Actual source code: slepcds.h
slepc-main 2025-01-19
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: User interface for the direct solver object in SLEPc
12: */
14: #pragma once
16: #include <slepcsc.h>
17: #include <slepcfn.h>
18: #include <slepcrg.h>
20: /* SUBMANSEC = DS */
22: #define DS_MAX_SOLVE 6
24: SLEPC_EXTERN PetscErrorCode DSInitializePackage(void);
25: SLEPC_EXTERN PetscErrorCode DSFinalizePackage(void);
27: /*S
28: DS - Direct solver (or dense system), to represent low-dimensional
29: eigenproblems that must be solved within iterative solvers. This is an
30: auxiliary object and is not normally needed by application programmers.
32: Level: beginner
34: .seealso: DSCreate()
35: S*/
36: typedef struct _p_DS* DS;
38: /*J
39: DSType - String with the name of the type of direct solver. Roughly,
40: there are as many types as problem types are available within SLEPc.
42: Level: advanced
44: .seealso: DSSetType(), DS
45: J*/
46: typedef const char* DSType;
47: #define DSHEP "hep"
48: #define DSNHEP "nhep"
49: #define DSGHEP "ghep"
50: #define DSGHIEP "ghiep"
51: #define DSGNHEP "gnhep"
52: #define DSNHEPTS "nhepts"
53: #define DSSVD "svd"
54: #define DSHSVD "hsvd"
55: #define DSGSVD "gsvd"
56: #define DSPEP "pep"
57: #define DSNEP "nep"
59: /* Logging support */
60: SLEPC_EXTERN PetscClassId DS_CLASSID;
62: /*E
63: DSStateType - Indicates in which state the direct solver is
65: Level: advanced
67: .seealso: DSSetState()
68: E*/
69: typedef enum { DS_STATE_RAW,
70: DS_STATE_INTERMEDIATE,
71: DS_STATE_CONDENSED,
72: DS_STATE_TRUNCATED } DSStateType;
73: SLEPC_EXTERN const char *DSStateTypes[];
75: /*E
76: DSMatType - Used to refer to one of the matrices stored internally in DS
78: Notes:
79: The matrices preferentially refer to
80: + DS_MAT_A - first matrix of eigenproblem/singular value problem
81: . DS_MAT_B - second matrix of a generalized eigenproblem
82: . DS_MAT_C - third matrix of a quadratic eigenproblem (deprecated)
83: . DS_MAT_T - tridiagonal matrix
84: . DS_MAT_D - diagonal matrix
85: . DS_MAT_Q - orthogonal matrix of (right) Schur vectors
86: . DS_MAT_Z - orthogonal matrix of left Schur vectors
87: . DS_MAT_X - right eigenvectors
88: . DS_MAT_Y - left eigenvectors
89: . DS_MAT_U - left singular vectors
90: . DS_MAT_V - right singular vectors
91: . DS_MAT_W - workspace matrix
92: - DS_MAT_Ex - extra matrices (x=0,..,9)
94: All matrices can have space to hold ld x ld elements, except for
95: DS_MAT_T that has space for 3 x ld elements (ld = leading dimension)
96: and DS_MAT_D that has space for just ld elements.
98: In DSPEP problems, matrices A, B, W can have space for d*ld x d*ld,
99: where d is the polynomial degree, and X can have ld x d*ld.
100: Also DSNEP has exceptions. Check the manual page of each DS type
101: for details.
103: Level: advanced
105: .seealso: DSAllocate(), DSGetArray(), DSGetArrayReal(), DSVectors()
106: E*/
107: typedef enum { DS_MAT_A,
108: DS_MAT_B,
109: DS_MAT_C,
110: DS_MAT_T,
111: DS_MAT_D,
112: DS_MAT_Q,
113: DS_MAT_Z,
114: DS_MAT_X,
115: DS_MAT_Y,
116: DS_MAT_U,
117: DS_MAT_V,
118: DS_MAT_W,
119: DS_MAT_E0,
120: DS_MAT_E1,
121: DS_MAT_E2,
122: DS_MAT_E3,
123: DS_MAT_E4,
124: DS_MAT_E5,
125: DS_MAT_E6,
126: DS_MAT_E7,
127: DS_MAT_E8,
128: DS_MAT_E9,
129: DS_NUM_MAT } DSMatType;
131: /* Convenience for indexing extra matrices */
132: SLEPC_EXTERN DSMatType DSMatExtra[];
133: #define DS_NUM_EXTRA 10
135: /*E
136: DSParallelType - Indicates the parallel mode that the direct solver will use
138: Level: advanced
140: .seealso: DSSetParallel()
141: E*/
142: typedef enum { DS_PARALLEL_REDUNDANT,
143: DS_PARALLEL_SYNCHRONIZED,
144: DS_PARALLEL_DISTRIBUTED } DSParallelType;
145: SLEPC_EXTERN const char *DSParallelTypes[];
147: SLEPC_EXTERN PetscErrorCode DSCreate(MPI_Comm,DS*);
148: SLEPC_EXTERN PetscErrorCode DSSetType(DS,DSType);
149: SLEPC_EXTERN PetscErrorCode DSGetType(DS,DSType*);
150: SLEPC_EXTERN PetscErrorCode DSSetOptionsPrefix(DS,const char *);
151: SLEPC_EXTERN PetscErrorCode DSAppendOptionsPrefix(DS,const char *);
152: SLEPC_EXTERN PetscErrorCode DSGetOptionsPrefix(DS,const char *[]);
153: SLEPC_EXTERN PetscErrorCode DSSetFromOptions(DS);
154: SLEPC_EXTERN PetscErrorCode DSView(DS,PetscViewer);
155: SLEPC_EXTERN PetscErrorCode DSViewFromOptions(DS,PetscObject,const char[]);
156: SLEPC_EXTERN PetscErrorCode DSViewMat(DS,PetscViewer,DSMatType);
157: SLEPC_EXTERN PetscErrorCode DSDestroy(DS*);
158: SLEPC_EXTERN PetscErrorCode DSReset(DS);
159: SLEPC_EXTERN PetscErrorCode DSDuplicate(DS,DS*);
161: SLEPC_EXTERN PetscErrorCode DSAllocate(DS,PetscInt);
162: SLEPC_EXTERN PetscErrorCode DSReallocate(DS,PetscInt);
163: SLEPC_EXTERN PetscErrorCode DSGetLeadingDimension(DS,PetscInt*);
164: SLEPC_EXTERN PetscErrorCode DSSetState(DS,DSStateType);
165: SLEPC_EXTERN PetscErrorCode DSGetState(DS,DSStateType*);
166: SLEPC_EXTERN PetscErrorCode DSSetDimensions(DS,PetscInt,PetscInt,PetscInt);
167: SLEPC_EXTERN PetscErrorCode DSGetDimensions(DS,PetscInt*,PetscInt*,PetscInt*,PetscInt*);
168: SLEPC_EXTERN PetscErrorCode DSSetBlockSize(DS,PetscInt);
169: SLEPC_EXTERN PetscErrorCode DSGetBlockSize(DS,PetscInt*);
170: SLEPC_EXTERN PetscErrorCode DSGetTruncateSize(DS,PetscInt,PetscInt,PetscInt*);
171: SLEPC_EXTERN PetscErrorCode DSTruncate(DS,PetscInt,PetscBool);
172: SLEPC_EXTERN PetscErrorCode DSSetIdentity(DS,DSMatType);
173: SLEPC_EXTERN PetscErrorCode DSSetMethod(DS,PetscInt);
174: SLEPC_EXTERN PetscErrorCode DSGetMethod(DS,PetscInt*);
175: SLEPC_EXTERN PetscErrorCode DSSetParallel(DS,DSParallelType);
176: SLEPC_EXTERN PetscErrorCode DSGetParallel(DS,DSParallelType*);
177: SLEPC_EXTERN PetscErrorCode DSSetCompact(DS,PetscBool);
178: SLEPC_EXTERN PetscErrorCode DSGetCompact(DS,PetscBool*);
179: SLEPC_EXTERN PetscErrorCode DSSetExtraRow(DS,PetscBool);
180: SLEPC_EXTERN PetscErrorCode DSGetExtraRow(DS,PetscBool*);
181: SLEPC_EXTERN PetscErrorCode DSSetRefined(DS,PetscBool);
182: SLEPC_EXTERN PetscErrorCode DSGetRefined(DS,PetscBool*);
183: SLEPC_EXTERN PetscErrorCode DSGetMat(DS,DSMatType,Mat*);
184: SLEPC_EXTERN PetscErrorCode DSRestoreMat(DS,DSMatType,Mat*);
185: SLEPC_EXTERN PetscErrorCode DSGetMatAndColumn(DS,DSMatType,PetscInt,Mat*,Vec*);
186: SLEPC_EXTERN PetscErrorCode DSRestoreMatAndColumn(DS,DSMatType,PetscInt,Mat*,Vec*);
187: SLEPC_EXTERN PetscErrorCode DSGetArray(DS,DSMatType,PetscScalar*[]);
188: SLEPC_EXTERN PetscErrorCode DSRestoreArray(DS,DSMatType,PetscScalar*[]);
189: SLEPC_EXTERN PetscErrorCode DSGetArrayReal(DS,DSMatType,PetscReal*[]);
190: SLEPC_EXTERN PetscErrorCode DSRestoreArrayReal(DS,DSMatType,PetscReal*[]);
191: SLEPC_EXTERN PetscErrorCode DSVectors(DS,DSMatType,PetscInt*,PetscReal*);
192: SLEPC_EXTERN PetscErrorCode DSSolve(DS,PetscScalar*,PetscScalar*);
193: SLEPC_EXTERN PetscErrorCode DSSort(DS,PetscScalar*,PetscScalar*,PetscScalar*,PetscScalar*,PetscInt*);
194: SLEPC_EXTERN PetscErrorCode DSSortWithPermutation(DS,PetscInt*,PetscScalar*,PetscScalar*);
195: SLEPC_EXTERN PetscErrorCode DSSynchronize(DS,PetscScalar*,PetscScalar*);
196: PETSC_DEPRECATED_FUNCTION(3, 18, 0, "DSGetMat()+MatDenseGetSubMatrix()+MatCopy()", ) static inline PetscErrorCode DSCopyMat(DS ds,DSMatType m,PetscInt mr,PetscInt mc,Mat A,PetscInt Ar,PetscInt Ac,PetscInt rows,PetscInt cols,PetscBool out)
197: {
198: Mat M,M0,A0;
200: PetscFunctionBegin;
201: PetscCall(DSGetMat(ds,m,&M));
202: PetscCall(MatDenseGetSubMatrix(M,mr,mr+rows,mc,mc+cols,&M0));
203: PetscCall(MatDenseGetSubMatrix(A,Ar,Ar+rows,Ac,Ac+cols,&A0));
204: if (out) PetscCall(MatCopy(M0,A0,SAME_NONZERO_PATTERN));
205: else PetscCall(MatCopy(A0,M0,SAME_NONZERO_PATTERN));
206: PetscCall(MatDenseRestoreSubMatrix(M,&M0));
207: PetscCall(MatDenseRestoreSubMatrix(A,&A0));
208: PetscCall(DSRestoreMat(ds,m,&M));
209: PetscFunctionReturn(PETSC_SUCCESS);
210: }
211: SLEPC_EXTERN PetscErrorCode DSMatGetSize(DS,DSMatType,PetscInt*,PetscInt*);
212: SLEPC_EXTERN PetscErrorCode DSMatIsHermitian(DS,DSMatType,PetscBool*);
213: SLEPC_EXTERN PetscErrorCode DSSetSlepcSC(DS,SlepcSC);
214: SLEPC_EXTERN PetscErrorCode DSGetSlepcSC(DS,SlepcSC*);
215: SLEPC_EXTERN PetscErrorCode DSUpdateExtraRow(DS);
216: SLEPC_EXTERN PetscErrorCode DSCond(DS,PetscReal*);
217: SLEPC_EXTERN PetscErrorCode DSTranslateHarmonic(DS,PetscScalar,PetscReal,PetscBool,PetscScalar*,PetscReal*);
218: SLEPC_EXTERN PetscErrorCode DSTranslateRKS(DS,PetscScalar);
219: SLEPC_EXTERN PetscErrorCode DSOrthogonalize(DS,DSMatType,PetscInt,PetscInt*);
220: SLEPC_EXTERN PetscErrorCode DSPseudoOrthogonalize(DS,DSMatType,PetscInt,PetscReal*,PetscInt*,PetscReal*);
222: /* --------- options specific to particular solvers -------- */
224: SLEPC_EXTERN PetscErrorCode DSSVDSetDimensions(DS,PetscInt);
225: SLEPC_EXTERN PetscErrorCode DSSVDGetDimensions(DS,PetscInt*);
226: SLEPC_EXTERN PetscErrorCode DSGSVDSetDimensions(DS,PetscInt,PetscInt);
227: SLEPC_EXTERN PetscErrorCode DSGSVDGetDimensions(DS,PetscInt*,PetscInt*);
228: SLEPC_EXTERN PetscErrorCode DSHSVDSetDimensions(DS,PetscInt);
229: SLEPC_EXTERN PetscErrorCode DSHSVDGetDimensions(DS,PetscInt*);
230: SLEPC_EXTERN PetscErrorCode DSHSVDSetReorthogonalize(DS,PetscBool);
231: SLEPC_EXTERN PetscErrorCode DSHSVDGetReorthogonalize(DS,PetscBool*);
233: SLEPC_EXTERN PetscErrorCode DSPEPSetDegree(DS,PetscInt);
234: SLEPC_EXTERN PetscErrorCode DSPEPGetDegree(DS,PetscInt*);
235: SLEPC_EXTERN PetscErrorCode DSPEPSetCoefficients(DS,PetscReal*);
236: SLEPC_EXTERN PetscErrorCode DSPEPGetCoefficients(DS,PetscReal**);
238: SLEPC_EXTERN PetscErrorCode DSNEPSetFN(DS,PetscInt,FN*);
239: SLEPC_EXTERN PetscErrorCode DSNEPGetFN(DS,PetscInt,FN*);
240: SLEPC_EXTERN PetscErrorCode DSNEPGetNumFN(DS,PetscInt*);
241: SLEPC_EXTERN PetscErrorCode DSNEPSetMinimality(DS,PetscInt);
242: SLEPC_EXTERN PetscErrorCode DSNEPGetMinimality(DS,PetscInt*);
243: SLEPC_EXTERN PetscErrorCode DSNEPSetRefine(DS,PetscReal,PetscInt);
244: SLEPC_EXTERN PetscErrorCode DSNEPGetRefine(DS,PetscReal*,PetscInt*);
245: SLEPC_EXTERN PetscErrorCode DSNEPSetIntegrationPoints(DS,PetscInt);
246: SLEPC_EXTERN PetscErrorCode DSNEPGetIntegrationPoints(DS,PetscInt*);
247: SLEPC_EXTERN PetscErrorCode DSNEPSetSamplingSize(DS,PetscInt);
248: SLEPC_EXTERN PetscErrorCode DSNEPGetSamplingSize(DS,PetscInt*);
249: SLEPC_EXTERN PetscErrorCode DSNEPSetRG(DS,RG);
250: SLEPC_EXTERN PetscErrorCode DSNEPGetRG(DS,RG*);
252: /*S
253: DSNEPMatrixFunctionFn - A prototype of a DSNEP compute matrix function that would be passed to DSNEPSetComputeMatrixFunction()
255: Calling Sequence:
256: + ds - the direct solver object
257: . lambda - point where T(lambda) or T'(lambda) must be evaluated
258: . deriv - if true compute T'(lambda), otherwise compute T(lambda)
259: . mat - the DS matrix where the result must be stored
260: - ctx - [optional] user-defined context for private data for the
261: matrix evaluation routine (may be `NULL`)
263: Level: developer
265: .seealso: DSNEPSetComputeMatrixFunction()
266: S*/
267: PETSC_EXTERN_TYPEDEF typedef PetscErrorCode(DSNEPMatrixFunctionFn)(DS ds,PetscScalar lambda,PetscBool deriv,DSMatType mat,void *ctx);
269: SLEPC_EXTERN PetscErrorCode DSNEPSetComputeMatrixFunction(DS,DSNEPMatrixFunctionFn*,void*);
270: SLEPC_EXTERN PetscErrorCode DSNEPGetComputeMatrixFunction(DS,DSNEPMatrixFunctionFn**,void**);
272: SLEPC_EXTERN PetscFunctionList DSList;
273: SLEPC_EXTERN PetscErrorCode DSRegister(const char[],PetscErrorCode(*)(DS));