NEPNLEIGSSetSingularitiesFunction#
Sets a user-defined callback function to compute a discretization of the singularity set (the values where \(T(\cdot)\) is not analytic).
Synopsis#
#include "slepcnep.h"
PetscErrorCode NEPNLEIGSSetSingularitiesFunction(NEP nep,NEPNLEIGSSingularitiesFn *fun,void *ctx)
Logically Collective
Input Parameters#
Notes#
If the problem type has been set to NEP_RATIONAL with NEPSetProblemType(),
then it is not necessary to set the singularities explicitly since the
solver will try to determine them automatically.
If the problem is NEP_GENERAL, it is also possible to omit the
singularities callback. In that case, a discretization of the singularity
set is approximated via the AAA algorithm [Elsworth and Güttel, 2019, Nakatsukasa et al., 2018].
References#
S. Elsworth and S. Güttel. Conversions between barycentric, RKFUN, and Newton representations of rational interpolants. Linear Algebra Appl., 576:246–257, 2019. doi:10.1016/j.laa.2018.10.003.
Y. Nakatsukasa, O. Sète, and L. N. Trefethen. The AAA algorithm for rational approximation. SIAM J. Sci. Comput., 40(3):A1494–A1522, 2018. doi:10.1137/16m1106122.
See Also#
NEP: Nonlinear Eigenvalue Problems, NEPNLEIGS, NEPNLEIGSGetSingularitiesFunction(), NEPSetProblemType()
Level#
intermediate
Location#
Examples#
Implementations#
NEPNLEIGSSetSingularitiesFunction_NLEIGS() in src/nep/impls/nleigs/nleigs.c
Index of all NEP routines Table of Contents for all manual pages Index of all manual pages