Actual source code: pepimpl.h

slepc-3.17.1 2022-04-11
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: #if !defined(SLEPCPEPIMPL_H)
 12: #define SLEPCPEPIMPL_H

 14: #include <slepcpep.h>
 15: #include <slepc/private/slepcimpl.h>

 17: SLEPC_EXTERN PetscBool PEPRegisterAllCalled;
 18: SLEPC_EXTERN PetscBool PEPMonitorRegisterAllCalled;
 19: SLEPC_EXTERN PetscErrorCode PEPRegisterAll(void);
 20: SLEPC_EXTERN PetscErrorCode PEPMonitorRegisterAll(void);
 21: SLEPC_EXTERN PetscLogEvent PEP_SetUp,PEP_Solve,PEP_Refine,PEP_CISS_SVD;

 23: typedef struct _PEPOps *PEPOps;

 25: struct _PEPOps {
 26:   PetscErrorCode (*solve)(PEP);
 27:   PetscErrorCode (*setup)(PEP);
 28:   PetscErrorCode (*setfromoptions)(PetscOptionItems*,PEP);
 29:   PetscErrorCode (*publishoptions)(PEP);
 30:   PetscErrorCode (*destroy)(PEP);
 31:   PetscErrorCode (*reset)(PEP);
 32:   PetscErrorCode (*view)(PEP,PetscViewer);
 33:   PetscErrorCode (*backtransform)(PEP);
 34:   PetscErrorCode (*computevectors)(PEP);
 35:   PetscErrorCode (*extractvectors)(PEP);
 36:   PetscErrorCode (*setdefaultst)(PEP);
 37: };

 39: /*
 40:      Maximum number of monitors you can run with a single PEP
 41: */
 42: #define MAXPEPMONITORS 5

 44: typedef enum { PEP_STATE_INITIAL,
 45:                PEP_STATE_SETUP,
 46:                PEP_STATE_SOLVED,
 47:                PEP_STATE_EIGENVECTORS } PEPStateType;

 49: /*
 50:    To check for unsupported features at PEPSetUp_XXX()
 51: */
 52: typedef enum { PEP_FEATURE_NONMONOMIAL=1,   /* non-monomial bases */
 53:                PEP_FEATURE_REGION=4,        /* nontrivial region for filtering */
 54:                PEP_FEATURE_EXTRACT=8,       /* eigenvector extraction */
 55:                PEP_FEATURE_CONVERGENCE=16,  /* convergence test selected by user */
 56:                PEP_FEATURE_STOPPING=32,     /* stopping test */
 57:                PEP_FEATURE_SCALE=64         /* scaling */
 58:              } PEPFeatureType;

 60: /*
 61:    Defines the PEP data structure.
 62: */
 63: struct _p_PEP {
 64:   PETSCHEADER(struct _PEPOps);
 65:   /*------------------------- User parameters ---------------------------*/
 66:   PetscInt       max_it;           /* maximum number of iterations */
 67:   PetscInt       nev;              /* number of eigenvalues to compute */
 68:   PetscInt       ncv;              /* number of basis vectors */
 69:   PetscInt       mpd;              /* maximum dimension of projected problem */
 70:   PetscInt       nini;             /* number of initial vectors (negative means not copied yet) */
 71:   PetscScalar    target;           /* target value */
 72:   PetscReal      tol;              /* tolerance */
 73:   PEPConv        conv;             /* convergence test */
 74:   PEPStop        stop;             /* stopping test */
 75:   PEPWhich       which;            /* which part of the spectrum to be sought */
 76:   PetscReal      inta,intb;        /* interval [a,b] for spectrum slicing */
 77:   PEPBasis       basis;            /* polynomial basis used to represent the problem */
 78:   PEPProblemType problem_type;     /* which kind of problem to be solved */
 79:   PEPScale       scale;            /* scaling strategy to be used */
 80:   PetscReal      sfactor,dsfactor; /* scaling factors */
 81:   PetscInt       sits;             /* number of iterations of the scaling method */
 82:   PetscReal      slambda;          /* norm eigenvalue approximation for scaling */
 83:   PEPRefine      refine;           /* type of refinement to be applied after solve */
 84:   PetscInt       npart;            /* number of partitions of the communicator */
 85:   PetscReal      rtol;             /* tolerance for refinement */
 86:   PetscInt       rits;             /* number of iterations of the refinement method */
 87:   PEPRefineScheme scheme;          /* scheme for solving linear systems within refinement */
 88:   PEPExtract     extract;          /* type of extraction used */
 89:   PetscBool      trackall;         /* whether all the residuals must be computed */

 91:   /*-------------- User-provided functions and contexts -----------------*/
 92:   PetscErrorCode (*converged)(PEP,PetscScalar,PetscScalar,PetscReal,PetscReal*,void*);
 93:   PetscErrorCode (*convergeduser)(PEP,PetscScalar,PetscScalar,PetscReal,PetscReal*,void*);
 94:   PetscErrorCode (*convergeddestroy)(void*);
 95:   PetscErrorCode (*stopping)(PEP,PetscInt,PetscInt,PetscInt,PetscInt,PEPConvergedReason*,void*);
 96:   PetscErrorCode (*stoppinguser)(PEP,PetscInt,PetscInt,PetscInt,PetscInt,PEPConvergedReason*,void*);
 97:   PetscErrorCode (*stoppingdestroy)(void*);
 98:   void           *convergedctx;
 99:   void           *stoppingctx;
100:   PetscErrorCode (*monitor[MAXPEPMONITORS])(PEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*);
101:   PetscErrorCode (*monitordestroy[MAXPEPMONITORS])(void**);
102:   void           *monitorcontext[MAXPEPMONITORS];
103:   PetscInt        numbermonitors;

105:   /*----------------- Child objects and working data -------------------*/
106:   ST             st;               /* spectral transformation object */
107:   DS             ds;               /* direct solver object */
108:   BV             V;                /* set of basis vectors and computed eigenvectors */
109:   RG             rg;               /* optional region for filtering */
110:   SlepcSC        sc;               /* sorting criterion data */
111:   Mat            *A;               /* coefficient matrices of the polynomial */
112:   PetscInt       nmat;             /* number of matrices */
113:   Vec            Dl,Dr;            /* diagonal matrices for balancing */
114:   Vec            *IS;              /* references to user-provided initial space */
115:   PetscScalar    *eigr,*eigi;      /* real and imaginary parts of eigenvalues */
116:   PetscReal      *errest;          /* error estimates */
117:   PetscInt       *perm;            /* permutation for eigenvalue ordering */
118:   PetscReal      *pbc;             /* coefficients defining the polynomial basis */
119:   PetscScalar    *solvematcoeffs;  /* coefficients to compute the matrix to be inverted */
120:   PetscInt       nwork;            /* number of work vectors */
121:   Vec            *work;            /* work vectors */
122:   KSP            refineksp;        /* ksp used in refinement */
123:   PetscSubcomm   refinesubc;       /* context for sub-communicators */
124:   void           *data;            /* placeholder for solver-specific stuff */

126:   /* ----------------------- Status variables --------------------------*/
127:   PEPStateType   state;            /* initial -> setup -> solved -> eigenvectors */
128:   PetscInt       nconv;            /* number of converged eigenvalues */
129:   PetscInt       its;              /* number of iterations so far computed */
130:   PetscInt       n,nloc;           /* problem dimensions (global, local) */
131:   PetscReal      *nrma;            /* computed matrix norms */
132:   PetscReal      nrml[2];          /* computed matrix norms for the linearization */
133:   PetscBool      sfactor_set;      /* flag to indicate the user gave sfactor */
134:   PetscBool      lineariz;         /* current solver is based on linearization */
135:   PEPConvergedReason reason;
136: };

138: /*
139:     Macros to test valid PEP arguments
140: */
141: #if !defined(PETSC_USE_DEBUG)

143: #define PEPCheckSolved(h,arg) do {(void)(h);} while (0)

145: #else

147: #define PEPCheckSolved(h,arg) \
148:   do { \
150:   } while (0)

152: #endif

154: /*
155:     Macros to check settings at PEPSetUp()
156: */

158: /* PEPCheckHermitian: the problem is Hermitian or Hyperbolic */
159: #define PEPCheckHermitianCondition(pep,condition,msg) \
160:   do { \
161:     if (condition) { \
163:     } \
164:   } while (0)
165: #define PEPCheckHermitian(pep) PEPCheckHermitianCondition(pep,PETSC_TRUE,"")

167: /* PEPCheckQuadratic: the polynomial has degree 2 */
168: #define PEPCheckQuadraticCondition(pep,condition,msg) \
169:   do { \
170:     if (condition) { \
172:     } \
173:   } while (0)
174: #define PEPCheckQuadratic(pep) PEPCheckQuadraticCondition(pep,PETSC_TRUE,"")

176: /* PEPCheckShiftSinvert: shift or shift-and-invert ST */
177: #define PEPCheckShiftSinvertCondition(pep,condition,msg) \
178:   do { \
179:     if (condition) { \
180:       PetscBool __flg; \
181:       PetscObjectTypeCompareAny((PetscObject)(pep)->st,&__flg,STSINVERT,STSHIFT,""); \
183:     } \
184:   } while (0)
185: #define PEPCheckShiftSinvert(pep) PEPCheckShiftSinvertCondition(pep,PETSC_TRUE,"")

187: /* PEPCheckSinvertCayley: shift-and-invert or Cayley ST */
188: #define PEPCheckSinvertCayleyCondition(pep,condition,msg) \
189:   do { \
190:     if (condition) { \
191:       PetscBool __flg; \
192:       PetscObjectTypeCompareAny((PetscObject)(pep)->st,&__flg,STSINVERT,STCAYLEY,""); \
194:     } \
195:   } while (0)
196: #define PEPCheckSinvertCayley(pep) PEPCheckSinvertCayleyCondition(pep,PETSC_TRUE,"")

198: /* Check for unsupported features */
199: #define PEPCheckUnsupportedCondition(pep,mask,condition,msg) \
200:   do { \
201:     if (condition) { \
203:       if ((mask) & PEP_FEATURE_REGION) { \
204:         PetscBool      __istrivial; \
205:         RGIsTrivial((pep)->rg,&__istrivial); \
207:       } \
211:     } \
212:   } while (0)
213: #define PEPCheckUnsupported(pep,mask) PEPCheckUnsupportedCondition(pep,mask,PETSC_TRUE,"")

215: /* Check for ignored features */
216: #define PEPCheckIgnoredCondition(pep,mask,condition,msg) \
217:   do { \
218:     if (condition) { \
219:       if (((mask) & PEP_FEATURE_NONMONOMIAL) && (pep)->basis!=PEP_BASIS_MONOMIAL) PetscInfo((pep),"The solver '%s'%s ignores the basis settings\n",((PetscObject)(pep))->type_name,(msg)); \
220:       if ((mask) & PEP_FEATURE_REGION) { \
221:         PetscBool __istrivial; \
222:         RGIsTrivial((pep)->rg,&__istrivial); \
223:         if (!__istrivial) PetscInfo((pep),"The solver '%s'%s ignores the specified region\n",((PetscObject)(pep))->type_name,(msg)); \
224:       } \
225:       if (((mask) & PEP_FEATURE_EXTRACT) && (pep)->extract && (pep)->extract!=PEP_EXTRACT_NONE) PetscInfo((pep),"The solver '%s'%s ignores the extract settings\n",((PetscObject)(pep))->type_name,(msg)); \
226:       if (((mask) & PEP_FEATURE_CONVERGENCE) && (pep)->converged!=PEPConvergedRelative) PetscInfo((pep),"The solver '%s'%s ignores the convergence test settings\n",((PetscObject)(pep))->type_name,(msg)); \
227:       if (((mask) & PEP_FEATURE_STOPPING) && (pep)->stopping!=PEPStoppingBasic) PetscInfo((pep),"The solver '%s'%s ignores the stopping test settings\n",((PetscObject)(pep))->type_name,(msg)); \
228:       if (((mask) & PEP_FEATURE_SCALE) && (pep)->scale!=PEP_SCALE_NONE) PetscInfo((pep),"The solver '%s'%s ignores the scaling settings\n",((PetscObject)(pep))->type_name,(msg)); \
229:     } \
230:   } while (0)
231: #define PEPCheckIgnored(pep,mask) PEPCheckIgnoredCondition(pep,mask,PETSC_TRUE,"")

233: /*
234:   PEP_KSPSetOperators - Sets the KSP matrices
235: */
236: static inline PetscErrorCode PEP_KSPSetOperators(KSP ksp,Mat A,Mat B)
237: {
238:   const char     *prefix;

240:   KSPSetOperators(ksp,A,B);
241:   MatGetOptionsPrefix(B,&prefix);
242:   if (!prefix) {
243:     /* set Mat prefix to be the same as KSP to enable setting command-line options (e.g. MUMPS)
244:        only applies if the Mat has no user-defined prefix */
245:     KSPGetOptionsPrefix(ksp,&prefix);
246:     MatSetOptionsPrefix(B,prefix);
247:   }
248:   PetscFunctionReturn(0);
249: }

251: SLEPC_INTERN PetscErrorCode PEPSetWhichEigenpairs_Default(PEP);
252: SLEPC_INTERN PetscErrorCode PEPSetDimensions_Default(PEP,PetscInt,PetscInt*,PetscInt*);
253: SLEPC_INTERN PetscErrorCode PEPExtractVectors(PEP);
254: SLEPC_INTERN PetscErrorCode PEPBackTransform_Default(PEP);
255: SLEPC_INTERN PetscErrorCode PEPComputeVectors(PEP);
256: SLEPC_INTERN PetscErrorCode PEPComputeVectors_Default(PEP);
257: SLEPC_INTERN PetscErrorCode PEPComputeVectors_Indefinite(PEP);
258: SLEPC_INTERN PetscErrorCode PEPComputeResidualNorm_Private(PEP,PetscScalar,PetscScalar,Vec,Vec,Vec*,PetscReal*);
259: SLEPC_INTERN PetscErrorCode PEPKrylovConvergence(PEP,PetscBool,PetscInt,PetscInt,PetscReal,PetscInt*);
260: SLEPC_INTERN PetscErrorCode PEPComputeScaleFactor(PEP);
261: SLEPC_INTERN PetscErrorCode PEPBuildDiagonalScaling(PEP);
262: SLEPC_INTERN PetscErrorCode PEPBasisCoefficients(PEP,PetscReal*);
263: SLEPC_INTERN PetscErrorCode PEPEvaluateBasis(PEP,PetscScalar,PetscScalar,PetscScalar*,PetscScalar*);
264: SLEPC_INTERN PetscErrorCode PEPEvaluateBasisDerivative(PEP,PetscScalar,PetscScalar,PetscScalar*,PetscScalar*);
265: SLEPC_INTERN PetscErrorCode PEPEvaluateBasisMat(PEP,PetscInt,PetscScalar*,PetscInt,PetscInt,PetscScalar*,PetscInt,PetscScalar*,PetscInt,PetscScalar*,PetscInt);
266: SLEPC_INTERN PetscErrorCode PEPNewtonRefinement_TOAR(PEP,PetscScalar,PetscInt*,PetscReal*,PetscInt,PetscScalar*,PetscInt);
267: SLEPC_INTERN PetscErrorCode PEPNewtonRefinementSimple(PEP,PetscInt*,PetscReal,PetscInt);
268: SLEPC_INTERN PetscErrorCode PEPSetDefaultST(PEP);
269: SLEPC_INTERN PetscErrorCode PEPSetDefaultST_Transform(PEP);

271: #endif