Actual source code: gklanczos.c

slepc-3.22.1 2024-10-28
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    SLEPc singular value solver: "lanczos"

 13:    Method: Explicitly restarted Lanczos

 15:    Algorithm:

 17:        Golub-Kahan-Lanczos bidiagonalization with explicit restart.

 19:    References:

 21:        [1] G.H. Golub and W. Kahan, "Calculating the singular values
 22:            and pseudo-inverse of a matrix", SIAM J. Numer. Anal. Ser.
 23:            B 2:205-224, 1965.

 25:        [2] V. Hernandez, J.E. Roman, and A. Tomas, "A robust and
 26:            efficient parallel SVD solver based on restarted Lanczos
 27:            bidiagonalization", Elec. Trans. Numer. Anal. 31:68-85,
 28:            2008.
 29: */

 31: #include <slepc/private/svdimpl.h>

 33: typedef struct {
 34:   PetscBool oneside;
 35: } SVD_LANCZOS;

 37: static PetscErrorCode SVDSetUp_Lanczos(SVD svd)
 38: {
 39:   SVD_LANCZOS    *lanczos = (SVD_LANCZOS*)svd->data;
 40:   PetscInt       N;

 42:   PetscFunctionBegin;
 43:   SVDCheckStandard(svd);
 44:   SVDCheckDefinite(svd);
 45:   PetscCall(MatGetSize(svd->A,NULL,&N));
 46:   PetscCall(SVDSetDimensions_Default(svd));
 47:   PetscCheck(svd->ncv<=svd->nsv+svd->mpd,PetscObjectComm((PetscObject)svd),PETSC_ERR_USER_INPUT,"The value of ncv must not be larger than nev+mpd");
 48:   if (svd->max_it==PETSC_DETERMINE) svd->max_it = PetscMax(N/svd->ncv,100);
 49:   svd->leftbasis = PetscNot(lanczos->oneside);
 50:   PetscCall(SVDAllocateSolution(svd,1));
 51:   PetscCall(DSSetType(svd->ds,DSSVD));
 52:   PetscCall(DSSetCompact(svd->ds,PETSC_TRUE));
 53:   PetscCall(DSSetExtraRow(svd->ds,PETSC_TRUE));
 54:   PetscCall(DSAllocate(svd->ds,svd->ncv+1));
 55:   PetscFunctionReturn(PETSC_SUCCESS);
 56: }

 58: PetscErrorCode SVDTwoSideLanczos(SVD svd,PetscReal *alpha,PetscReal *beta,BV V,BV U,PetscInt k,PetscInt *n,PetscBool *breakdown)
 59: {
 60:   PetscInt       i;
 61:   Vec            u,v;
 62:   PetscBool      lindep=PETSC_FALSE;

 64:   PetscFunctionBegin;
 65:   PetscCall(BVGetColumn(svd->V,k,&v));
 66:   PetscCall(BVGetColumn(svd->U,k,&u));
 67:   PetscCall(MatMult(svd->A,v,u));
 68:   PetscCall(BVRestoreColumn(svd->V,k,&v));
 69:   PetscCall(BVRestoreColumn(svd->U,k,&u));
 70:   PetscCall(BVOrthonormalizeColumn(svd->U,k,PETSC_FALSE,alpha+k,&lindep));
 71:   if (PetscUnlikely(lindep)) {
 72:     *n = k;
 73:     if (breakdown) *breakdown = lindep;
 74:     PetscFunctionReturn(PETSC_SUCCESS);
 75:   }

 77:   for (i=k+1;i<*n;i++) {
 78:     PetscCall(BVGetColumn(svd->V,i,&v));
 79:     PetscCall(BVGetColumn(svd->U,i-1,&u));
 80:     PetscCall(MatMult(svd->AT,u,v));
 81:     PetscCall(BVRestoreColumn(svd->V,i,&v));
 82:     PetscCall(BVRestoreColumn(svd->U,i-1,&u));
 83:     PetscCall(BVOrthonormalizeColumn(svd->V,i,PETSC_FALSE,beta+i-1,&lindep));
 84:     if (PetscUnlikely(lindep)) {
 85:       *n = i;
 86:       break;
 87:     }
 88:     PetscCall(BVGetColumn(svd->V,i,&v));
 89:     PetscCall(BVGetColumn(svd->U,i,&u));
 90:     PetscCall(MatMult(svd->A,v,u));
 91:     PetscCall(BVRestoreColumn(svd->V,i,&v));
 92:     PetscCall(BVRestoreColumn(svd->U,i,&u));
 93:     PetscCall(BVOrthonormalizeColumn(svd->U,i,PETSC_FALSE,alpha+i,&lindep));
 94:     if (PetscUnlikely(lindep)) {
 95:       *n = i;
 96:       break;
 97:     }
 98:   }

100:   if (!lindep) {
101:     PetscCall(BVGetColumn(svd->V,*n,&v));
102:     PetscCall(BVGetColumn(svd->U,*n-1,&u));
103:     PetscCall(MatMult(svd->AT,u,v));
104:     PetscCall(BVRestoreColumn(svd->V,*n,&v));
105:     PetscCall(BVRestoreColumn(svd->U,*n-1,&u));
106:     PetscCall(BVOrthogonalizeColumn(svd->V,*n,NULL,beta+*n-1,&lindep));
107:   }
108:   if (breakdown) *breakdown = lindep;
109:   PetscFunctionReturn(PETSC_SUCCESS);
110: }

112: static PetscErrorCode SVDOneSideLanczos(SVD svd,PetscReal *alpha,PetscReal *beta,BV V,Vec u,Vec u_1,PetscInt k,PetscInt n,PetscScalar* work)
113: {
114:   PetscInt       i,bvl,bvk;
115:   PetscReal      a,b;
116:   Vec            z,temp;

118:   PetscFunctionBegin;
119:   PetscCall(BVGetActiveColumns(V,&bvl,&bvk));
120:   PetscCall(BVGetColumn(V,k,&z));
121:   PetscCall(MatMult(svd->A,z,u));
122:   PetscCall(BVRestoreColumn(V,k,&z));

124:   for (i=k+1;i<n;i++) {
125:     PetscCall(BVGetColumn(V,i,&z));
126:     PetscCall(MatMult(svd->AT,u,z));
127:     PetscCall(BVRestoreColumn(V,i,&z));
128:     PetscCall(VecNormBegin(u,NORM_2,&a));
129:     PetscCall(BVSetActiveColumns(V,0,i));
130:     PetscCall(BVDotColumnBegin(V,i,work));
131:     PetscCall(VecNormEnd(u,NORM_2,&a));
132:     PetscCall(BVDotColumnEnd(V,i,work));
133:     PetscCall(VecScale(u,1.0/a));
134:     PetscCall(BVMultColumn(V,-1.0/a,1.0/a,i,work));

136:     /* h = V^* z, z = z - V h  */
137:     PetscCall(BVDotColumn(V,i,work));
138:     PetscCall(BVMultColumn(V,-1.0,1.0,i,work));
139:     PetscCall(BVNormColumn(V,i,NORM_2,&b));
140:     PetscCheck(PetscAbsReal(b)>10*PETSC_MACHINE_EPSILON,PetscObjectComm((PetscObject)svd),PETSC_ERR_PLIB,"Recurrence generated a zero vector; use a two-sided variant");
141:     PetscCall(BVScaleColumn(V,i,1.0/b));

143:     PetscCall(BVGetColumn(V,i,&z));
144:     PetscCall(MatMult(svd->A,z,u_1));
145:     PetscCall(BVRestoreColumn(V,i,&z));
146:     PetscCall(VecAXPY(u_1,-b,u));
147:     alpha[i-1] = a;
148:     beta[i-1] = b;
149:     temp = u;
150:     u = u_1;
151:     u_1 = temp;
152:   }

154:   PetscCall(BVGetColumn(V,n,&z));
155:   PetscCall(MatMult(svd->AT,u,z));
156:   PetscCall(BVRestoreColumn(V,n,&z));
157:   PetscCall(VecNormBegin(u,NORM_2,&a));
158:   PetscCall(BVDotColumnBegin(V,n,work));
159:   PetscCall(VecNormEnd(u,NORM_2,&a));
160:   PetscCall(BVDotColumnEnd(V,n,work));
161:   PetscCall(VecScale(u,1.0/a));
162:   PetscCall(BVMultColumn(V,-1.0/a,1.0/a,n,work));

164:   /* h = V^* z, z = z - V h  */
165:   PetscCall(BVDotColumn(V,n,work));
166:   PetscCall(BVMultColumn(V,-1.0,1.0,n,work));
167:   PetscCall(BVNormColumn(V,i,NORM_2,&b));

169:   alpha[n-1] = a;
170:   beta[n-1] = b;
171:   PetscCall(BVSetActiveColumns(V,bvl,bvk));
172:   PetscFunctionReturn(PETSC_SUCCESS);
173: }

175: /*
176:    SVDKrylovConvergence - Implements the loop that checks for convergence
177:    in Krylov methods.

179:    Input Parameters:
180:      svd     - the solver; some error estimates are updated in svd->errest
181:      getall  - whether all residuals must be computed
182:      kini    - initial value of k (the loop variable)
183:      nits    - number of iterations of the loop
184:      normr   - norm of triangular factor of qr([A;B]), used only in GSVD

186:    Output Parameter:
187:      kout  - the first index where the convergence test failed
188: */
189: PetscErrorCode SVDKrylovConvergence(SVD svd,PetscBool getall,PetscInt kini,PetscInt nits,PetscReal normr,PetscInt *kout)
190: {
191:   PetscInt       k,marker,ld;
192:   PetscReal      *alpha,*beta,*betah,resnorm;
193:   PetscBool      extra;

195:   PetscFunctionBegin;
196:   if (PetscUnlikely(svd->conv == SVD_CONV_MAXIT && svd->its >= svd->max_it)) *kout = svd->nsv;
197:   else {
198:     PetscCall(DSGetLeadingDimension(svd->ds,&ld));
199:     PetscCall(DSGetExtraRow(svd->ds,&extra));
200:     PetscCheck(extra,PetscObjectComm((PetscObject)svd),PETSC_ERR_SUP,"Only implemented for DS with extra row");
201:     marker = -1;
202:     if (svd->trackall) getall = PETSC_TRUE;
203:     PetscCall(DSGetArrayReal(svd->ds,DS_MAT_T,&alpha));
204:     beta = alpha + ld;
205:     betah = alpha + 2*ld;
206:     for (k=kini;k<kini+nits;k++) {
207:       if (svd->isgeneralized) resnorm = SlepcAbs(beta[k],betah[k])*normr;
208:       else resnorm = PetscAbsReal(beta[k]);
209:       PetscCall((*svd->converged)(svd,svd->sigma[k],resnorm,&svd->errest[k],svd->convergedctx));
210:       if (marker==-1 && svd->errest[k] >= svd->tol) marker = k;
211:       if (marker!=-1 && !getall) break;
212:     }
213:     PetscCall(DSRestoreArrayReal(svd->ds,DS_MAT_T,&alpha));
214:     if (marker!=-1) k = marker;
215:     *kout = k;
216:   }
217:   PetscFunctionReturn(PETSC_SUCCESS);
218: }

220: static PetscErrorCode SVDSolve_Lanczos(SVD svd)
221: {
222:   SVD_LANCZOS    *lanczos = (SVD_LANCZOS*)svd->data;
223:   PetscReal      *alpha,*beta;
224:   PetscScalar    *swork,*w,*P;
225:   PetscInt       i,k,j,nv,ld;
226:   Vec            u=NULL,u_1=NULL;
227:   Mat            U,V;

229:   PetscFunctionBegin;
230:   /* allocate working space */
231:   PetscCall(DSGetLeadingDimension(svd->ds,&ld));
232:   PetscCall(PetscMalloc2(ld,&w,svd->ncv,&swork));

234:   if (lanczos->oneside) {
235:     PetscCall(MatCreateVecs(svd->A,NULL,&u));
236:     PetscCall(MatCreateVecs(svd->A,NULL,&u_1));
237:   }

239:   /* normalize start vector */
240:   if (!svd->nini) {
241:     PetscCall(BVSetRandomColumn(svd->V,0));
242:     PetscCall(BVOrthonormalizeColumn(svd->V,0,PETSC_TRUE,NULL,NULL));
243:   }

245:   while (svd->reason == SVD_CONVERGED_ITERATING) {
246:     svd->its++;

248:     /* inner loop */
249:     nv = PetscMin(svd->nconv+svd->mpd,svd->ncv);
250:     PetscCall(DSGetArrayReal(svd->ds,DS_MAT_T,&alpha));
251:     beta = alpha + ld;
252:     if (lanczos->oneside) PetscCall(SVDOneSideLanczos(svd,alpha,beta,svd->V,u,u_1,svd->nconv,nv,swork));
253:     else {
254:       PetscCall(SVDTwoSideLanczos(svd,alpha,beta,svd->V,svd->U,svd->nconv,&nv,NULL));
255:       PetscCall(BVSetActiveColumns(svd->U,svd->nconv,nv));
256:     }
257:     PetscCall(DSRestoreArrayReal(svd->ds,DS_MAT_T,&alpha));
258:     PetscCall(BVSetActiveColumns(svd->V,svd->nconv,nv));

260:     /* compute SVD of bidiagonal matrix */
261:     PetscCall(DSSetDimensions(svd->ds,nv,svd->nconv,0));
262:     PetscCall(DSSVDSetDimensions(svd->ds,nv));
263:     PetscCall(DSSetState(svd->ds,DS_STATE_INTERMEDIATE));
264:     PetscCall(DSSolve(svd->ds,w,NULL));
265:     PetscCall(DSSort(svd->ds,w,NULL,NULL,NULL,NULL));
266:     PetscCall(DSUpdateExtraRow(svd->ds));
267:     PetscCall(DSSynchronize(svd->ds,w,NULL));
268:     for (i=svd->nconv;i<nv;i++) svd->sigma[i] = PetscRealPart(w[i]);

270:     /* check convergence */
271:     PetscCall(SVDKrylovConvergence(svd,PETSC_FALSE,svd->nconv,nv-svd->nconv,1.0,&k));
272:     PetscCall((*svd->stopping)(svd,svd->its,svd->max_it,k,svd->nsv,&svd->reason,svd->stoppingctx));

274:     /* compute restart vector */
275:     if (svd->reason == SVD_CONVERGED_ITERATING) {
276:       if (k<nv) {
277:         PetscCall(DSGetArray(svd->ds,DS_MAT_V,&P));
278:         for (j=svd->nconv;j<nv;j++) swork[j-svd->nconv] = PetscConj(P[j+k*ld]);
279:         PetscCall(DSRestoreArray(svd->ds,DS_MAT_V,&P));
280:         PetscCall(BVMultColumn(svd->V,1.0,0.0,nv,swork));
281:       } else {
282:         /* all approximations have converged, generate a new initial vector */
283:         PetscCall(BVSetRandomColumn(svd->V,nv));
284:         PetscCall(BVOrthonormalizeColumn(svd->V,nv,PETSC_FALSE,NULL,NULL));
285:       }
286:     }

288:     /* compute converged singular vectors */
289:     PetscCall(DSGetMat(svd->ds,DS_MAT_V,&V));
290:     PetscCall(BVMultInPlace(svd->V,V,svd->nconv,k));
291:     PetscCall(DSRestoreMat(svd->ds,DS_MAT_V,&V));
292:     if (!lanczos->oneside) {
293:       PetscCall(DSGetMat(svd->ds,DS_MAT_U,&U));
294:       PetscCall(BVMultInPlace(svd->U,U,svd->nconv,k));
295:       PetscCall(DSRestoreMat(svd->ds,DS_MAT_U,&U));
296:     }

298:     /* copy restart vector from the last column */
299:     if (svd->reason == SVD_CONVERGED_ITERATING) PetscCall(BVCopyColumn(svd->V,nv,k));

301:     svd->nconv = k;
302:     PetscCall(SVDMonitor(svd,svd->its,svd->nconv,svd->sigma,svd->errest,nv));
303:   }

305:   /* free working space */
306:   PetscCall(VecDestroy(&u));
307:   PetscCall(VecDestroy(&u_1));
308:   PetscCall(PetscFree2(w,swork));
309:   PetscFunctionReturn(PETSC_SUCCESS);
310: }

312: static PetscErrorCode SVDSetFromOptions_Lanczos(SVD svd,PetscOptionItems *PetscOptionsObject)
313: {
314:   PetscBool      set,val;
315:   SVD_LANCZOS    *lanczos = (SVD_LANCZOS*)svd->data;

317:   PetscFunctionBegin;
318:   PetscOptionsHeadBegin(PetscOptionsObject,"SVD Lanczos Options");

320:     PetscCall(PetscOptionsBool("-svd_lanczos_oneside","Use one-side reorthogonalization","SVDLanczosSetOneSide",lanczos->oneside,&val,&set));
321:     if (set) PetscCall(SVDLanczosSetOneSide(svd,val));

323:   PetscOptionsHeadEnd();
324:   PetscFunctionReturn(PETSC_SUCCESS);
325: }

327: static PetscErrorCode SVDLanczosSetOneSide_Lanczos(SVD svd,PetscBool oneside)
328: {
329:   SVD_LANCZOS *lanczos = (SVD_LANCZOS*)svd->data;

331:   PetscFunctionBegin;
332:   if (lanczos->oneside != oneside) {
333:     lanczos->oneside = oneside;
334:     svd->state = SVD_STATE_INITIAL;
335:   }
336:   PetscFunctionReturn(PETSC_SUCCESS);
337: }

339: /*@
340:    SVDLanczosSetOneSide - Indicate if the variant of the Lanczos method
341:    to be used is one-sided or two-sided.

343:    Logically Collective

345:    Input Parameters:
346: +  svd     - singular value solver
347: -  oneside - boolean flag indicating if the method is one-sided or not

349:    Options Database Key:
350: .  -svd_lanczos_oneside <boolean> - Indicates the boolean flag

352:    Note:
353:    By default, a two-sided variant is selected, which is sometimes slightly
354:    more robust. However, the one-sided variant is faster because it avoids
355:    the orthogonalization associated to left singular vectors. It also saves
356:    the memory required for storing such vectors.

358:    Level: advanced

360: .seealso: SVDTRLanczosSetOneSide()
361: @*/
362: PetscErrorCode SVDLanczosSetOneSide(SVD svd,PetscBool oneside)
363: {
364:   PetscFunctionBegin;
367:   PetscTryMethod(svd,"SVDLanczosSetOneSide_C",(SVD,PetscBool),(svd,oneside));
368:   PetscFunctionReturn(PETSC_SUCCESS);
369: }

371: static PetscErrorCode SVDLanczosGetOneSide_Lanczos(SVD svd,PetscBool *oneside)
372: {
373:   SVD_LANCZOS *lanczos = (SVD_LANCZOS*)svd->data;

375:   PetscFunctionBegin;
376:   *oneside = lanczos->oneside;
377:   PetscFunctionReturn(PETSC_SUCCESS);
378: }

380: /*@
381:    SVDLanczosGetOneSide - Gets if the variant of the Lanczos method
382:    to be used is one-sided or two-sided.

384:    Not Collective

386:    Input Parameters:
387: .  svd     - singular value solver

389:    Output Parameters:
390: .  oneside - boolean flag indicating if the method is one-sided or not

392:    Level: advanced

394: .seealso: SVDLanczosSetOneSide()
395: @*/
396: PetscErrorCode SVDLanczosGetOneSide(SVD svd,PetscBool *oneside)
397: {
398:   PetscFunctionBegin;
400:   PetscAssertPointer(oneside,2);
401:   PetscUseMethod(svd,"SVDLanczosGetOneSide_C",(SVD,PetscBool*),(svd,oneside));
402:   PetscFunctionReturn(PETSC_SUCCESS);
403: }

405: static PetscErrorCode SVDDestroy_Lanczos(SVD svd)
406: {
407:   PetscFunctionBegin;
408:   PetscCall(PetscFree(svd->data));
409:   PetscCall(PetscObjectComposeFunction((PetscObject)svd,"SVDLanczosSetOneSide_C",NULL));
410:   PetscCall(PetscObjectComposeFunction((PetscObject)svd,"SVDLanczosGetOneSide_C",NULL));
411:   PetscFunctionReturn(PETSC_SUCCESS);
412: }

414: static PetscErrorCode SVDView_Lanczos(SVD svd,PetscViewer viewer)
415: {
416:   SVD_LANCZOS    *lanczos = (SVD_LANCZOS*)svd->data;
417:   PetscBool      isascii;

419:   PetscFunctionBegin;
420:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
421:   if (isascii) PetscCall(PetscViewerASCIIPrintf(viewer,"  %s-sided reorthogonalization\n",lanczos->oneside? "one": "two"));
422:   PetscFunctionReturn(PETSC_SUCCESS);
423: }

425: SLEPC_EXTERN PetscErrorCode SVDCreate_Lanczos(SVD svd)
426: {
427:   SVD_LANCZOS    *ctx;

429:   PetscFunctionBegin;
430:   PetscCall(PetscNew(&ctx));
431:   svd->data = (void*)ctx;

433:   svd->ops->setup          = SVDSetUp_Lanczos;
434:   svd->ops->solve          = SVDSolve_Lanczos;
435:   svd->ops->destroy        = SVDDestroy_Lanczos;
436:   svd->ops->setfromoptions = SVDSetFromOptions_Lanczos;
437:   svd->ops->view           = SVDView_Lanczos;
438:   svd->ops->computevectors = SVDComputeVectors_Left;
439:   PetscCall(PetscObjectComposeFunction((PetscObject)svd,"SVDLanczosSetOneSide_C",SVDLanczosSetOneSide_Lanczos));
440:   PetscCall(PetscObjectComposeFunction((PetscObject)svd,"SVDLanczosGetOneSide_C",SVDLanczosGetOneSide_Lanczos));
441:   PetscFunctionReturn(PETSC_SUCCESS);
442: }