Actual source code: svdbasic.c
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: Basic SVD routines
12: */
14: #include <slepc/private/svdimpl.h>
16: /* Logging support */
17: PetscClassId SVD_CLASSID = 0;
18: PetscLogEvent SVD_SetUp = 0,SVD_Solve = 0;
20: /* List of registered SVD routines */
21: PetscFunctionList SVDList = NULL;
22: PetscBool SVDRegisterAllCalled = PETSC_FALSE;
24: /* List of registered SVD monitors */
25: PetscFunctionList SVDMonitorList = NULL;
26: PetscFunctionList SVDMonitorCreateList = NULL;
27: PetscFunctionList SVDMonitorDestroyList = NULL;
28: PetscBool SVDMonitorRegisterAllCalled = PETSC_FALSE;
30: /*@
31: SVDCreate - Creates the default SVD context.
33: Collective
35: Input Parameter:
36: . comm - MPI communicator
38: Output Parameter:
39: . outsvd - location to put the SVD context
41: Note:
42: The default SVD type is SVDCROSS
44: Level: beginner
46: .seealso: `SVDSetUp()`, `SVDSolve()`, `SVDDestroy()`, `SVD`
47: @*/
48: PetscErrorCode SVDCreate(MPI_Comm comm,SVD *outsvd)
49: {
50: SVD svd;
52: PetscFunctionBegin;
53: PetscAssertPointer(outsvd,2);
54: PetscCall(SVDInitializePackage());
55: PetscCall(SlepcHeaderCreate(svd,SVD_CLASSID,"SVD","Singular Value Decomposition","SVD",comm,SVDDestroy,SVDView));
57: svd->OP = NULL;
58: svd->OPb = NULL;
59: svd->omega = NULL;
60: svd->max_it = PETSC_DETERMINE;
61: svd->nsv = 0;
62: svd->ncv = PETSC_DETERMINE;
63: svd->mpd = PETSC_DETERMINE;
64: svd->nini = 0;
65: svd->ninil = 0;
66: svd->tol = PETSC_DETERMINE;
67: svd->thres = 0.0;
68: svd->threlative = PETSC_FALSE;
69: svd->conv = (SVDConv)-1;
70: svd->stop = SVD_STOP_BASIC;
71: svd->which = SVD_LARGEST;
72: svd->problem_type = (SVDProblemType)0;
73: svd->impltrans = PETSC_FALSE;
74: svd->trackall = PETSC_FALSE;
76: svd->converged = NULL;
77: svd->convergeduser = NULL;
78: svd->convergeddestroy = NULL;
79: svd->stopping = SVDStoppingBasic;
80: svd->stoppinguser = NULL;
81: svd->stoppingdestroy = NULL;
82: svd->convergedctx = NULL;
83: svd->stoppingctx = NULL;
84: svd->numbermonitors = 0;
86: svd->ds = NULL;
87: svd->U = NULL;
88: svd->V = NULL;
89: svd->A = NULL;
90: svd->B = NULL;
91: svd->AT = NULL;
92: svd->BT = NULL;
93: svd->IS = NULL;
94: svd->ISL = NULL;
95: svd->sigma = NULL;
96: svd->errest = NULL;
97: svd->sign = NULL;
98: svd->perm = NULL;
99: svd->nworkl = 0;
100: svd->nworkr = 0;
101: svd->workl = NULL;
102: svd->workr = NULL;
103: svd->data = NULL;
105: svd->state = SVD_STATE_INITIAL;
106: svd->nconv = 0;
107: svd->its = 0;
108: svd->leftbasis = PETSC_FALSE;
109: svd->swapped = PETSC_FALSE;
110: svd->expltrans = PETSC_FALSE;
111: svd->nrma = 0.0;
112: svd->nrmb = 0.0;
113: svd->isgeneralized = PETSC_FALSE;
114: svd->reason = SVD_CONVERGED_ITERATING;
116: PetscCall(PetscNew(&svd->sc));
117: *outsvd = svd;
118: PetscFunctionReturn(PETSC_SUCCESS);
119: }
121: /*@
122: SVDReset - Resets the SVD context to the initial state (prior to setup)
123: and destroys any allocated Vecs and Mats.
125: Collective
127: Input Parameter:
128: . svd - singular value solver context obtained from SVDCreate()
130: Level: advanced
132: .seealso: `SVDDestroy()`
133: @*/
134: PetscErrorCode SVDReset(SVD svd)
135: {
136: PetscFunctionBegin;
138: if (!svd) PetscFunctionReturn(PETSC_SUCCESS);
139: PetscTryTypeMethod(svd,reset);
140: PetscCall(MatDestroy(&svd->OP));
141: PetscCall(MatDestroy(&svd->OPb));
142: PetscCall(VecDestroy(&svd->omega));
143: PetscCall(MatDestroy(&svd->A));
144: PetscCall(MatDestroy(&svd->B));
145: PetscCall(MatDestroy(&svd->AT));
146: PetscCall(MatDestroy(&svd->BT));
147: PetscCall(BVDestroy(&svd->U));
148: PetscCall(BVDestroy(&svd->V));
149: PetscCall(VecDestroyVecs(svd->nworkl,&svd->workl));
150: svd->nworkl = 0;
151: PetscCall(VecDestroyVecs(svd->nworkr,&svd->workr));
152: svd->nworkr = 0;
153: svd->swapped = PETSC_FALSE;
154: svd->state = SVD_STATE_INITIAL;
155: PetscFunctionReturn(PETSC_SUCCESS);
156: }
158: /*@
159: SVDDestroy - Destroys the SVD context.
161: Collective
163: Input Parameter:
164: . svd - singular value solver context obtained from SVDCreate()
166: Level: beginner
168: .seealso: `SVDCreate()`, `SVDSetUp()`, `SVDSolve()`
169: @*/
170: PetscErrorCode SVDDestroy(SVD *svd)
171: {
172: PetscFunctionBegin;
173: if (!*svd) PetscFunctionReturn(PETSC_SUCCESS);
175: if (--((PetscObject)*svd)->refct > 0) { *svd = NULL; PetscFunctionReturn(PETSC_SUCCESS); }
176: PetscCall(SVDReset(*svd));
177: PetscTryTypeMethod(*svd,destroy);
178: if ((*svd)->sigma) PetscCall(PetscFree3((*svd)->sigma,(*svd)->perm,(*svd)->errest));
179: if ((*svd)->sign) PetscCall(PetscFree((*svd)->sign));
180: PetscCall(DSDestroy(&(*svd)->ds));
181: PetscCall(PetscFree((*svd)->sc));
182: /* just in case the initial vectors have not been used */
183: PetscCall(SlepcBasisDestroy_Private(&(*svd)->nini,&(*svd)->IS));
184: PetscCall(SlepcBasisDestroy_Private(&(*svd)->ninil,&(*svd)->ISL));
185: if ((*svd)->convergeddestroy) PetscCall((*(*svd)->convergeddestroy)(&(*svd)->convergedctx));
186: if ((*svd)->stoppingdestroy) PetscCall((*(*svd)->stoppingdestroy)(&(*svd)->stoppingctx));
187: PetscCall(SVDMonitorCancel(*svd));
188: PetscCall(PetscHeaderDestroy(svd));
189: PetscFunctionReturn(PETSC_SUCCESS);
190: }
192: /*@
193: SVDSetType - Selects the particular solver to be used in the SVD object.
195: Logically Collective
197: Input Parameters:
198: + svd - the singular value solver context
199: - type - a known method
201: Options Database Key:
202: . -svd_type <method> - Sets the method; use -help for a list
203: of available methods
205: Notes:
206: See "slepc/include/slepcsvd.h" for available methods. The default
207: is SVDCROSS.
209: Normally, it is best to use the SVDSetFromOptions() command and
210: then set the SVD type from the options database rather than by using
211: this routine. Using the options database provides the user with
212: maximum flexibility in evaluating the different available methods.
213: The SVDSetType() routine is provided for those situations where it
214: is necessary to set the iterative solver independently of the command
215: line or options database.
217: Level: intermediate
219: .seealso: `SVDType`
220: @*/
221: PetscErrorCode SVDSetType(SVD svd,SVDType type)
222: {
223: PetscErrorCode (*r)(SVD);
224: PetscBool match;
226: PetscFunctionBegin;
228: PetscAssertPointer(type,2);
230: PetscCall(PetscObjectTypeCompare((PetscObject)svd,type,&match));
231: if (match) PetscFunctionReturn(PETSC_SUCCESS);
233: PetscCall(PetscFunctionListFind(SVDList,type,&r));
234: PetscCheck(r,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown SVD type given: %s",type);
236: PetscTryTypeMethod(svd,destroy);
237: PetscCall(PetscMemzero(svd->ops,sizeof(struct _SVDOps)));
239: svd->state = SVD_STATE_INITIAL;
240: PetscCall(PetscObjectChangeTypeName((PetscObject)svd,type));
241: PetscCall((*r)(svd));
242: PetscFunctionReturn(PETSC_SUCCESS);
243: }
245: /*@
246: SVDGetType - Gets the SVD type as a string from the SVD object.
248: Not Collective
250: Input Parameter:
251: . svd - the singular value solver context
253: Output Parameter:
254: . type - name of SVD method
256: Level: intermediate
258: .seealso: `SVDSetType()`
259: @*/
260: PetscErrorCode SVDGetType(SVD svd,SVDType *type)
261: {
262: PetscFunctionBegin;
264: PetscAssertPointer(type,2);
265: *type = ((PetscObject)svd)->type_name;
266: PetscFunctionReturn(PETSC_SUCCESS);
267: }
269: /*@C
270: SVDRegister - Adds a method to the singular value solver package.
272: Not Collective
274: Input Parameters:
275: + name - name of a new user-defined solver
276: - function - routine to create the solver context
278: Notes:
279: SVDRegister() may be called multiple times to add several user-defined solvers.
281: Example Usage:
282: .vb
283: SVDRegister("my_solver",MySolverCreate);
284: .ve
286: Then, your solver can be chosen with the procedural interface via
287: $ SVDSetType(svd,"my_solver")
288: or at runtime via the option
289: $ -svd_type my_solver
291: Level: advanced
293: .seealso: `SVDRegisterAll()`
294: @*/
295: PetscErrorCode SVDRegister(const char *name,PetscErrorCode (*function)(SVD))
296: {
297: PetscFunctionBegin;
298: PetscCall(SVDInitializePackage());
299: PetscCall(PetscFunctionListAdd(&SVDList,name,function));
300: PetscFunctionReturn(PETSC_SUCCESS);
301: }
303: /*@C
304: SVDMonitorRegister - Registers an SVD monitor routine that may be accessed with SVDMonitorSetFromOptions().
306: Not Collective
308: Input Parameters:
309: + name - name of a new monitor routine
310: . vtype - a PetscViewerType for the output
311: . format - a PetscViewerFormat for the output
312: . monitor - monitor routine, see SVDMonitorRegisterFn
313: . create - creation routine, or NULL
314: - destroy - destruction routine, or NULL
316: Notes:
317: SVDMonitorRegister() may be called multiple times to add several user-defined monitors.
319: The calling sequence for the given function matches the calling sequence of SVDMonitorFn
320: functions passed to SVDMonitorSet() with the additional requirement that its final argument
321: be a PetscViewerAndFormat.
323: Example Usage:
324: .vb
325: SVDMonitorRegister("my_monitor",PETSCVIEWERASCII,PETSC_VIEWER_ASCII_INFO_DETAIL,MyMonitor,NULL,NULL);
326: .ve
328: Then, your monitor can be chosen with the procedural interface via
329: $ SVDMonitorSetFromOptions(svd,"-svd_monitor_my_monitor","my_monitor",NULL)
330: or at runtime via the option
331: $ -svd_monitor_my_monitor
333: Level: advanced
335: .seealso: `SVDMonitorSet()`, `SVDMonitorRegisterAll()`
336: @*/
337: PetscErrorCode SVDMonitorRegister(const char name[],PetscViewerType vtype,PetscViewerFormat format,SVDMonitorRegisterFn *monitor,SVDMonitorRegisterCreateFn *create,SVDMonitorRegisterDestroyFn *destroy)
338: {
339: char key[PETSC_MAX_PATH_LEN];
341: PetscFunctionBegin;
342: PetscCall(SVDInitializePackage());
343: PetscCall(SlepcMonitorMakeKey_Internal(name,vtype,format,key));
344: PetscCall(PetscFunctionListAdd(&SVDMonitorList,key,monitor));
345: if (create) PetscCall(PetscFunctionListAdd(&SVDMonitorCreateList,key,create));
346: if (destroy) PetscCall(PetscFunctionListAdd(&SVDMonitorDestroyList,key,destroy));
347: PetscFunctionReturn(PETSC_SUCCESS);
348: }
350: /*@
351: SVDSetBV - Associates basis vectors objects to the singular value solver.
353: Collective
355: Input Parameters:
356: + svd - singular value solver context obtained from SVDCreate()
357: . V - the basis vectors object for right singular vectors
358: - U - the basis vectors object for left singular vectors
360: Note:
361: Use SVDGetBV() to retrieve the basis vectors contexts (for example,
362: to free them at the end of the computations).
364: Level: advanced
366: .seealso: `SVDGetBV()`
367: @*/
368: PetscErrorCode SVDSetBV(SVD svd,BV V,BV U)
369: {
370: PetscFunctionBegin;
372: if (V) {
374: PetscCheckSameComm(svd,1,V,2);
375: PetscCall(PetscObjectReference((PetscObject)V));
376: PetscCall(BVDestroy(&svd->V));
377: svd->V = V;
378: }
379: if (U) {
381: PetscCheckSameComm(svd,1,U,3);
382: PetscCall(PetscObjectReference((PetscObject)U));
383: PetscCall(BVDestroy(&svd->U));
384: svd->U = U;
385: }
386: PetscFunctionReturn(PETSC_SUCCESS);
387: }
389: /*@
390: SVDGetBV - Obtain the basis vectors objects associated to the singular
391: value solver object.
393: Not Collective
395: Input Parameter:
396: . svd - singular value solver context obtained from SVDCreate()
398: Output Parameters:
399: + V - basis vectors context for right singular vectors
400: - U - basis vectors context for left singular vectors
402: Level: advanced
404: .seealso: `SVDSetBV()`
405: @*/
406: PetscErrorCode SVDGetBV(SVD svd,BV *V,BV *U)
407: {
408: PetscFunctionBegin;
410: if (V) {
411: if (!svd->V) {
412: PetscCall(BVCreate(PetscObjectComm((PetscObject)svd),&svd->V));
413: PetscCall(PetscObjectIncrementTabLevel((PetscObject)svd->V,(PetscObject)svd,0));
414: PetscCall(PetscObjectSetOptions((PetscObject)svd->V,((PetscObject)svd)->options));
415: }
416: *V = svd->V;
417: }
418: if (U) {
419: if (!svd->U) {
420: PetscCall(BVCreate(PetscObjectComm((PetscObject)svd),&svd->U));
421: PetscCall(PetscObjectIncrementTabLevel((PetscObject)svd->U,(PetscObject)svd,0));
422: PetscCall(PetscObjectSetOptions((PetscObject)svd->U,((PetscObject)svd)->options));
423: }
424: *U = svd->U;
425: }
426: PetscFunctionReturn(PETSC_SUCCESS);
427: }
429: /*@
430: SVDSetDS - Associates a direct solver object to the singular value solver.
432: Collective
434: Input Parameters:
435: + svd - singular value solver context obtained from SVDCreate()
436: - ds - the direct solver object
438: Note:
439: Use SVDGetDS() to retrieve the direct solver context (for example,
440: to free it at the end of the computations).
442: Level: advanced
444: .seealso: `SVDGetDS()`
445: @*/
446: PetscErrorCode SVDSetDS(SVD svd,DS ds)
447: {
448: PetscFunctionBegin;
451: PetscCheckSameComm(svd,1,ds,2);
452: PetscCall(PetscObjectReference((PetscObject)ds));
453: PetscCall(DSDestroy(&svd->ds));
454: svd->ds = ds;
455: PetscFunctionReturn(PETSC_SUCCESS);
456: }
458: /*@
459: SVDGetDS - Obtain the direct solver object associated to the singular value
460: solver object.
462: Not Collective
464: Input Parameters:
465: . svd - singular value solver context obtained from SVDCreate()
467: Output Parameter:
468: . ds - direct solver context
470: Level: advanced
472: .seealso: `SVDSetDS()`
473: @*/
474: PetscErrorCode SVDGetDS(SVD svd,DS *ds)
475: {
476: PetscFunctionBegin;
478: PetscAssertPointer(ds,2);
479: if (!svd->ds) {
480: PetscCall(DSCreate(PetscObjectComm((PetscObject)svd),&svd->ds));
481: PetscCall(PetscObjectIncrementTabLevel((PetscObject)svd->ds,(PetscObject)svd,0));
482: PetscCall(PetscObjectSetOptions((PetscObject)svd->ds,((PetscObject)svd)->options));
483: }
484: *ds = svd->ds;
485: PetscFunctionReturn(PETSC_SUCCESS);
486: }