Actual source code: dsnep.c

slepc-3.21.1 2024-04-26
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: #include <slepc/private/dsimpl.h>
 12: #include <slepcblaslapack.h>

 14: typedef struct {
 15:   PetscInt       nf;                 /* number of functions in f[] */
 16:   FN             f[DS_NUM_EXTRA];    /* functions defining the nonlinear operator */
 17:   PetscInt       max_mid;            /* maximum minimality index */
 18:   PetscInt       nnod;               /* number of nodes for quadrature rules */
 19:   PetscInt       spls;               /* number of sampling columns for quadrature rules */
 20:   PetscInt       Nit;                /* number of refinement iterations */
 21:   PetscReal      rtol;               /* tolerance of Newton refinement */
 22:   RG             rg;                 /* region for contour integral */
 23:   PetscLayout    map;                /* used to distribute work among MPI processes */
 24:   void           *computematrixctx;
 25:   PetscErrorCode (*computematrix)(DS,PetscScalar,PetscBool,DSMatType,void*);
 26: } DS_NEP;

 28: /*
 29:    DSNEPComputeMatrix - Build the matrix associated with a nonlinear operator
 30:    T(lambda) or its derivative T'(lambda), given the parameter lambda, where
 31:    T(lambda) = sum_i E_i*f_i(lambda). The result is written in mat.
 32: */
 33: static PetscErrorCode DSNEPComputeMatrix(DS ds,PetscScalar lambda,PetscBool deriv,DSMatType mat)
 34: {
 35:   DS_NEP            *ctx = (DS_NEP*)ds->data;
 36:   PetscScalar       *T,alpha;
 37:   const PetscScalar *E;
 38:   PetscInt          i,ld,n;
 39:   PetscBLASInt      k,inc=1;

 41:   PetscFunctionBegin;
 42:   PetscCall(PetscLogEventBegin(DS_Other,ds,0,0,0));
 43:   if (ctx->computematrix) PetscCall((*ctx->computematrix)(ds,lambda,deriv,mat,ctx->computematrixctx));
 44:   else {
 45:     PetscCall(DSGetDimensions(ds,&n,NULL,NULL,NULL));
 46:     PetscCall(DSGetLeadingDimension(ds,&ld));
 47:     PetscCall(PetscBLASIntCast(ld*n,&k));
 48:     PetscCall(MatDenseGetArray(ds->omat[mat],&T));
 49:     PetscCall(PetscArrayzero(T,k));
 50:     for (i=0;i<ctx->nf;i++) {
 51:       if (deriv) PetscCall(FNEvaluateDerivative(ctx->f[i],lambda,&alpha));
 52:       else PetscCall(FNEvaluateFunction(ctx->f[i],lambda,&alpha));
 53:       PetscCall(MatDenseGetArrayRead(ds->omat[DSMatExtra[i]],&E));
 54:       PetscCallBLAS("BLASaxpy",BLASaxpy_(&k,&alpha,E,&inc,T,&inc));
 55:       PetscCall(MatDenseRestoreArrayRead(ds->omat[DSMatExtra[i]],&E));
 56:     }
 57:     PetscCall(MatDenseRestoreArray(ds->omat[mat],&T));
 58:   }
 59:   PetscCall(PetscLogEventEnd(DS_Other,ds,0,0,0));
 60:   PetscFunctionReturn(PETSC_SUCCESS);
 61: }

 63: static PetscErrorCode DSAllocate_NEP(DS ds,PetscInt ld)
 64: {
 65:   DS_NEP         *ctx = (DS_NEP*)ds->data;
 66:   PetscInt       i;

 68:   PetscFunctionBegin;
 69:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_X));
 70:   for (i=0;i<ctx->nf;i++) PetscCall(DSAllocateMat_Private(ds,DSMatExtra[i]));
 71:   PetscCall(PetscFree(ds->perm));
 72:   PetscCall(PetscMalloc1(ld*ctx->max_mid,&ds->perm));
 73:   PetscFunctionReturn(PETSC_SUCCESS);
 74: }

 76: static PetscErrorCode DSView_NEP(DS ds,PetscViewer viewer)
 77: {
 78:   DS_NEP            *ctx = (DS_NEP*)ds->data;
 79:   PetscViewerFormat format;
 80:   PetscInt          i;
 81:   const char        *methodname[] = {
 82:                      "Successive Linear Problems",
 83:                      "Contour Integral"
 84:   };
 85:   const int         nmeth=PETSC_STATIC_ARRAY_LENGTH(methodname);

 87:   PetscFunctionBegin;
 88:   PetscCall(PetscViewerGetFormat(viewer,&format));
 89:   if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
 90:     if (ds->method<nmeth) PetscCall(PetscViewerASCIIPrintf(viewer,"solving the problem with: %s\n",methodname[ds->method]));
 91: #if defined(PETSC_USE_COMPLEX)
 92:     if (ds->method==1) {  /* contour integral method */
 93:       PetscCall(PetscViewerASCIIPrintf(viewer,"number of integration points: %" PetscInt_FMT "\n",ctx->nnod));
 94:       PetscCall(PetscViewerASCIIPrintf(viewer,"maximum minimality index: %" PetscInt_FMT "\n",ctx->max_mid));
 95:       if (ctx->spls) PetscCall(PetscViewerASCIIPrintf(viewer,"number of sampling columns for quadrature: %" PetscInt_FMT "\n",ctx->spls));
 96:       if (ctx->Nit) PetscCall(PetscViewerASCIIPrintf(viewer,"doing iterative refinement (%" PetscInt_FMT " its, tolerance %g)\n",ctx->Nit,(double)ctx->rtol));
 97:       PetscCall(RGView(ctx->rg,viewer));
 98:     }
 99: #endif
100:     if (format == PETSC_VIEWER_ASCII_INFO_DETAIL) PetscCall(PetscViewerASCIIPrintf(viewer,"number of functions: %" PetscInt_FMT "\n",ctx->nf));
101:     PetscFunctionReturn(PETSC_SUCCESS);
102:   }
103:   for (i=0;i<ctx->nf;i++) {
104:     PetscCall(FNView(ctx->f[i],viewer));
105:     PetscCall(DSViewMat(ds,viewer,DSMatExtra[i]));
106:   }
107:   if (ds->state>DS_STATE_INTERMEDIATE) PetscCall(DSViewMat(ds,viewer,DS_MAT_X));
108:   PetscFunctionReturn(PETSC_SUCCESS);
109: }

111: static PetscErrorCode DSVectors_NEP(DS ds,DSMatType mat,PetscInt *j,PetscReal *rnorm)
112: {
113:   PetscFunctionBegin;
114:   PetscCheck(!rnorm,PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"Not implemented yet");
115:   switch (mat) {
116:     case DS_MAT_X:
117:       break;
118:     case DS_MAT_Y:
119:       SETERRQ(PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"Not implemented yet");
120:     default:
121:       SETERRQ(PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"Invalid mat parameter");
122:   }
123:   PetscFunctionReturn(PETSC_SUCCESS);
124: }

126: static PetscErrorCode DSSort_NEP(DS ds,PetscScalar *wr,PetscScalar *wi,PetscScalar *rr,PetscScalar *ri,PetscInt *dummy)
127: {
128:   DS_NEP         *ctx = (DS_NEP*)ds->data;
129:   PetscInt       n,l,i,*perm,lds;
130:   PetscScalar    *Q;

132:   PetscFunctionBegin;
133:   if (!ds->sc) PetscFunctionReturn(PETSC_SUCCESS);
134:   if (!ds->method) PetscFunctionReturn(PETSC_SUCCESS);  /* SLP computes just one eigenvalue */
135:   n = ds->n*ctx->max_mid;
136:   lds = ds->ld*ctx->max_mid;
137:   l = ds->l;
138:   perm = ds->perm;
139:   for (i=0;i<n;i++) perm[i] = i;
140:   if (rr) PetscCall(DSSortEigenvalues_Private(ds,rr,ri,perm,PETSC_FALSE));
141:   else PetscCall(DSSortEigenvalues_Private(ds,wr,NULL,perm,PETSC_FALSE));
142:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Q],&Q));
143:   for (i=l;i<ds->t;i++) Q[i+i*lds] = wr[perm[i]];
144:   for (i=l;i<ds->t;i++) wr[i] = Q[i+i*lds];
145:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Q],&Q));
146:   /* n != ds->n */
147:   PetscCall(DSPermuteColumns_Private(ds,0,ds->t,ds->n,DS_MAT_X,perm));
148:   PetscFunctionReturn(PETSC_SUCCESS);
149: }

151: #if defined(SLEPC_MISSING_LAPACK_GGEV3)
152: #define LAPGEEV "ggev"
153: #else
154: #define LAPGEEV "ggev3"
155: #endif

157: static PetscErrorCode DSSolve_NEP_SLP(DS ds,PetscScalar *wr,PetscScalar *wi)
158: {
159:   PetscScalar    *A,*B,*W,*X,*work,*alpha,*beta,a;
160:   PetscScalar    sigma,lambda,mu,re,re2,sone=1.0,szero=0.0;
161:   PetscBLASInt   info,n,ld,lwork,one=1,zero=0;
162:   PetscInt       it,pos,j,maxit=100,result;
163:   PetscReal      norm,tol,done=1.0;
164: #if !defined(PETSC_USE_COMPLEX)
165:   PetscReal      *alphai,im,im2;
166: #endif

168:   PetscFunctionBegin;
169:   PetscCall(PetscBLASIntCast(ds->n,&n));
170:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
171:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_A));
172:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_B));
173:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_W));
174:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
175:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_B],&B));
176:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_W],&W));
177:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_X],&X));

179:   /* workspace query and memory allocation */
180:   lwork = -1;
181: #if defined(PETSC_USE_COMPLEX)
182:   PetscCallBLAS("LAPACK" LAPGEEV,LAPACKggevalt_("N","V",&n,A,&ld,B,&ld,NULL,NULL,NULL,&ld,W,&ld,&a,&lwork,NULL,&info));
183:   PetscCall(PetscBLASIntCast((PetscInt)PetscRealPart(a),&lwork));
184:   PetscCall(DSAllocateWork_Private(ds,lwork+2*ds->n,8*ds->n,0));
185:   alpha = ds->work;
186:   beta  = ds->work + ds->n;
187:   work  = ds->work + 2*ds->n;
188: #else
189:   PetscCallBLAS("LAPACK" LAPGEEV,LAPACKggevalt_("N","V",&n,A,&ld,B,&ld,NULL,NULL,NULL,NULL,&ld,W,&ld,&a,&lwork,&info));
190:   PetscCall(PetscBLASIntCast((PetscInt)a,&lwork));
191:   PetscCall(DSAllocateWork_Private(ds,lwork+3*ds->n,0,0));
192:   alpha  = ds->work;
193:   beta   = ds->work + ds->n;
194:   alphai = ds->work + 2*ds->n;
195:   work   = ds->work + 3*ds->n;
196: #endif

198:   sigma = 0.0;
199:   if (ds->sc->comparison==SlepcCompareTargetMagnitude || ds->sc->comparison==SlepcCompareTargetReal) sigma = *(PetscScalar*)ds->sc->comparisonctx;
200:   lambda = sigma;
201:   tol = n*PETSC_MACHINE_EPSILON/PetscSqrtReal(PETSC_SQRT_MACHINE_EPSILON);

203:   for (it=0;it<maxit;it++) {

205:     /* evaluate T and T' */
206:     PetscCall(DSNEPComputeMatrix(ds,lambda,PETSC_FALSE,DS_MAT_A));
207:     if (it) {
208:       PetscCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&sone,A,&ld,X,&one,&szero,X+ld,&one));
209:       norm = BLASnrm2_(&n,X+ld,&one);
210:       if (norm/PetscAbsScalar(lambda)<=tol) break;
211:     }
212:     PetscCall(DSNEPComputeMatrix(ds,lambda,PETSC_TRUE,DS_MAT_B));

214:     /* compute eigenvalue correction mu and eigenvector u */
215: #if defined(PETSC_USE_COMPLEX)
216:     PetscCallBLAS("LAPACK" LAPGEEV,LAPACKggevalt_("N","V",&n,A,&ld,B,&ld,alpha,beta,NULL,&ld,W,&ld,work,&lwork,ds->rwork,&info));
217: #else
218:     PetscCallBLAS("LAPACK" LAPGEEV,LAPACKggevalt_("N","V",&n,A,&ld,B,&ld,alpha,alphai,beta,NULL,&ld,W,&ld,work,&lwork,&info));
219: #endif
220:     SlepcCheckLapackInfo(LAPGEEV,info);

222:     /* find smallest eigenvalue */
223:     j = 0;
224:     if (beta[j]==0.0) re = (PetscRealPart(alpha[j])>0.0)? PETSC_MAX_REAL: PETSC_MIN_REAL;
225:     else re = alpha[j]/beta[j];
226: #if !defined(PETSC_USE_COMPLEX)
227:     if (beta[j]==0.0) im = (alphai[j]>0.0)? PETSC_MAX_REAL: PETSC_MIN_REAL;
228:     else im = alphai[j]/beta[j];
229: #endif
230:     pos = 0;
231:     for (j=1;j<n;j++) {
232:       if (beta[j]==0.0) re2 = (PetscRealPart(alpha[j])>0.0)? PETSC_MAX_REAL: PETSC_MIN_REAL;
233:       else re2 = alpha[j]/beta[j];
234: #if !defined(PETSC_USE_COMPLEX)
235:       if (beta[j]==0.0) im2 = (alphai[j]>0.0)? PETSC_MAX_REAL: PETSC_MIN_REAL;
236:       else im2 = alphai[j]/beta[j];
237:       PetscCall(SlepcCompareSmallestMagnitude(re,im,re2,im2,&result,NULL));
238: #else
239:       PetscCall(SlepcCompareSmallestMagnitude(re,0.0,re2,0.0,&result,NULL));
240: #endif
241:       if (result > 0) {
242:         re = re2;
243: #if !defined(PETSC_USE_COMPLEX)
244:         im = im2;
245: #endif
246:         pos = j;
247:       }
248:     }

250: #if !defined(PETSC_USE_COMPLEX)
251:     PetscCheck(im==0.0,PETSC_COMM_SELF,PETSC_ERR_SUP,"DSNEP found a complex eigenvalue; try rerunning with complex scalars");
252: #endif
253:     mu = alpha[pos]/beta[pos];
254:     PetscCall(PetscArraycpy(X,W+pos*ld,n));
255:     norm = BLASnrm2_(&n,X,&one);
256:     PetscCallBLAS("LAPACKlascl",LAPACKlascl_("G",&zero,&zero,&norm,&done,&n,&one,X,&n,&info));
257:     SlepcCheckLapackInfo("lascl",info);

259:     /* correct eigenvalue approximation */
260:     lambda = lambda - mu;
261:   }
262:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
263:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_B],&B));
264:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_W],&W));
265:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_X],&X));

267:   PetscCheck(it<maxit,PETSC_COMM_SELF,PETSC_ERR_CONV_FAILED,"DSNEP did not converge");
268:   ds->t = 1;
269:   wr[0] = lambda;
270:   if (wi) wi[0] = 0.0;
271:   PetscFunctionReturn(PETSC_SUCCESS);
272: }

274: #if defined(PETSC_USE_COMPLEX)
275: /*
276:   Newton refinement for eigenpairs computed with contour integral.
277:   k  - number of eigenpairs to refine
278:   wr - eigenvalues (eigenvectors are stored in DS_MAT_X)
279: */
280: static PetscErrorCode DSNEPNewtonRefine(DS ds,PetscInt k,PetscScalar *wr)
281: {
282:   DS_NEP         *ctx = (DS_NEP*)ds->data;
283:   PetscScalar    *X,*W,*U,*R,sone=1.0,szero=0.0;
284:   PetscReal      norm;
285:   PetscInt       i,j,ii,nwu=0,*p,jstart=0,jend=k;
286:   const PetscInt *range;
287:   PetscBLASInt   n,*perm,info,ld,one=1,n1;
288:   PetscMPIInt    len,size,root;
289:   PetscLayout    map;

291:   PetscFunctionBegin;
292:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_X],&X));
293:   PetscCall(PetscBLASIntCast(ds->n,&n));
294:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
295:   n1 = n+1;
296:   p  = ds->perm;
297:   PetscCall(PetscArrayzero(p,k));
298:   PetscCall(DSAllocateWork_Private(ds,(n+2)*(n+1),0,n+1));
299:   U    = ds->work+nwu;    nwu += (n+1)*(n+1);
300:   R    = ds->work+nwu;    /*nwu += n+1;*/
301:   perm = ds->iwork;
302:   if (ds->pmode==DS_PARALLEL_DISTRIBUTED) {
303:     PetscCall(PetscLayoutCreateFromSizes(PetscObjectComm((PetscObject)ds),PETSC_DECIDE,k,1,&map));
304:     PetscCall(PetscLayoutGetRange(map,&jstart,&jend));
305:   }
306:   for (ii=0;ii<ctx->Nit;ii++) {
307:     for (j=jstart;j<jend;j++) {
308:       if (p[j]<2) {
309:         PetscCall(DSNEPComputeMatrix(ds,wr[j],PETSC_FALSE,DS_MAT_W));
310:         PetscCall(MatDenseGetArray(ds->omat[DS_MAT_W],&W));
311:         PetscCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&sone,W,&ld,X+ld*j,&one,&szero,R,&one));
312:         PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_W],&W));
313:         norm = BLASnrm2_(&n,R,&one);
314:         if (norm/PetscAbsScalar(wr[j]) > ctx->rtol) {
315:           PetscCall(PetscInfo(NULL,"Refining eigenpair %" PetscInt_FMT ", residual=%g\n",j,(double)(norm/PetscAbsScalar(wr[j]))));
316:           p[j] = 1;
317:           R[n] = 0.0;
318:           PetscCall(MatDenseGetArray(ds->omat[DS_MAT_W],&W));
319:           for (i=0;i<n;i++) {
320:             PetscCall(PetscArraycpy(U+i*n1,W+i*ld,n));
321:             U[n+i*n1] = PetscConj(X[j*ld+i]);
322:           }
323:           PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_W],&W));
324:           U[n+n*n1] = 0.0;
325:           PetscCall(DSNEPComputeMatrix(ds,wr[j],PETSC_TRUE,DS_MAT_W));
326:           PetscCall(MatDenseGetArray(ds->omat[DS_MAT_W],&W));
327:           PetscCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&sone,W,&ld,X+ld*j,&one,&szero,U+n*(n+1),&one));
328:           PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_W],&W));
329:           /* solve system  */
330:           PetscCallBLAS("LAPACKgetrf",LAPACKgetrf_(&n1,&n1,U,&n1,perm,&info));
331:           SlepcCheckLapackInfo("getrf",info);
332:           PetscCallBLAS("LAPACKgetrs",LAPACKgetrs_("N",&n1,&one,U,&n1,perm,R,&n1,&info));
333:           SlepcCheckLapackInfo("getrs",info);
334:           wr[j] -= R[n];
335:           for (i=0;i<n;i++) X[j*ld+i] -= R[i];
336:           /* normalization */
337:           norm = BLASnrm2_(&n,X+ld*j,&one);
338:           for (i=0;i<n;i++) X[ld*j+i] /= norm;
339:         } else p[j] = 2;
340:       }
341:     }
342:   }
343:   if (ds->pmode==DS_PARALLEL_DISTRIBUTED) {  /* communicate results */
344:     PetscCall(PetscMPIIntCast(k,&len));
345:     PetscCall(MPIU_Allreduce(MPI_IN_PLACE,p,len,MPIU_INT,MPI_SUM,PetscObjectComm((PetscObject)ds)));
346:     PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)ds),&size));
347:     PetscCall(PetscLayoutGetRanges(map,&range));
348:     for (j=0;j<k;j++) {
349:       if (p[j]) {  /* j-th eigenpair has been refined */
350:         for (root=0;root<size;root++) if (range[root+1]>j) break;
351:         PetscCall(PetscMPIIntCast(1,&len));
352:         PetscCallMPI(MPI_Bcast(wr+j,len,MPIU_SCALAR,root,PetscObjectComm((PetscObject)ds)));
353:         PetscCall(PetscMPIIntCast(n,&len));
354:         PetscCallMPI(MPI_Bcast(X+ld*j,len,MPIU_SCALAR,root,PetscObjectComm((PetscObject)ds)));
355:       }
356:     }
357:     PetscCall(PetscLayoutDestroy(&map));
358:   }
359:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_X],&X));
360:   PetscFunctionReturn(PETSC_SUCCESS);
361: }

363: PetscErrorCode DSSolve_NEP_Contour(DS ds,PetscScalar *wr,PetscScalar *wi)
364: {
365:   DS_NEP         *ctx = (DS_NEP*)ds->data;
366:   PetscScalar    *alpha,*beta,*Q,*Z,*X,*U,*V,*W,*work,*Rc,*R,*w,*z,*zn,*S;
367:   PetscScalar    sone=1.0,szero=0.0,center,a;
368:   PetscReal      *rwork,norm,radius,vscale,rgscale,*sigma;
369:   PetscBLASInt   info,n,*perm,p,pp,ld,lwork,k_,rk_,colA,rowA,one=1;
370:   PetscInt       mid,lds,nnod=ctx->nnod,k,i,ii,jj,j,s,off,rk,nwu=0,nw,lrwork,*inside,kstart=0,kend=nnod;
371:   PetscMPIInt    len;
372:   PetscBool      isellipse;
373:   PetscRandom    rand;

375:   PetscFunctionBegin;
376:   PetscCheck(ctx->rg,PetscObjectComm((PetscObject)ds),PETSC_ERR_ORDER,"The contour solver requires a region passed with DSNEPSetRG()");
377:   /* Contour parameters */
378:   PetscCall(PetscObjectTypeCompare((PetscObject)ctx->rg,RGELLIPSE,&isellipse));
379:   PetscCheck(isellipse,PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"Region must be Ellipse");
380:   PetscCall(RGEllipseGetParameters(ctx->rg,&center,&radius,&vscale));
381:   PetscCall(RGGetScale(ctx->rg,&rgscale));
382:   if (ds->pmode==DS_PARALLEL_DISTRIBUTED) {
383:     if (!ctx->map) PetscCall(PetscLayoutCreateFromSizes(PetscObjectComm((PetscObject)ds),PETSC_DECIDE,ctx->nnod,1,&ctx->map));
384:     PetscCall(PetscLayoutGetRange(ctx->map,&kstart,&kend));
385:   }

387:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_W)); /* size n */
388:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_Q)); /* size mid*n */
389:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_Z)); /* size mid*n */
390:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_U)); /* size mid*n */
391:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_V)); /* size mid*n */
392:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Q],&Q));
393:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Z],&Z));
394:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_U],&U));
395:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_V],&V));
396:   mid  = ctx->max_mid;
397:   PetscCall(PetscBLASIntCast(ds->n,&n));
398:   p    = n;   /* maximum number of columns for the probing matrix */
399:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
400:   PetscCall(PetscBLASIntCast(mid*n,&rowA));
401:   nw     = 2*n*(p+mid)+3*nnod+2*mid*n*p;
402:   lrwork = 9*mid*n;

404:   /* workspace query and memory allocation */
405:   lwork = -1;
406:   PetscCallBLAS("LAPACK" LAPGEEV,LAPACKggevalt_("N","V",&rowA,Q,&rowA,Z,&rowA,NULL,NULL,NULL,&ld,V,&rowA,&a,&lwork,NULL,&info));
407:   PetscCall(PetscBLASIntCast((PetscInt)PetscRealPart(a),&lwork));
408:   PetscCall(DSAllocateWork_Private(ds,lwork+nw,lrwork,n+1));

410:   sigma = ds->rwork;
411:   rwork = ds->rwork+mid*n;
412:   perm  = ds->iwork;
413:   z     = ds->work+nwu;    nwu += nnod;         /* quadrature points */
414:   zn    = ds->work+nwu;    nwu += nnod;         /* normalized quadrature points */
415:   w     = ds->work+nwu;    nwu += nnod;         /* quadrature weights */
416:   Rc    = ds->work+nwu;    nwu += n*p;
417:   R     = ds->work+nwu;    nwu += n*p;
418:   alpha = ds->work+nwu;    nwu += mid*n;
419:   beta  = ds->work+nwu;    nwu += mid*n;
420:   S     = ds->work+nwu;    nwu += 2*mid*n*p;
421:   work  = ds->work+nwu;

423:   /* Compute quadrature parameters */
424:   PetscCall(RGComputeQuadrature(ctx->rg,RG_QUADRULE_TRAPEZOIDAL,nnod,z,zn,w));

426:   /* Set random matrix */
427:   PetscCall(PetscRandomCreate(PetscObjectComm((PetscObject)ds),&rand));
428:   PetscCall(PetscRandomSetSeed(rand,0x12345678));
429:   PetscCall(PetscRandomSeed(rand));
430:   for (j=0;j<p;j++)
431:     for (i=0;i<n;i++) PetscCall(PetscRandomGetValue(rand,Rc+i+j*n));
432:   PetscCall(PetscArrayzero(S,2*mid*n*p));
433:   /* Loop of integration points */
434:   for (k=kstart;k<kend;k++) {
435:     PetscCall(PetscInfo(NULL,"Solving integration point %" PetscInt_FMT "\n",k));
436:     PetscCall(PetscArraycpy(R,Rc,p*n));
437:     PetscCall(DSNEPComputeMatrix(ds,z[k],PETSC_FALSE,DS_MAT_W));

439:     /* LU factorization */
440:     PetscCall(MatDenseGetArray(ds->omat[DS_MAT_W],&W));
441:     PetscCallBLAS("LAPACKgetrf",LAPACKgetrf_(&n,&n,W,&ld,perm,&info));
442:     SlepcCheckLapackInfo("getrf",info);
443:     PetscCallBLAS("LAPACKgetrs",LAPACKgetrs_("N",&n,&p,W,&ld,perm,R,&n,&info));
444:     SlepcCheckLapackInfo("getrs",info);
445:     PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_W],&W));

447:     /* Moments computation */
448:     for (s=0;s<2*ctx->max_mid;s++) {
449:       off = s*n*p;
450:       for (j=0;j<p;j++)
451:         for (i=0;i<n;i++) S[off+i+j*n] += w[k]*R[j*n+i];
452:       w[k] *= zn[k];
453:     }
454:   }

456:   if (ds->pmode==DS_PARALLEL_DISTRIBUTED) {  /* compute final S via reduction */
457:     PetscCall(PetscMPIIntCast(2*mid*n*p,&len));
458:     PetscCall(MPIU_Allreduce(MPI_IN_PLACE,S,len,MPIU_SCALAR,MPIU_SUM,PetscObjectComm((PetscObject)ds)));
459:   }
460:   p = ctx->spls?PetscMin(ctx->spls,n):n;
461:   pp = p;
462:   do {
463:     p = pp;
464:     PetscCall(PetscBLASIntCast(mid*p,&colA));

466:     PetscCall(PetscInfo(ds,"Computing SVD of size %" PetscBLASInt_FMT "x%" PetscBLASInt_FMT "\n",rowA,colA));
467:     for (jj=0;jj<mid;jj++) {
468:       for (ii=0;ii<mid;ii++) {
469:         off = jj*p*rowA+ii*n;
470:         for (j=0;j<p;j++)
471:           for (i=0;i<n;i++) Q[off+j*rowA+i] = S[((jj+ii)*n+j)*n+i];
472:       }
473:     }
474:     PetscCallBLAS("LAPACKgesvd",LAPACKgesvd_("S","S",&rowA,&colA,Q,&rowA,sigma,U,&rowA,V,&colA,work,&lwork,rwork,&info));
475:     SlepcCheckLapackInfo("gesvd",info);

477:     rk = colA;
478:     for (i=1;i<colA;i++) if (sigma[i]/sigma[0]<PETSC_MACHINE_EPSILON*1e4) {rk = i; break;}
479:     if (rk<colA || p==n) break;
480:     pp *= 2;
481:   } while (pp<=n);
482:   PetscCall(PetscInfo(ds,"Solving generalized eigenproblem of size %" PetscInt_FMT "\n",rk));
483:   for (jj=0;jj<mid;jj++) {
484:     for (ii=0;ii<mid;ii++) {
485:       off = jj*p*rowA+ii*n;
486:       for (j=0;j<p;j++)
487:         for (i=0;i<n;i++) Q[off+j*rowA+i] = S[((jj+ii+1)*n+j)*n+i];
488:     }
489:   }
490:   PetscCall(PetscBLASIntCast(rk,&rk_));
491:   PetscCallBLAS("BLASgemm",BLASgemm_("N","C",&rowA,&rk_,&colA,&sone,Q,&rowA,V,&colA,&szero,Z,&rowA));
492:   PetscCallBLAS("BLASgemm",BLASgemm_("C","N",&rk_,&rk_,&rowA,&sone,U,&rowA,Z,&rowA,&szero,Q,&rk_));
493:   PetscCall(PetscArrayzero(Z,n*mid*n*mid));
494:   for (j=0;j<rk;j++) Z[j+j*rk_] = sigma[j];
495:   PetscCallBLAS("LAPACK" LAPGEEV,LAPACKggevalt_("N","V",&rk_,Q,&rk_,Z,&rk_,alpha,beta,NULL,&ld,V,&rk_,work,&lwork,rwork,&info));
496:   SlepcCheckLapackInfo(LAPGEEV,info);
497:   for (i=0;i<rk;i++) wr[i] = (center+radius*alpha[i]/beta[i])*rgscale;
498:   PetscCall(PetscMalloc1(rk,&inside));
499:   PetscCall(RGCheckInside(ctx->rg,rk,wr,wi,inside));
500:   k=0;
501:   for (i=0;i<rk;i++)
502:     if (inside[i]==1) inside[k++] = i;
503:   /* Discard values outside region */
504:   lds = ld*mid;
505:   PetscCall(PetscArrayzero(Q,lds*lds));
506:   PetscCall(PetscArrayzero(Z,lds*lds));
507:   for (i=0;i<k;i++) Q[i+i*lds] = (center*beta[inside[i]]+radius*alpha[inside[i]])*rgscale;
508:   for (i=0;i<k;i++) Z[i+i*lds] = beta[inside[i]];
509:   for (i=0;i<k;i++) wr[i] = Q[i+i*lds]/Z[i+i*lds];
510:   for (j=0;j<k;j++) for (i=0;i<rk;i++) V[j*rk+i] = sigma[i]*V[inside[j]*rk+i];
511:   PetscCall(PetscBLASIntCast(k,&k_));
512:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_X],&X));
513:   PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n,&k_,&rk_,&sone,U,&rowA,V,&rk_,&szero,X,&ld));
514:   /* Normalize */
515:   for (j=0;j<k;j++) {
516:     norm = BLASnrm2_(&n,X+ld*j,&one);
517:     for (i=0;i<n;i++) X[ld*j+i] /= norm;
518:   }
519:   PetscCall(PetscFree(inside));
520:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_X],&X));
521:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Q],&Q));
522:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Z],&Z));
523:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_U],&U));
524:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_V],&V));

526:   /* Newton refinement */
527:   if (ctx->Nit) PetscCall(DSNEPNewtonRefine(ds,k,wr));
528:   ds->t = k;
529:   PetscCall(PetscRandomDestroy(&rand));
530:   PetscFunctionReturn(PETSC_SUCCESS);
531: }
532: #endif

534: #if !defined(PETSC_HAVE_MPIUNI)
535: static PetscErrorCode DSSynchronize_NEP(DS ds,PetscScalar eigr[],PetscScalar eigi[])
536: {
537:   DS_NEP         *ctx = (DS_NEP*)ds->data;
538:   PetscInt       ld=ds->ld,k=0;
539:   PetscMPIInt    n,n2,rank,size,off=0;
540:   PetscScalar    *X;

542:   PetscFunctionBegin;
543:   if (!ds->method) { /* SLP */
544:     if (ds->state>=DS_STATE_CONDENSED) k += ds->n;
545:     if (eigr) k += 1;
546:     if (eigi) k += 1;
547:     PetscCall(PetscMPIIntCast(1,&n));
548:     PetscCall(PetscMPIIntCast(ds->n,&n2));
549:   } else { /* Contour */
550:     if (ds->state>=DS_STATE_CONDENSED) k += ctx->max_mid*ds->n*ld;
551:     if (eigr) k += ctx->max_mid*ds->n;
552:     if (eigi) k += ctx->max_mid*ds->n;
553:     PetscCall(PetscMPIIntCast(ctx->max_mid*ds->n,&n));
554:     PetscCall(PetscMPIIntCast(ctx->max_mid*ds->n*ld,&n2));
555:   }
556:   PetscCall(DSAllocateWork_Private(ds,k,0,0));
557:   PetscCall(PetscMPIIntCast(k*sizeof(PetscScalar),&size));
558:   if (ds->state>=DS_STATE_CONDENSED) PetscCall(MatDenseGetArray(ds->omat[DS_MAT_X],&X));
559:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)ds),&rank));
560:   if (!rank) {
561:     if (ds->state>=DS_STATE_CONDENSED) PetscCallMPI(MPI_Pack(X,n2,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
562:     if (eigr) PetscCallMPI(MPI_Pack(eigr,n,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
563: #if !defined(PETSC_USE_COMPLEX)
564:     if (eigi) PetscCallMPI(MPI_Pack(eigi,n,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
565: #endif
566:   }
567:   PetscCallMPI(MPI_Bcast(ds->work,size,MPI_BYTE,0,PetscObjectComm((PetscObject)ds)));
568:   if (rank) {
569:     if (ds->state>=DS_STATE_CONDENSED) PetscCallMPI(MPI_Unpack(ds->work,size,&off,X,n2,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
570:     if (eigr) PetscCallMPI(MPI_Unpack(ds->work,size,&off,eigr,n,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
571: #if !defined(PETSC_USE_COMPLEX)
572:     if (eigi) PetscCallMPI(MPI_Unpack(ds->work,size,&off,eigi,n,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
573: #endif
574:   }
575:   if (ds->state>=DS_STATE_CONDENSED) PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_X],&X));
576:   PetscFunctionReturn(PETSC_SUCCESS);
577: }
578: #endif

580: static PetscErrorCode DSNEPSetFN_NEP(DS ds,PetscInt n,FN fn[])
581: {
582:   DS_NEP         *ctx = (DS_NEP*)ds->data;
583:   PetscInt       i;

585:   PetscFunctionBegin;
586:   PetscCheck(n>0,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"Must have one or more functions, you have %" PetscInt_FMT,n);
587:   PetscCheck(n<=DS_NUM_EXTRA,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"Too many functions, you specified %" PetscInt_FMT " but the limit is %d",n,DS_NUM_EXTRA);
588:   if (ds->ld) PetscCall(PetscInfo(ds,"DSNEPSetFN() called after DSAllocate()\n"));
589:   for (i=0;i<n;i++) PetscCall(PetscObjectReference((PetscObject)fn[i]));
590:   for (i=0;i<ctx->nf;i++) PetscCall(FNDestroy(&ctx->f[i]));
591:   for (i=0;i<n;i++) ctx->f[i] = fn[i];
592:   ctx->nf = n;
593:   PetscFunctionReturn(PETSC_SUCCESS);
594: }

596: /*@
597:    DSNEPSetFN - Sets a number of functions that define the nonlinear
598:    eigenproblem.

600:    Collective

602:    Input Parameters:
603: +  ds - the direct solver context
604: .  n  - number of functions
605: -  fn - array of functions

607:    Notes:
608:    The nonlinear eigenproblem is defined in terms of the split nonlinear
609:    operator T(lambda) = sum_i A_i*f_i(lambda).

611:    This function must be called before DSAllocate(). Then DSAllocate()
612:    will allocate an extra matrix A_i per each function, that can be
613:    filled in the usual way.

615:    Level: advanced

617: .seealso: DSNEPGetFN(), DSAllocate()
618: @*/
619: PetscErrorCode DSNEPSetFN(DS ds,PetscInt n,FN fn[])
620: {
621:   PetscInt       i;

623:   PetscFunctionBegin;
626:   PetscAssertPointer(fn,3);
627:   for (i=0;i<n;i++) {
629:     PetscCheckSameComm(ds,1,fn[i],3);
630:   }
631:   PetscTryMethod(ds,"DSNEPSetFN_C",(DS,PetscInt,FN[]),(ds,n,fn));
632:   PetscFunctionReturn(PETSC_SUCCESS);
633: }

635: static PetscErrorCode DSNEPGetFN_NEP(DS ds,PetscInt k,FN *fn)
636: {
637:   DS_NEP *ctx = (DS_NEP*)ds->data;

639:   PetscFunctionBegin;
640:   PetscCheck(k>=0 && k<ctx->nf,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"k must be between 0 and %" PetscInt_FMT,ctx->nf-1);
641:   *fn = ctx->f[k];
642:   PetscFunctionReturn(PETSC_SUCCESS);
643: }

645: /*@
646:    DSNEPGetFN - Gets the functions associated with the nonlinear DS.

648:    Not Collective

650:    Input Parameters:
651: +  ds - the direct solver context
652: -  k  - the index of the requested function (starting in 0)

654:    Output Parameter:
655: .  fn - the function

657:    Level: advanced

659: .seealso: DSNEPSetFN()
660: @*/
661: PetscErrorCode DSNEPGetFN(DS ds,PetscInt k,FN *fn)
662: {
663:   PetscFunctionBegin;
665:   PetscAssertPointer(fn,3);
666:   PetscUseMethod(ds,"DSNEPGetFN_C",(DS,PetscInt,FN*),(ds,k,fn));
667:   PetscFunctionReturn(PETSC_SUCCESS);
668: }

670: static PetscErrorCode DSNEPGetNumFN_NEP(DS ds,PetscInt *n)
671: {
672:   DS_NEP *ctx = (DS_NEP*)ds->data;

674:   PetscFunctionBegin;
675:   *n = ctx->nf;
676:   PetscFunctionReturn(PETSC_SUCCESS);
677: }

679: /*@
680:    DSNEPGetNumFN - Returns the number of functions stored internally by
681:    the DS.

683:    Not Collective

685:    Input Parameter:
686: .  ds - the direct solver context

688:    Output Parameters:
689: .  n - the number of functions passed in DSNEPSetFN()

691:    Level: advanced

693: .seealso: DSNEPSetFN()
694: @*/
695: PetscErrorCode DSNEPGetNumFN(DS ds,PetscInt *n)
696: {
697:   PetscFunctionBegin;
699:   PetscAssertPointer(n,2);
700:   PetscUseMethod(ds,"DSNEPGetNumFN_C",(DS,PetscInt*),(ds,n));
701:   PetscFunctionReturn(PETSC_SUCCESS);
702: }

704: static PetscErrorCode DSNEPSetMinimality_NEP(DS ds,PetscInt n)
705: {
706:   DS_NEP *ctx = (DS_NEP*)ds->data;

708:   PetscFunctionBegin;
709:   if (n == PETSC_DECIDE || n == PETSC_DEFAULT) ctx->max_mid = 4;
710:   else {
711:     PetscCheck(n>0,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"The minimality value must be > 0");
712:     ctx->max_mid = n;
713:   }
714:   PetscFunctionReturn(PETSC_SUCCESS);
715: }

717: /*@
718:    DSNEPSetMinimality - Sets the maximum minimality index used internally by
719:    the DSNEP.

721:    Logically Collective

723:    Input Parameters:
724: +  ds - the direct solver context
725: -  n  - the maximum minimality index

727:    Options Database Key:
728: .  -ds_nep_minimality <n> - sets the maximum minimality index

730:    Notes:
731:    The maximum minimality index is used only in the contour integral method,
732:    and is related to the highest momemts used in the method. The default
733:    value is 1, an larger value might give better accuracy in some cases, but
734:    at a higher cost.

736:    Level: advanced

738: .seealso: DSNEPGetMinimality()
739: @*/
740: PetscErrorCode DSNEPSetMinimality(DS ds,PetscInt n)
741: {
742:   PetscFunctionBegin;
745:   PetscTryMethod(ds,"DSNEPSetMinimality_C",(DS,PetscInt),(ds,n));
746:   PetscFunctionReturn(PETSC_SUCCESS);
747: }

749: static PetscErrorCode DSNEPGetMinimality_NEP(DS ds,PetscInt *n)
750: {
751:   DS_NEP *ctx = (DS_NEP*)ds->data;

753:   PetscFunctionBegin;
754:   *n = ctx->max_mid;
755:   PetscFunctionReturn(PETSC_SUCCESS);
756: }

758: /*@
759:    DSNEPGetMinimality - Returns the maximum minimality index used internally by
760:    the DSNEP.

762:    Not Collective

764:    Input Parameter:
765: .  ds - the direct solver context

767:    Output Parameters:
768: .  n - the maximum minimality index passed in DSNEPSetMinimality()

770:    Level: advanced

772: .seealso: DSNEPSetMinimality()
773: @*/
774: PetscErrorCode DSNEPGetMinimality(DS ds,PetscInt *n)
775: {
776:   PetscFunctionBegin;
778:   PetscAssertPointer(n,2);
779:   PetscUseMethod(ds,"DSNEPGetMinimality_C",(DS,PetscInt*),(ds,n));
780:   PetscFunctionReturn(PETSC_SUCCESS);
781: }

783: static PetscErrorCode DSNEPSetRefine_NEP(DS ds,PetscReal tol,PetscInt its)
784: {
785:   DS_NEP *ctx = (DS_NEP*)ds->data;

787:   PetscFunctionBegin;
788:   if (tol == (PetscReal)PETSC_DEFAULT) ctx->rtol = PETSC_MACHINE_EPSILON/PetscSqrtReal(PETSC_SQRT_MACHINE_EPSILON);
789:   else {
790:     PetscCheck(tol>0.0,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"The tolerance must be > 0");
791:     ctx->rtol = tol;
792:   }
793:   if (its == PETSC_DECIDE || its == PETSC_DEFAULT) ctx->Nit = 3;
794:   else {
795:     PetscCheck(its>=0,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"The number of iterations must be >= 0");
796:     ctx->Nit = its;
797:   }
798:   PetscFunctionReturn(PETSC_SUCCESS);
799: }

801: /*@
802:    DSNEPSetRefine - Sets the tolerance and the number of iterations of Newton iterative
803:    refinement for eigenpairs.

805:    Logically Collective

807:    Input Parameters:
808: +  ds  - the direct solver context
809: .  tol - the tolerance
810: -  its - the number of iterations

812:    Options Database Key:
813: +  -ds_nep_refine_tol <tol> - sets the tolerance
814: -  -ds_nep_refine_its <its> - sets the number of Newton iterations

816:    Notes:
817:    Iterative refinement of eigenpairs is currently used only in the contour
818:    integral method.

820:    Level: advanced

822: .seealso: DSNEPGetRefine()
823: @*/
824: PetscErrorCode DSNEPSetRefine(DS ds,PetscReal tol,PetscInt its)
825: {
826:   PetscFunctionBegin;
830:   PetscTryMethod(ds,"DSNEPSetRefine_C",(DS,PetscReal,PetscInt),(ds,tol,its));
831:   PetscFunctionReturn(PETSC_SUCCESS);
832: }

834: static PetscErrorCode DSNEPGetRefine_NEP(DS ds,PetscReal *tol,PetscInt *its)
835: {
836:   DS_NEP *ctx = (DS_NEP*)ds->data;

838:   PetscFunctionBegin;
839:   if (tol) *tol = ctx->rtol;
840:   if (its) *its = ctx->Nit;
841:   PetscFunctionReturn(PETSC_SUCCESS);
842: }

844: /*@
845:    DSNEPGetRefine - Returns the tolerance and the number of iterations of Newton iterative
846:    refinement for eigenpairs.

848:    Not Collective

850:    Input Parameter:
851: .  ds - the direct solver context

853:    Output Parameters:
854: +  tol - the tolerance
855: -  its - the number of iterations

857:    Level: advanced

859: .seealso: DSNEPSetRefine()
860: @*/
861: PetscErrorCode DSNEPGetRefine(DS ds,PetscReal *tol,PetscInt *its)
862: {
863:   PetscFunctionBegin;
865:   PetscUseMethod(ds,"DSNEPGetRefine_C",(DS,PetscReal*,PetscInt*),(ds,tol,its));
866:   PetscFunctionReturn(PETSC_SUCCESS);
867: }

869: static PetscErrorCode DSNEPSetIntegrationPoints_NEP(DS ds,PetscInt ip)
870: {
871:   DS_NEP         *ctx = (DS_NEP*)ds->data;

873:   PetscFunctionBegin;
874:   if (ip == PETSC_DECIDE || ip == PETSC_DEFAULT) ctx->nnod = 64;
875:   else {
876:     PetscCheck(ip>0,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"The number of integration points must be > 0");
877:     ctx->nnod = ip;
878:   }
879:   PetscCall(PetscLayoutDestroy(&ctx->map));  /* need to redistribute at next solve */
880:   PetscFunctionReturn(PETSC_SUCCESS);
881: }

883: /*@
884:    DSNEPSetIntegrationPoints - Sets the number of integration points to be
885:    used in the contour integral method.

887:    Logically Collective

889:    Input Parameters:
890: +  ds - the direct solver context
891: -  ip - the number of integration points

893:    Options Database Key:
894: .  -ds_nep_integration_points <ip> - sets the number of integration points

896:    Notes:
897:    This parameter is relevant only in the contour integral method.

899:    Level: advanced

901: .seealso: DSNEPGetIntegrationPoints()
902: @*/
903: PetscErrorCode DSNEPSetIntegrationPoints(DS ds,PetscInt ip)
904: {
905:   PetscFunctionBegin;
908:   PetscTryMethod(ds,"DSNEPSetIntegrationPoints_C",(DS,PetscInt),(ds,ip));
909:   PetscFunctionReturn(PETSC_SUCCESS);
910: }

912: static PetscErrorCode DSNEPGetIntegrationPoints_NEP(DS ds,PetscInt *ip)
913: {
914:   DS_NEP *ctx = (DS_NEP*)ds->data;

916:   PetscFunctionBegin;
917:   *ip = ctx->nnod;
918:   PetscFunctionReturn(PETSC_SUCCESS);
919: }

921: /*@
922:    DSNEPGetIntegrationPoints - Returns the number of integration points used
923:    in the contour integral method.

925:    Not Collective

927:    Input Parameter:
928: .  ds - the direct solver context

930:    Output Parameters:
931: .  ip - the number of integration points

933:    Level: advanced

935: .seealso: DSNEPSetIntegrationPoints()
936: @*/
937: PetscErrorCode DSNEPGetIntegrationPoints(DS ds,PetscInt *ip)
938: {
939:   PetscFunctionBegin;
941:   PetscAssertPointer(ip,2);
942:   PetscUseMethod(ds,"DSNEPGetIntegrationPoints_C",(DS,PetscInt*),(ds,ip));
943:   PetscFunctionReturn(PETSC_SUCCESS);
944: }

946: static PetscErrorCode DSNEPSetSamplingSize_NEP(DS ds,PetscInt p)
947: {
948:   DS_NEP *ctx = (DS_NEP*)ds->data;

950:   PetscFunctionBegin;
951:   if (p == PETSC_DECIDE || p == PETSC_DEFAULT) ctx->spls = 0;
952:   else {
953:     PetscCheck(p>=20,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"The sample size cannot be smaller than 20");
954:     ctx->spls = p;
955:   }
956:   PetscFunctionReturn(PETSC_SUCCESS);
957: }

959: /*@
960:    DSNEPSetSamplingSize - Sets the number of sampling columns to be
961:    used in the contour integral method.

963:    Logically Collective

965:    Input Parameters:
966: +  ds - the direct solver context
967: -  p - the number of columns for the sampling matrix

969:    Options Database Key:
970: .  -ds_nep_sampling_size <p> - sets the number of sampling columns

972:    Notes:
973:    This parameter is relevant only in the contour integral method.

975:    Level: advanced

977: .seealso: DSNEPGetSamplingSize()
978: @*/
979: PetscErrorCode DSNEPSetSamplingSize(DS ds,PetscInt p)
980: {
981:   PetscFunctionBegin;
984:   PetscTryMethod(ds,"DSNEPSetSamplingSize_C",(DS,PetscInt),(ds,p));
985:   PetscFunctionReturn(PETSC_SUCCESS);
986: }

988: static PetscErrorCode DSNEPGetSamplingSize_NEP(DS ds,PetscInt *p)
989: {
990:   DS_NEP *ctx = (DS_NEP*)ds->data;

992:   PetscFunctionBegin;
993:   *p = ctx->spls;
994:   PetscFunctionReturn(PETSC_SUCCESS);
995: }

997: /*@
998:    DSNEPGetSamplingSize - Returns the number of sampling columns used
999:    in the contour integral method.

1001:    Not Collective

1003:    Input Parameter:
1004: .  ds - the direct solver context

1006:    Output Parameters:
1007: .  p -  the number of columns for the sampling matrix

1009:    Level: advanced

1011: .seealso: DSNEPSetSamplingSize()
1012: @*/
1013: PetscErrorCode DSNEPGetSamplingSize(DS ds,PetscInt *p)
1014: {
1015:   PetscFunctionBegin;
1017:   PetscAssertPointer(p,2);
1018:   PetscUseMethod(ds,"DSNEPGetSamplingSize_C",(DS,PetscInt*),(ds,p));
1019:   PetscFunctionReturn(PETSC_SUCCESS);
1020: }

1022: static PetscErrorCode DSNEPSetComputeMatrixFunction_NEP(DS ds,PetscErrorCode (*fun)(DS,PetscScalar,PetscBool,DSMatType,void*),void *ctx)
1023: {
1024:   DS_NEP *dsctx = (DS_NEP*)ds->data;

1026:   PetscFunctionBegin;
1027:   dsctx->computematrix    = fun;
1028:   dsctx->computematrixctx = ctx;
1029:   PetscFunctionReturn(PETSC_SUCCESS);
1030: }

1032: /*@C
1033:    DSNEPSetComputeMatrixFunction - Sets a user-provided subroutine to compute
1034:    the matrices T(lambda) or T'(lambda).

1036:    Logically Collective

1038:    Input Parameters:
1039: +  ds  - the direct solver context
1040: .  fun - a pointer to the user function
1041: -  ctx - a context pointer (the last parameter to the user function)

1043:    Calling sequence of fun:
1044: $  PetscErrorCode fun(DS ds,PetscScalar lambda,PetscBool deriv,DSMatType mat,void *ctx)
1045: +   ds     - the direct solver object
1046: .   lambda - point where T(lambda) or T'(lambda) must be evaluated
1047: .   deriv  - if true compute T'(lambda), otherwise compute T(lambda)
1048: .   mat    - the DS matrix where the result must be stored
1049: -   ctx    - optional context, as set by DSNEPSetComputeMatrixFunction()

1051:    Note:
1052:    The result is computed as T(lambda) = sum_i E_i*f_i(lambda), and similarly
1053:    for the derivative.

1055:    Level: developer

1057: .seealso: DSNEPGetComputeMatrixFunction()
1058: @*/
1059: PetscErrorCode DSNEPSetComputeMatrixFunction(DS ds,PetscErrorCode (*fun)(DS ds,PetscScalar lambda,PetscBool deriv,DSMatType mat,void *ctx),void *ctx)
1060: {
1061:   PetscFunctionBegin;
1063:   PetscTryMethod(ds,"DSNEPSetComputeMatrixFunction_C",(DS,PetscErrorCode (*)(DS,PetscScalar,PetscBool,DSMatType,void*),void*),(ds,fun,ctx));
1064:   PetscFunctionReturn(PETSC_SUCCESS);
1065: }

1067: static PetscErrorCode DSNEPGetComputeMatrixFunction_NEP(DS ds,PetscErrorCode (**fun)(DS,PetscScalar,PetscBool,DSMatType,void*),void **ctx)
1068: {
1069:   DS_NEP *dsctx = (DS_NEP*)ds->data;

1071:   PetscFunctionBegin;
1072:   if (fun) *fun = dsctx->computematrix;
1073:   if (ctx) *ctx = dsctx->computematrixctx;
1074:   PetscFunctionReturn(PETSC_SUCCESS);
1075: }

1077: /*@C
1078:    DSNEPGetComputeMatrixFunction - Returns the user-provided callback function
1079:    set in DSNEPSetComputeMatrixFunction().

1081:    Not Collective

1083:    Input Parameter:
1084: .  ds  - the direct solver context

1086:    Output Parameters:
1087: +  fun - the pointer to the user function
1088: -  ctx - the context pointer

1090:    Level: developer

1092: .seealso: DSNEPSetComputeMatrixFunction()
1093: @*/
1094: PetscErrorCode DSNEPGetComputeMatrixFunction(DS ds,PetscErrorCode (**fun)(DS,PetscScalar,PetscBool,DSMatType,void*),void **ctx)
1095: {
1096:   PetscFunctionBegin;
1098:   PetscUseMethod(ds,"DSNEPGetComputeMatrixFunction_C",(DS,PetscErrorCode (**)(DS,PetscScalar,PetscBool,DSMatType,void*),void**),(ds,fun,ctx));
1099:   PetscFunctionReturn(PETSC_SUCCESS);
1100: }

1102: static PetscErrorCode DSNEPSetRG_NEP(DS ds,RG rg)
1103: {
1104:   DS_NEP         *dsctx = (DS_NEP*)ds->data;

1106:   PetscFunctionBegin;
1107:   PetscCall(PetscObjectReference((PetscObject)rg));
1108:   PetscCall(RGDestroy(&dsctx->rg));
1109:   dsctx->rg = rg;
1110:   PetscFunctionReturn(PETSC_SUCCESS);
1111: }

1113: /*@
1114:    DSNEPSetRG - Associates a region object to the DSNEP solver.

1116:    Collective

1118:    Input Parameters:
1119: +  ds  - the direct solver context
1120: -  rg  - the region context

1122:    Notes:
1123:    The region is used only in the contour integral method, and
1124:    should enclose the wanted eigenvalues.

1126:    Level: developer

1128: .seealso: DSNEPGetRG()
1129: @*/
1130: PetscErrorCode DSNEPSetRG(DS ds,RG rg)
1131: {
1132:   PetscFunctionBegin;
1134:   if (rg) {
1136:     PetscCheckSameComm(ds,1,rg,2);
1137:   }
1138:   PetscTryMethod(ds,"DSNEPSetRG_C",(DS,RG),(ds,rg));
1139:   PetscFunctionReturn(PETSC_SUCCESS);
1140: }

1142: static PetscErrorCode DSNEPGetRG_NEP(DS ds,RG *rg)
1143: {
1144:   DS_NEP         *ctx = (DS_NEP*)ds->data;

1146:   PetscFunctionBegin;
1147:   if (!ctx->rg) {
1148:     PetscCall(RGCreate(PetscObjectComm((PetscObject)ds),&ctx->rg));
1149:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)ctx->rg,(PetscObject)ds,1));
1150:     PetscCall(RGSetOptionsPrefix(ctx->rg,((PetscObject)ds)->prefix));
1151:     PetscCall(RGAppendOptionsPrefix(ctx->rg,"ds_nep_"));
1152:     PetscCall(PetscObjectSetOptions((PetscObject)ctx->rg,((PetscObject)ds)->options));
1153:   }
1154:   *rg = ctx->rg;
1155:   PetscFunctionReturn(PETSC_SUCCESS);
1156: }

1158: /*@
1159:    DSNEPGetRG - Obtain the region object associated to the DSNEP solver.

1161:    Collective

1163:    Input Parameter:
1164: .  ds  - the direct solver context

1166:    Output Parameter:
1167: .  rg  - the region context

1169:    Level: developer

1171: .seealso: DSNEPSetRG()
1172: @*/
1173: PetscErrorCode DSNEPGetRG(DS ds,RG *rg)
1174: {
1175:   PetscFunctionBegin;
1177:   PetscAssertPointer(rg,2);
1178:   PetscUseMethod(ds,"DSNEPGetRG_C",(DS,RG*),(ds,rg));
1179:   PetscFunctionReturn(PETSC_SUCCESS);
1180: }

1182: static PetscErrorCode DSSetFromOptions_NEP(DS ds,PetscOptionItems *PetscOptionsObject)
1183: {
1184:   PetscInt       k;
1185:   PetscBool      flg;
1186: #if defined(PETSC_USE_COMPLEX)
1187:   PetscReal      r;
1188:   PetscBool      flg1;
1189:   DS_NEP         *ctx = (DS_NEP*)ds->data;
1190: #endif

1192:   PetscFunctionBegin;
1193:   PetscOptionsHeadBegin(PetscOptionsObject,"DS NEP Options");

1195:     PetscCall(PetscOptionsInt("-ds_nep_minimality","Maximum minimality index","DSNEPSetMinimality",4,&k,&flg));
1196:     if (flg) PetscCall(DSNEPSetMinimality(ds,k));

1198:     PetscCall(PetscOptionsInt("-ds_nep_integration_points","Number of integration points","DSNEPSetIntegrationPoints",64,&k,&flg));
1199:     if (flg) PetscCall(DSNEPSetIntegrationPoints(ds,k));

1201:     PetscCall(PetscOptionsInt("-ds_nep_sampling_size","Number of sampling columns","DSNEPSetSamplingSize",0,&k,&flg));
1202:     if (flg) PetscCall(DSNEPSetSamplingSize(ds,k));

1204: #if defined(PETSC_USE_COMPLEX)
1205:     r = ctx->rtol;
1206:     PetscCall(PetscOptionsReal("-ds_nep_refine_tol","Refinement tolerance","DSNEPSetRefine",ctx->rtol,&r,&flg1));
1207:     k = ctx->Nit;
1208:     PetscCall(PetscOptionsInt("-ds_nep_refine_its","Number of iterative refinement iterations","DSNEPSetRefine",ctx->Nit,&k,&flg));
1209:     if (flg1||flg) PetscCall(DSNEPSetRefine(ds,r,k));

1211:     if (ds->method==1) {
1212:       if (!ctx->rg) PetscCall(DSNEPGetRG(ds,&ctx->rg));
1213:       PetscCall(RGSetFromOptions(ctx->rg));
1214:     }
1215: #endif

1217:   PetscOptionsHeadEnd();
1218:   PetscFunctionReturn(PETSC_SUCCESS);
1219: }

1221: static PetscErrorCode DSDestroy_NEP(DS ds)
1222: {
1223:   DS_NEP         *ctx = (DS_NEP*)ds->data;
1224:   PetscInt       i;

1226:   PetscFunctionBegin;
1227:   for (i=0;i<ctx->nf;i++) PetscCall(FNDestroy(&ctx->f[i]));
1228:   PetscCall(RGDestroy(&ctx->rg));
1229:   PetscCall(PetscLayoutDestroy(&ctx->map));
1230:   PetscCall(PetscFree(ds->data));
1231:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetFN_C",NULL));
1232:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetFN_C",NULL));
1233:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetNumFN_C",NULL));
1234:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetMinimality_C",NULL));
1235:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetMinimality_C",NULL));
1236:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetRefine_C",NULL));
1237:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetRefine_C",NULL));
1238:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetIntegrationPoints_C",NULL));
1239:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetIntegrationPoints_C",NULL));
1240:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetSamplingSize_C",NULL));
1241:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetSamplingSize_C",NULL));
1242:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetRG_C",NULL));
1243:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetRG_C",NULL));
1244:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetComputeMatrixFunction_C",NULL));
1245:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetComputeMatrixFunction_C",NULL));
1246:   PetscFunctionReturn(PETSC_SUCCESS);
1247: }

1249: static PetscErrorCode DSMatGetSize_NEP(DS ds,DSMatType t,PetscInt *rows,PetscInt *cols)
1250: {
1251:   DS_NEP *ctx = (DS_NEP*)ds->data;

1253:   PetscFunctionBegin;
1254:   *rows = ds->n;
1255:   if (t==DS_MAT_Q || t==DS_MAT_Z || t==DS_MAT_U || t==DS_MAT_V) *rows *= ctx->max_mid;
1256:   *cols = ds->n;
1257:   if (t==DS_MAT_Q || t==DS_MAT_Z || t==DS_MAT_U || t==DS_MAT_V || t==DS_MAT_X || t==DS_MAT_Y) *cols *= ctx->max_mid;
1258:   PetscFunctionReturn(PETSC_SUCCESS);
1259: }

1261: /*MC
1262:    DSNEP - Dense Nonlinear Eigenvalue Problem.

1264:    Level: beginner

1266:    Notes:
1267:    The problem is expressed as T(lambda)*x = 0, where T(lambda) is a
1268:    parameter-dependent matrix written as T(lambda) = sum_i E_i*f_i(lambda).
1269:    The eigenvalues lambda are the arguments returned by DSSolve()..

1271:    The coefficient matrices E_i are the extra matrices of the DS, and
1272:    the scalar functions f_i are passed via DSNEPSetFN(). Optionally, a
1273:    callback function to fill the E_i matrices can be set with
1274:    DSNEPSetComputeMatrixFunction().

1276:    Used DS matrices:
1277: +  DS_MAT_Ex - coefficient matrices of the split form of T(lambda)
1278: .  DS_MAT_A  - (workspace) T(lambda) evaluated at a given lambda (SLP only)
1279: .  DS_MAT_B  - (workspace) T'(lambda) evaluated at a given lambda (SLP only)
1280: .  DS_MAT_Q  - (workspace) left Hankel matrix (contour only)
1281: .  DS_MAT_Z  - (workspace) right Hankel matrix (contour only)
1282: .  DS_MAT_U  - (workspace) left singular vectors (contour only)
1283: .  DS_MAT_V  - (workspace) right singular vectors (contour only)
1284: -  DS_MAT_W  - (workspace) auxiliary matrix of size nxn

1286:    Implemented methods:
1287: +  0 - Successive Linear Problems (SLP), computes just one eigenpair
1288: -  1 - Contour integral, computes all eigenvalues inside a region

1290: .seealso: DSCreate(), DSSetType(), DSType, DSNEPSetFN(), DSNEPSetComputeMatrixFunction()
1291: M*/
1292: SLEPC_EXTERN PetscErrorCode DSCreate_NEP(DS ds)
1293: {
1294:   DS_NEP         *ctx;

1296:   PetscFunctionBegin;
1297:   PetscCall(PetscNew(&ctx));
1298:   ds->data = (void*)ctx;
1299:   ctx->max_mid = 4;
1300:   ctx->nnod    = 64;
1301:   ctx->Nit     = 3;
1302:   ctx->rtol    = PETSC_MACHINE_EPSILON/PetscSqrtReal(PETSC_SQRT_MACHINE_EPSILON);

1304:   ds->ops->allocate       = DSAllocate_NEP;
1305:   ds->ops->setfromoptions = DSSetFromOptions_NEP;
1306:   ds->ops->view           = DSView_NEP;
1307:   ds->ops->vectors        = DSVectors_NEP;
1308:   ds->ops->solve[0]       = DSSolve_NEP_SLP;
1309: #if defined(PETSC_USE_COMPLEX)
1310:   ds->ops->solve[1]       = DSSolve_NEP_Contour;
1311: #endif
1312:   ds->ops->sort           = DSSort_NEP;
1313: #if !defined(PETSC_HAVE_MPIUNI)
1314:   ds->ops->synchronize    = DSSynchronize_NEP;
1315: #endif
1316:   ds->ops->destroy        = DSDestroy_NEP;
1317:   ds->ops->matgetsize     = DSMatGetSize_NEP;

1319:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetFN_C",DSNEPSetFN_NEP));
1320:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetFN_C",DSNEPGetFN_NEP));
1321:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetNumFN_C",DSNEPGetNumFN_NEP));
1322:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetMinimality_C",DSNEPGetMinimality_NEP));
1323:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetMinimality_C",DSNEPSetMinimality_NEP));
1324:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetRefine_C",DSNEPGetRefine_NEP));
1325:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetRefine_C",DSNEPSetRefine_NEP));
1326:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetIntegrationPoints_C",DSNEPGetIntegrationPoints_NEP));
1327:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetIntegrationPoints_C",DSNEPSetIntegrationPoints_NEP));
1328:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetSamplingSize_C",DSNEPGetSamplingSize_NEP));
1329:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetSamplingSize_C",DSNEPSetSamplingSize_NEP));
1330:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetRG_C",DSNEPSetRG_NEP));
1331:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetRG_C",DSNEPGetRG_NEP));
1332:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPSetComputeMatrixFunction_C",DSNEPSetComputeMatrixFunction_NEP));
1333:   PetscCall(PetscObjectComposeFunction((PetscObject)ds,"DSNEPGetComputeMatrixFunction_C",DSNEPGetComputeMatrixFunction_NEP));
1334:   PetscFunctionReturn(PETSC_SUCCESS);
1335: }