(DSGetMat(pep->ds,DS_MAT_Y,&Y));
1355: PetscCall(BVMultInPlace(pjd->W,Y,pep->nconv,minv));
1356: PetscCall(DSRestoreMat(pep->ds,DS_MAT_Y,&Y));
1357: }
1358: nv = minv;
1359: bupdated = 0;
1360: } else {
1361: if (!idx && pep->errest[pep->nconv]<pjd->fix) {theta[0] = ritz[0]; theta[1] = ritz[1];}
1362: else {theta[0] = pep->target; theta[1] = 0.0;}
1363: /* Update system mat */
1364: PetscCall(PEPJDSystemSetUp(pep,sz,theta,u,p,ww));
1365: /* Solve correction equation to expand basis */
1366: PetscCall(BVGetColumn(pjd->V,nv,&t[0]));
1367: rr[0] = r[0];
1368: if (sz==2) {
1369: PetscCall(BVGetColumn(pjd->V,nv+1,&t[1]));
1370: rr[1] = r[1];
1371: } else {
1372: t[1] = NULL;
1373: rr[1] = NULL;
1374: }
1375: PetscCall(VecCreateCompWithVecs(t,kspsf,pjd->vtempl,&tc));
1376: PetscCall(VecCreateCompWithVecs(rr,kspsf,pjd->vtempl,&rc));
1377: PetscCall(VecCompSetSubVecs(pjd->vtempl,sz,NULL));
1378: tol = PetscMax(rtol,tol/2);
1379: PetscCall(KSPSetTolerances(ksp,tol,abstol,dtol,maxits));
1380: PetscCall(KSPSolve(ksp,rc,tc));
1381: PetscCall(VecDestroy(&tc));
1382: PetscCall(VecDestroy(&rc));
1383: PetscCall(VecGetArray(t[0],&array));
1384: PetscCall(PetscMPIIntCast(pep->nconv,&count));
1385: PetscCallMPI(MPI_Bcast(array+nloc,count,MPIU_SCALAR,np-1,PetscObjectComm((PetscObject)pep)));
1386: PetscCall(VecRestoreArray(t[0],&array));
1387: PetscCall(BVRestoreColumn(pjd->V,nv,&t[0]));
1388: PetscCall(BVOrthogonalizeColumn(pjd->V,nv,NULL,&norm,&lindep));
1389: if (lindep || norm==0.0) {
1390: PetscCheck(sz!=1,PETSC_COMM_SELF,PETSC_ERR_CONV_FAILED,"Linearly dependent continuation vector");
1391: off = 1;
1392: } else {
1393: off = 0;
1394: PetscCall(BVScaleColumn(pjd->V,nv,1.0/norm));
1395: }
1396: #if !defined(PETSC_USE_COMPLEX)
1397: if (sz==2) {
1398: PetscCall(VecGetArray(t[1],&array));
1399: PetscCallMPI(MPI_Bcast(array+nloc,count,MPIU_SCALAR,np-1,PetscObjectComm((PetscObject)pep)));
1400: PetscCall(VecRestoreArray(t[1],&array));
1401: PetscCall(BVRestoreColumn(pjd->V,nv+1,&t[1]));
1402: if (off) PetscCall(BVCopyColumn(pjd->V,nv+1,nv));
1403: PetscCall(BVOrthogonalizeColumn(pjd->V,nv+1-off,NULL,&norm,&lindep));
1404: if (lindep || norm==0.0) {
1405: PetscCheck(off==0,PETSC_COMM_SELF,PETSC_ERR_CONV_FAILED,"Linearly dependent continuation vector");
1406: off = 1;
1407: } else PetscCall(BVScaleColumn(pjd->V,nv+1-off,1.0/norm));
1408: }
1409: #endif
1410: if (pjd->proj==PEP_JD_PROJECTION_HARMONIC) {
1411: PetscCall(BVInsertVec(pjd->W,nv,r[0]));
1412: if (sz==2 && !off) PetscCall(BVInsertVec(pjd->W,nv+1,r[1]));
1413: PetscCall(BVOrthogonalizeColumn(pjd->W,nv,NULL,&norm,&lindep));
1414: PetscCheck(!lindep && norm>0.0,PETSC_COMM_SELF,PETSC_ERR_CONV_FAILED,"Linearly dependent continuation vector");
1415: PetscCall(BVScaleColumn(pjd->W,nv,1.0/norm));
1416: if (sz==2 && !off) {
1417: PetscCall(BVOrthogonalizeColumn(pjd->W,nv+1,NULL,&norm,&lindep));
1418: PetscCheck(!lindep && norm>0.0,PETSC_COMM_SELF,PETSC_ERR_CONV_FAILED,"Linearly dependent continuation vector");
1419: PetscCall(BVScaleColumn(pjd->W,nv+1,1.0/norm));
1420: }
1421: }
1422: bupdated = idx?0:nv;
1423: nv += sz-off;
1424: }
1425: for (k=0;k<nvc;k++) {
1426: eig[pep->nconv-idx+k] = pep->eigr[k];
1427: #if !defined(PETSC_USE_COMPLEX)
1428: eigi[pep->nconv-idx+k] = pep->eigi[k];
1429: #endif
1430: }
1431: PetscCall(PEPMonitor(pep,pep->its,pep->nconv,eig,eigi,pep->errest,pep->nconv+1));
1432: }
1433: }
1434: if (pjd->ld>1) {
1435: for (k=0;k<pep->nconv;k++) {
1436: pep->eigr[k] = eig[k];
1437: pep->eigi[k] = eigi[k];
1438: }
1439: if (pep->nconv>0) PetscCall(PEPJDEigenvectors(pep));
1440: PetscCall(PetscFree2(pcctx->M,pcctx->ps));
1441: }
1442: PetscCall(VecDestroy(&u[0]));
1443: PetscCall(VecDestroy(&r[0]));
1444: PetscCall(VecDestroy(&p[0]));
1445: #if !defined (PETSC_USE_COMPLEX)
1446: PetscCall(VecDestroy(&u[1]));
1447: PetscCall(VecDestroy(&r[1]));
1448: PetscCall(VecDestroy(&p[1]));
1449: #endif
1450: PetscCall(KSPSetTolerances(ksp,rtol,abstol,dtol,maxits));
1451: PetscCall(KSPSetPC(ksp,pcctx->pc));
1452: PetscCall(VecDestroy(&pcctx->Bp[0]));
1453: PetscCall(VecDestroy(&pcctx->Bp[1]));
1454: PetscCall(MatShellGetContext(pjd->Pshell,&matctx));
1455: PetscCall(MatDestroy(&matctx->Pr));
1456: PetscCall(MatDestroy(&matctx->Pi));
1457: PetscCall(MatDestroy(&pjd->Pshell));
1458: PetscCall(MatDestroy(&pcctx->PPr));
1459: PetscCall(PCDestroy(&pcctx->pc));
1460: PetscCall(PetscFree(pcctx));
1461: PetscCall(PetscFree(matctx));
1462: PetscCall(PCDestroy(&pjd->pcshell));
1463: PetscCall(PetscFree3(eig,eigi,res));
1464: PetscCall(VecDestroy(&pjd->vtempl));
1465: PetscFunctionReturn(PETSC_SUCCESS);
1466: }
1468: static PetscErrorCode PEPJDSetRestart_JD(PEP pep,PetscReal keep)
1469: {
1470: PEP_JD *pjd = (PEP_JD*)pep->data;
1472: PetscFunctionBegin;
1473: if (keep==(PetscReal)PETSC_DEFAULT || keep==(PetscReal)PETSC_DECIDE) pjd->keep = 0.5;
1474: else {
1475: PetscCheck(keep>=0.1 && keep<=0.9,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"The keep argument must be in the range [0.1,0.9]");
1476: pjd->keep = keep;
1477: }
1478: PetscFunctionReturn(PETSC_SUCCESS);
1479: }
1481: /*@
1482: PEPJDSetRestart - Sets the restart parameter for the Jacobi-Davidson
1483: method, in particular the proportion of basis vectors that must be kept
1484: after restart.
1486: Logically Collective
1488: Input Parameters:
1489: + pep - the eigenproblem solver context
1490: - keep - the number of vectors to be kept at restart
1492: Options Database Key:
1493: . -pep_jd_restart - Sets the restart parameter
1495: Notes:
1496: Allowed values are in the range [0.1,0.9]. The default is 0.5.
1498: Level: advanced
1500: .seealso: PEPJDGetRestart()
1501: @*/
1502: PetscErrorCode PEPJDSetRestart(PEP pep,PetscReal keep)
1503: {
1504: PetscFunctionBegin;
1507: PetscTryMethod(pep,"PEPJDSetRestart_C",(PEP,PetscReal),(pep,keep));
1508: PetscFunctionReturn(PETSC_SUCCESS);
1509: }
1511: static PetscErrorCode PEPJDGetRestart_JD(PEP pep,PetscReal *keep)
1512: {
1513: PEP_JD *pjd = (PEP_JD*)pep->data;
1515: PetscFunctionBegin;
1516: *keep = pjd->keep;
1517: PetscFunctionReturn(PETSC_SUCCESS);
1518: }
1520: /*@
1521: PEPJDGetRestart - Gets the restart parameter used in the Jacobi-Davidson method.
1523: Not Collective
1525: Input Parameter:
1526: . pep - the eigenproblem solver context
1528: Output Parameter:
1529: . keep - the restart parameter
1531: Level: advanced
1533: .seealso: PEPJDSetRestart()
1534: @*/
1535: PetscErrorCode PEPJDGetRestart(PEP pep,PetscReal *keep)
1536: {
1537: PetscFunctionBegin;
1539: PetscAssertPointer(keep,2);
1540: PetscUseMethod(pep,"PEPJDGetRestart_C",(PEP,PetscReal*),(pep,keep));
1541: PetscFunctionReturn(PETSC_SUCCESS);
1542: }
1544: static PetscErrorCode PEPJDSetFix_JD(PEP pep,PetscReal fix)
1545: {
1546: PEP_JD *pjd = (PEP_JD*)pep->data;
1548: PetscFunctionBegin;
1549: if (fix == (PetscReal)PETSC_DEFAULT || fix == (PetscReal)PETSC_DECIDE) pjd->fix = 0.01;
1550: else {
1551: PetscCheck(fix>=0.0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid fix value, must be >0");
1552: pjd->fix = fix;
1553: }
1554: PetscFunctionReturn(PETSC_SUCCESS);
1555: }
1557: /*@
1558: PEPJDSetFix - Sets the threshold for changing the target in the correction
1559: equation.
1561: Logically Collective
1563: Input Parameters:
1564: + pep - the eigenproblem solver context
1565: - fix - threshold for changing the target
1567: Options Database Key:
1568: . -pep_jd_fix - the fix value
1570: Note:
1571: The target in the correction equation is fixed at the first iterations.
1572: When the norm of the residual vector is lower than the fix value,
1573: the target is set to the corresponding eigenvalue.
1575: Level: advanced
1577: .seealso: PEPJDGetFix()
1578: @*/
1579: PetscErrorCode PEPJDSetFix(PEP pep,PetscReal fix)
1580: {
1581: PetscFunctionBegin;
1584: PetscTryMethod(pep,"PEPJDSetFix_C",(PEP,PetscReal),(pep,fix));
1585: PetscFunctionReturn(PETSC_SUCCESS);
1586: }
1588: static PetscErrorCode PEPJDGetFix_JD(PEP pep,PetscReal *fix)
1589: {
1590: PEP_JD *pjd = (PEP_JD*)pep->data;
1592: PetscFunctionBegin;
1593: *fix = pjd->fix;
1594: PetscFunctionReturn(PETSC_SUCCESS);
1595: }
1597: /*@
1598: PEPJDGetFix - Returns the threshold for changing the target in the correction
1599: equation.
1601: Not Collective
1603: Input Parameter:
1604: . pep - the eigenproblem solver context
1606: Output Parameter:
1607: . fix - threshold for changing the target
1609: Note:
1610: The target in the correction equation is fixed at the first iterations.
1611: When the norm of the residual vector is lower than the fix value,
1612: the target is set to the corresponding eigenvalue.
1614: Level: advanced
1616: .seealso: PEPJDSetFix()
1617: @*/
1618: PetscErrorCode PEPJDGetFix(PEP pep,PetscReal *fix)
1619: {
1620: PetscFunctionBegin;
1622: PetscAssertPointer(fix,2);
1623: PetscUseMethod(pep,"PEPJDGetFix_C",(PEP,PetscReal*),(pep,fix));
1624: PetscFunctionReturn(PETSC_SUCCESS);
1625: }
1627: static PetscErrorCode PEPJDSetReusePreconditioner_JD(PEP pep,PetscBool reusepc)
1628: {
1629: PEP_JD *pjd = (PEP_JD*)pep->data;
1631: PetscFunctionBegin;
1632: pjd->reusepc = reusepc;
1633: PetscFunctionReturn(PETSC_SUCCESS);
1634: }
1636: /*@
1637: PEPJDSetReusePreconditioner - Sets a flag indicating whether the preconditioner
1638: must be reused or not.
1640: Logically Collective
1642: Input Parameters:
1643: + pep - the eigenproblem solver context
1644: - reusepc - the reuse flag
1646: Options Database Key:
1647: . -pep_jd_reuse_preconditioner - the reuse flag
1649: Note:
1650: The default value is False. If set to True, the preconditioner is built
1651: only at the beginning, using the target value. Otherwise, it may be rebuilt
1652: (depending on the fix parameter) at each iteration from the Ritz value.
1654: Level: advanced
1656: .seealso: PEPJDGetReusePreconditioner(), PEPJDSetFix()
1657: @*/
1658: PetscErrorCode PEPJDSetReusePreconditioner(PEP pep,PetscBool reusepc)
1659: {
1660: PetscFunctionBegin;
1663: PetscTryMethod(pep,"PEPJDSetReusePreconditioner_C",(PEP,PetscBool),(pep,reusepc));
1664: PetscFunctionReturn(PETSC_SUCCESS);
1665: }
1667: static PetscErrorCode PEPJDGetReusePreconditioner_JD(PEP pep,PetscBool *reusepc)
1668: {
1669: PEP_JD *pjd = (PEP_JD*)pep->data;
1671: PetscFunctionBegin;
1672: *reusepc = pjd->reusepc;
1673: PetscFunctionReturn(PETSC_SUCCESS);
1674: }
1676: /*@
1677: PEPJDGetReusePreconditioner - Returns the flag for reusing the preconditioner.
1679: Not Collective
1681: Input Parameter:
1682: . pep - the eigenproblem solver context
1684: Output Parameter:
1685: . reusepc - the reuse flag
1687: Level: advanced
1689: .seealso: PEPJDSetReusePreconditioner()
1690: @*/
1691: PetscErrorCode PEPJDGetReusePreconditioner(PEP pep,PetscBool *reusepc)
1692: {
1693: PetscFunctionBegin;
1695: PetscAssertPointer(reusepc,2);
1696: PetscUseMethod(pep,"PEPJDGetReusePreconditioner_C",(PEP,PetscBool*),(pep,reusepc));
1697: PetscFunctionReturn(PETSC_SUCCESS);
1698: }
1700: static PetscErrorCode PEPJDSetMinimalityIndex_JD(PEP pep,PetscInt mmidx)
1701: {
1702: PEP_JD *pjd = (PEP_JD*)pep->data;
1704: PetscFunctionBegin;
1705: if (mmidx == PETSC_DEFAULT || mmidx == PETSC_DECIDE) {
1706: if (pjd->mmidx != 1) pep->state = PEP_STATE_INITIAL;
1707: pjd->mmidx = 1;
1708: } else {
1709: PetscCheck(mmidx>0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid mmidx value, should be >0");
1710: if (pjd->mmidx != mmidx) pep->state = PEP_STATE_INITIAL;
1711: pjd->mmidx = mmidx;
1712: }
1713: PetscFunctionReturn(PETSC_SUCCESS);
1714: }
1716: /*@
1717: PEPJDSetMinimalityIndex - Sets the maximum allowed value for the minimality index.
1719: Logically Collective
1721: Input Parameters:
1722: + pep - the eigenproblem solver context
1723: - mmidx - maximum minimality index
1725: Options Database Key:
1726: . -pep_jd_minimality_index - the minimality index value
1728: Note:
1729: The default value is equal to the degree of the polynomial. A smaller value
1730: can be used if the wanted eigenvectors are known to be linearly independent.
1732: Level: advanced
1734: .seealso: PEPJDGetMinimalityIndex()
1735: @*/
1736: PetscErrorCode PEPJDSetMinimalityIndex(PEP pep,PetscInt mmidx)
1737: {
1738: PetscFunctionBegin;
1741: PetscTryMethod(pep,"PEPJDSetMinimalityIndex_C",(PEP,PetscInt),(pep,mmidx));
1742: PetscFunctionReturn(PETSC_SUCCESS);
1743: }
1745: static PetscErrorCode PEPJDGetMinimalityIndex_JD(PEP pep,PetscInt *mmidx)
1746: {
1747: PEP_JD *pjd = (PEP_JD*)pep->data;
1749: PetscFunctionBegin;
1750: *mmidx = pjd->mmidx;
1751: PetscFunctionReturn(PETSC_SUCCESS);
1752: }
1754: /*@
1755: PEPJDGetMinimalityIndex - Returns the maximum allowed value of the minimality
1756: index.
1758: Not Collective
1760: Input Parameter:
1761: . pep - the eigenproblem solver context
1763: Output Parameter:
1764: . mmidx - minimality index
1766: Level: advanced
1768: .seealso: PEPJDSetMinimalityIndex()
1769: @*/
1770: PetscErrorCode PEPJDGetMinimalityIndex(PEP pep,PetscInt *mmidx)
1771: {
1772: PetscFunctionBegin;
1774: PetscAssertPointer(mmidx,2);
1775: PetscUseMethod(pep,"PEPJDGetMinimalityIndex_C",(PEP,PetscInt*),(pep,mmidx));
1776: PetscFunctionReturn(PETSC_SUCCESS);
1777: }
1779: static PetscErrorCode PEPJDSetProjection_JD(PEP pep,PEPJDProjection proj)
1780: {
1781: PEP_JD *pjd = (PEP_JD*)pep->data;
1783: PetscFunctionBegin;
1784: switch (proj) {
1785: case PEP_JD_PROJECTION_HARMONIC:
1786: case PEP_JD_PROJECTION_ORTHOGONAL:
1787: if (pjd->proj != proj) {
1788: pep->state = PEP_STATE_INITIAL;
1789: pjd->proj = proj;
1790: }
1791: break;
1792: default:
1793: SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'proj' value");
1794: }
1795: PetscFunctionReturn(PETSC_SUCCESS);
1796: }
1798: /*@
1799: PEPJDSetProjection - Sets the type of projection to be used in the Jacobi-Davidson solver.
1801: Logically Collective
1803: Input Parameters:
1804: + pep - the eigenproblem solver context
1805: - proj - the type of projection
1807: Options Database Key:
1808: . -pep_jd_projection - the projection type, either orthogonal or harmonic
1810: Level: advanced
1812: .seealso: PEPJDGetProjection()
1813: @*/
1814: PetscErrorCode PEPJDSetProjection(PEP pep,PEPJDProjection proj)
1815: {
1816: PetscFunctionBegin;
1819: PetscTryMethod(pep,"PEPJDSetProjection_C",(PEP,PEPJDProjection),(pep,proj));
1820: PetscFunctionReturn(PETSC_SUCCESS);
1821: }
1823: static PetscErrorCode PEPJDGetProjection_JD(PEP pep,PEPJDProjection *proj)
1824: {
1825: PEP_JD *pjd = (PEP_JD*)pep->data;
1827: PetscFunctionBegin;
1828: *proj = pjd->proj;
1829: PetscFunctionReturn(PETSC_SUCCESS);
1830: }
1832: /*@
1833: PEPJDGetProjection - Returns the type of projection used by the Jacobi-Davidson solver.
1835: Not Collective
1837: Input Parameter:
1838: . pep - the eigenproblem solver context
1840: Output Parameter:
1841: . proj - the type of projection
1843: Level: advanced
1845: .seealso: PEPJDSetProjection()
1846: @*/
1847: PetscErrorCode PEPJDGetProjection(PEP pep,PEPJDProjection *proj)
1848: {
1849: PetscFunctionBegin;
1851: PetscAssertPointer(proj,2);
1852: PetscUseMethod(pep,"PEPJDGetProjection_C",(PEP,PEPJDProjection*),(pep,proj));
1853: PetscFunctionReturn(PETSC_SUCCESS);
1854: }
1856: static PetscErrorCode PEPSetFromOptions_JD(PEP pep,PetscOptionItems *PetscOptionsObject)
1857: {
1858: PetscBool flg,b1;
1859: PetscReal r1;
1860: PetscInt i1;
1861: PEPJDProjection proj;
1863: PetscFunctionBegin;
1864: PetscOptionsHeadBegin(PetscOptionsObject,"PEP JD Options");
1866: PetscCall(PetscOptionsReal("-pep_jd_restart","Proportion of vectors kept after restart","PEPJDSetRestart",0.5,&r1,&flg));
1867: if (flg) PetscCall(PEPJDSetRestart(pep,r1));
1869: PetscCall(PetscOptionsReal("-pep_jd_fix","Tolerance for changing the target in the correction equation","PEPJDSetFix",0.01,&r1,&flg));
1870: if (flg) PetscCall(PEPJDSetFix(pep,r1));
1872: PetscCall(PetscOptionsBool("-pep_jd_reuse_preconditioner","Whether to reuse the preconditioner","PEPJDSetReusePreconditoiner",PETSC_FALSE,&b1,&flg));
1873: if (flg) PetscCall(PEPJDSetReusePreconditioner(pep,b1));
1875: PetscCall(PetscOptionsInt("-pep_jd_minimality_index","Maximum allowed minimality index","PEPJDSetMinimalityIndex",1,&i1,&flg));
1876: if (flg) PetscCall(PEPJDSetMinimalityIndex(pep,i1));
1878: PetscCall(PetscOptionsEnum("-pep_jd_projection","Type of projection","PEPJDSetProjection",PEPJDProjectionTypes,(PetscEnum)PEP_JD_PROJECTION_HARMONIC,(PetscEnum*)&proj,&flg));
1879: if (flg) PetscCall(PEPJDSetProjection(pep,proj));
1881: PetscOptionsHeadEnd();
1882: PetscFunctionReturn(PETSC_SUCCESS);
1883: }
1885: static PetscErrorCode PEPView_JD(PEP pep,PetscViewer viewer)
1886: {
1887: PEP_JD *pjd = (PEP_JD*)pep->data;
1888: PetscBool isascii;
1890: PetscFunctionBegin;
1891: PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
1892: if (isascii) {
1893: PetscCall(PetscViewerASCIIPrintf(viewer," %d%% of basis vectors kept after restart\n",(int)(100*pjd->keep)));
1894: PetscCall(PetscViewerASCIIPrintf(viewer," threshold for changing the target in the correction equation (fix): %g\n",(double)pjd->fix));
1895: PetscCall(PetscViewerASCIIPrintf(viewer," projection type: %s\n",PEPJDProjectionTypes[pjd->proj]));
1896: PetscCall(PetscViewerASCIIPrintf(viewer," maximum allowed minimality index: %" PetscInt_FMT "\n",pjd->mmidx));
1897: if (pjd->reusepc) PetscCall(PetscViewerASCIIPrintf(viewer," reusing the preconditioner\n"));
1898: }
1899: PetscFunctionReturn(PETSC_SUCCESS);
1900: }
1902: static PetscErrorCode PEPSetDefaultST_JD(PEP pep)
1903: {
1904: KSP ksp;
1906: PetscFunctionBegin;
1907: if (!((PetscObject)pep->st)->type_name) {
1908: PetscCall(STSetType(pep->st,STPRECOND));
1909: PetscCall(STPrecondSetKSPHasMat(pep->st,PETSC_TRUE));
1910: }
1911: PetscCall(STSetTransform(pep->st,PETSC_FALSE));
1912: PetscCall(STGetKSP(pep->st,&ksp));
1913: if (!((PetscObject)ksp)->type_name) {
1914: PetscCall(KSPSetType(ksp,KSPBCGSL));
1915: PetscCall(KSPSetTolerances(ksp,1e-5,PETSC_CURRENT,PETSC_CURRENT,100));
1916: }
1917: PetscFunctionReturn(PETSC_SUCCESS);
1918: }
1920: static PetscErrorCode PEPReset_JD(PEP pep)
1921: {
1922: PEP_JD *pjd = (PEP_JD*)pep->data;
1923: PetscInt i;
1925: PetscFunctionBegin;
1926: for (i=0;i<pep->nmat;i++) PetscCall(BVDestroy(pjd->TV+i));
1927: if (pjd->proj==PEP_JD_PROJECTION_HARMONIC) PetscCall(BVDestroy(&pjd->W));
1928: if (pjd->ld>1) {
1929: PetscCall(BVDestroy(&pjd->V));
1930: for (i=0;i<pep->nmat;i++) PetscCall(BVDestroy(pjd->AX+i));
1931: PetscCall(BVDestroy(&pjd->N[0]));
1932: PetscCall(BVDestroy(&pjd->N[1]));
1933: PetscCall(PetscFree3(pjd->XpX,pjd->T,pjd->Tj));
1934: }
1935: PetscCall(PetscFree2(pjd->TV,pjd->AX));
1936: PetscFunctionReturn(PETSC_SUCCESS);
1937: }
1939: static PetscErrorCode PEPDestroy_JD(PEP pep)
1940: {
1941: PetscFunctionBegin;
1942: PetscCall(PetscFree(pep->data));
1943: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetRestart_C",NULL));
1944: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetRestart_C",NULL));
1945: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetFix_C",NULL));
1946: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetFix_C",NULL));
1947: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetReusePreconditioner_C",NULL));
1948: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetReusePreconditioner_C",NULL));
1949: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetMinimalityIndex_C",NULL));
1950: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetMinimalityIndex_C",NULL));
1951: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetProjection_C",NULL));
1952: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetProjection_C",NULL));
1953: PetscFunctionReturn(PETSC_SUCCESS);
1954: }
1956: SLEPC_EXTERN PetscErrorCode PEPCreate_JD(PEP pep)
1957: {
1958: PEP_JD *pjd;
1960: PetscFunctionBegin;
1961: PetscCall(PetscNew(&pjd));
1962: pep->data = (void*)pjd;
1964: pep->lineariz = PETSC_FALSE;
1965: pjd->fix = 0.01;
1966: pjd->mmidx = 0;
1968: pep->ops->solve = PEPSolve_JD;
1969: pep->ops->setup = PEPSetUp_JD;
1970: pep->ops->setfromoptions = PEPSetFromOptions_JD;
1971: pep->ops->destroy = PEPDestroy_JD;
1972: pep->ops->reset = PEPReset_JD;
1973: pep->ops->view = PEPView_JD;
1974: pep->ops->setdefaultst = PEPSetDefaultST_JD;
1976: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetRestart_C",PEPJDSetRestart_JD));
1977: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetRestart_C",PEPJDGetRestart_JD));
1978: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetFix_C",PEPJDSetFix_JD));
1979: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetFix_C",PEPJDGetFix_JD));
1980: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetReusePreconditioner_C",PEPJDSetReusePreconditioner_JD));
1981: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetReusePreconditioner_C",PEPJDGetReusePreconditioner_JD));
1982: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetMinimalityIndex_C",PEPJDSetMinimalityIndex_JD));
1983: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetMinimalityIndex_C",PEPJDGetMinimalityIndex_JD));
1984: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDSetProjection_C",PEPJDSetProjection_JD));
1985: PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPJDGetProjection_C",PEPJDGetProjection_JD));
1986: PetscFunctionReturn(PETSC_SUCCESS);
1987: }