NEPNLEIGSSetSingularitiesFunction#

Sets a user-defined callback function to compute a discretization of the singularity set (the values where \(T(\cdot)\) is not analytic).

Synopsis#

Logically Collective

Input Parameters#

  • nep - the nonlinear eigensolver context

  • fun - user function (if NULL then NEP retains any previously set value)

  • ctx - [optional] user-defined context for private data for the function (may be NULL, in which case NEP retains any previously set value)

Notes#

If the problem type has been set to NEP_RATIONAL with NEPSetProblemType(), then it is not necessary to set the singularities explicitly since the solver will try to determine them automatically.

If the problem is NEP_GENERAL, it is also possible to omit the singularities callback. In that case, a discretization of the singularity set is approximated via the AAA algorithm [Elsworth and Güttel, 2019, Nakatsukasa et al., 2018].

References#

[Els19]

S. Elsworth and S. Güttel. Conversions between barycentric, RKFUN, and Newton representations of rational interpolants. Linear Algebra Appl., 576:246–257, 2019. doi:10.1016/j.laa.2018.10.003.

[Nak18]

Y. Nakatsukasa, O. Sète, and L. N. Trefethen. The AAA algorithm for rational approximation. SIAM J. Sci. Comput., 40(3):A1494–A1522, 2018. doi:10.1137/16m1106122.

See Also#

NEP: Nonlinear Eigenvalue Problems, NEPNLEIGS, NEPNLEIGSGetSingularitiesFunction(), NEPSetProblemType()

Level#

intermediate

Location#

src/nep/impls/nleigs/nleigs.c

Examples#

src/nep/tutorials/ex27f.F90
src/nep/tutorials/ex27.c

Implementations#

NEPNLEIGSSetSingularitiesFunction_NLEIGS() in src/nep/impls/nleigs/nleigs.c


Index of all NEP routines Table of Contents for all manual pages Index of all manual pages