Actual source code: qarnoldi.c

slepc-3.20.1 2023-11-27
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    SLEPc quadratic eigensolver: "qarnoldi"

 13:    Method: Q-Arnoldi

 15:    Algorithm:

 17:        Quadratic Arnoldi with Krylov-Schur type restart.

 19:    References:

 21:        [1] K. Meerbergen, "The Quadratic Arnoldi method for the solution
 22:            of the quadratic eigenvalue problem", SIAM J. Matrix Anal.
 23:            Appl. 30(4):1462-1482, 2008.
 24: */

 26: #include <slepc/private/pepimpl.h>
 27: #include <petscblaslapack.h>

 29: typedef struct {
 30:   PetscReal keep;         /* restart parameter */
 31:   PetscBool lock;         /* locking/non-locking variant */
 32: } PEP_QARNOLDI;

 34: static PetscErrorCode PEPSetUp_QArnoldi(PEP pep)
 35: {
 36:   PEP_QARNOLDI   *ctx = (PEP_QARNOLDI*)pep->data;
 37:   PetscBool      flg;

 39:   PetscFunctionBegin;
 40:   PEPCheckQuadratic(pep);
 41:   PEPCheckShiftSinvert(pep);
 42:   PetscCall(PEPSetDimensions_Default(pep,pep->nev,&pep->ncv,&pep->mpd));
 43:   PetscCheck(ctx->lock || pep->mpd>=pep->ncv,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"Should not use mpd parameter in non-locking variant");
 44:   if (pep->max_it==PETSC_DEFAULT) pep->max_it = PetscMax(100,4*pep->n/pep->ncv);
 45:   if (!pep->which) PetscCall(PEPSetWhichEigenpairs_Default(pep));
 46:   PetscCheck(pep->which!=PEP_ALL,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"This solver does not support computing all eigenvalues");

 48:   PetscCall(STGetTransform(pep->st,&flg));
 49:   PetscCheck(flg,PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"Solver requires the ST transformation flag set, see STSetTransform()");

 51:   /* set default extraction */
 52:   if (!pep->extract) pep->extract = PEP_EXTRACT_NONE;
 53:   PEPCheckUnsupported(pep,PEP_FEATURE_NONMONOMIAL | PEP_FEATURE_EXTRACT);

 55:   if (!ctx->keep) ctx->keep = 0.5;

 57:   PetscCall(PEPAllocateSolution(pep,0));
 58:   PetscCall(PEPSetWorkVecs(pep,4));

 60:   PetscCall(DSSetType(pep->ds,DSNHEP));
 61:   PetscCall(DSSetExtraRow(pep->ds,PETSC_TRUE));
 62:   PetscCall(DSAllocate(pep->ds,pep->ncv+1));

 64:   PetscFunctionReturn(PETSC_SUCCESS);
 65: }

 67: static PetscErrorCode PEPExtractVectors_QArnoldi(PEP pep)
 68: {
 69:   PetscInt       k=pep->nconv;
 70:   Mat            X,X0;

 72:   PetscFunctionBegin;
 73:   if (pep->nconv==0) PetscFunctionReturn(PETSC_SUCCESS);
 74:   PetscCall(DSVectors(pep->ds,DS_MAT_X,NULL,NULL));

 76:   /* update vectors V = V*X */
 77:   PetscCall(DSGetMat(pep->ds,DS_MAT_X,&X));
 78:   PetscCall(MatDenseGetSubMatrix(X,0,k,0,k,&X0));
 79:   PetscCall(BVMultInPlace(pep->V,X0,0,k));
 80:   PetscCall(MatDenseRestoreSubMatrix(X,&X0));
 81:   PetscCall(DSRestoreMat(pep->ds,DS_MAT_X,&X));
 82:   PetscFunctionReturn(PETSC_SUCCESS);
 83: }

 85: /*
 86:   Compute a step of Classical Gram-Schmidt orthogonalization
 87: */
 88: static PetscErrorCode PEPQArnoldiCGS(PEP pep,PetscScalar *H,PetscBLASInt ldh,PetscScalar *h,PetscBLASInt j,BV V,Vec t,Vec v,Vec w,PetscReal *onorm,PetscReal *norm,PetscScalar *work)
 89: {
 90:   PetscBLASInt   ione = 1,j_1 = j+1;
 91:   PetscReal      x,y;
 92:   PetscScalar    dot,one = 1.0,zero = 0.0;

 94:   PetscFunctionBegin;
 95:   /* compute norm of v and w */
 96:   if (onorm) {
 97:     PetscCall(VecNorm(v,NORM_2,&x));
 98:     PetscCall(VecNorm(w,NORM_2,&y));
 99:     *onorm = SlepcAbs(x,y);
100:   }

102:   /* orthogonalize: compute h */
103:   PetscCall(BVDotVec(V,v,h));
104:   PetscCall(BVDotVec(V,w,work));
105:   if (j>0) PetscCallBLAS("BLASgemv",BLASgemv_("C",&j_1,&j,&one,H,&ldh,work,&ione,&one,h,&ione));
106:   PetscCall(VecDot(w,t,&dot));
107:   h[j] += dot;

109:   /* orthogonalize: update v and w */
110:   PetscCall(BVMultVec(V,-1.0,1.0,v,h));
111:   if (j>0) {
112:     PetscCallBLAS("BLASgemv",BLASgemv_("N",&j_1,&j,&one,H,&ldh,h,&ione,&zero,work,&ione));
113:     PetscCall(BVMultVec(V,-1.0,1.0,w,work));
114:   }
115:   PetscCall(VecAXPY(w,-h[j],t));

117:   /* compute norm of v and w */
118:   if (norm) {
119:     PetscCall(VecNorm(v,NORM_2,&x));
120:     PetscCall(VecNorm(w,NORM_2,&y));
121:     *norm = SlepcAbs(x,y);
122:   }
123:   PetscFunctionReturn(PETSC_SUCCESS);
124: }

126: /*
127:   Compute a run of Q-Arnoldi iterations
128: */
129: static PetscErrorCode PEPQArnoldi(PEP pep,Mat A,PetscInt k,PetscInt *M,Vec v,Vec w,PetscReal *beta,PetscBool *breakdown,PetscScalar *work)
130: {
131:   PetscInt           i,j,l,m = *M,ldh;
132:   Vec                t = pep->work[2],u = pep->work[3];
133:   BVOrthogRefineType refinement;
134:   PetscReal          norm=0.0,onorm,eta;
135:   PetscScalar        *H,*c = work + m;

137:   PetscFunctionBegin;
138:   *beta = 0.0;
139:   PetscCall(MatDenseGetArray(A,&H));
140:   PetscCall(MatDenseGetLDA(A,&ldh));
141:   PetscCall(BVGetOrthogonalization(pep->V,NULL,&refinement,&eta,NULL));
142:   PetscCall(BVInsertVec(pep->V,k,v));
143:   for (j=k;j<m;j++) {
144:     /* apply operator */
145:     PetscCall(VecCopy(w,t));
146:     if (pep->Dr) PetscCall(VecPointwiseMult(v,v,pep->Dr));
147:     PetscCall(STMatMult(pep->st,0,v,u));
148:     PetscCall(VecCopy(t,v));
149:     if (pep->Dr) PetscCall(VecPointwiseMult(t,t,pep->Dr));
150:     PetscCall(STMatMult(pep->st,1,t,w));
151:     PetscCall(VecAXPY(u,pep->sfactor,w));
152:     PetscCall(STMatSolve(pep->st,u,w));
153:     PetscCall(VecScale(w,-1.0/(pep->sfactor*pep->sfactor)));
154:     if (pep->Dr) PetscCall(VecPointwiseDivide(w,w,pep->Dr));
155:     PetscCall(VecCopy(v,t));
156:     PetscCall(BVSetActiveColumns(pep->V,0,j+1));

158:     /* orthogonalize */
159:     switch (refinement) {
160:       case BV_ORTHOG_REFINE_NEVER:
161:         PetscCall(PEPQArnoldiCGS(pep,H,ldh,H+ldh*j,j,pep->V,t,v,w,NULL,&norm,work));
162:         *breakdown = PETSC_FALSE;
163:         break;
164:       case BV_ORTHOG_REFINE_ALWAYS:
165:         PetscCall(PEPQArnoldiCGS(pep,H,ldh,H+ldh*j,j,pep->V,t,v,w,NULL,NULL,work));
166:         PetscCall(PEPQArnoldiCGS(pep,H,ldh,c,j,pep->V,t,v,w,&onorm,&norm,work));
167:         for (i=0;i<=j;i++) H[ldh*j+i] += c[i];
168:         if (norm < eta * onorm) *breakdown = PETSC_TRUE;
169:         else *breakdown = PETSC_FALSE;
170:         break;
171:       case BV_ORTHOG_REFINE_IFNEEDED:
172:         PetscCall(PEPQArnoldiCGS(pep,H,ldh,H+ldh*j,j,pep->V,t,v,w,&onorm,&norm,work));
173:         /* ||q|| < eta ||h|| */
174:         l = 1;
175:         while (l<3 && norm < eta * onorm) {
176:           l++;
177:           onorm = norm;
178:           PetscCall(PEPQArnoldiCGS(pep,H,ldh,c,j,pep->V,t,v,w,NULL,&norm,work));
179:           for (i=0;i<=j;i++) H[ldh*j+i] += c[i];
180:         }
181:         if (norm < eta * onorm) *breakdown = PETSC_TRUE;
182:         else *breakdown = PETSC_FALSE;
183:         break;
184:     }
185:     PetscCall(VecScale(v,1.0/norm));
186:     PetscCall(VecScale(w,1.0/norm));

188:     H[j+1+ldh*j] = norm;
189:     if (j<m-1) PetscCall(BVInsertVec(pep->V,j+1,v));
190:   }
191:   *beta = norm;
192:   PetscCall(MatDenseRestoreArray(A,&H));
193:   PetscFunctionReturn(PETSC_SUCCESS);
194: }

196: static PetscErrorCode PEPSolve_QArnoldi(PEP pep)
197: {
198:   PEP_QARNOLDI   *ctx = (PEP_QARNOLDI*)pep->data;
199:   PetscInt       j,k,l,lwork,nv,nconv;
200:   Vec            v=pep->work[0],w=pep->work[1];
201:   Mat            Q,S;
202:   PetscScalar    *work;
203:   PetscReal      beta,norm,x,y;
204:   PetscBool      breakdown=PETSC_FALSE,sinv;

206:   PetscFunctionBegin;
207:   lwork = 7*pep->ncv;
208:   PetscCall(PetscMalloc1(lwork,&work));
209:   PetscCall(PetscObjectTypeCompare((PetscObject)pep->st,STSINVERT,&sinv));
210:   PetscCall(RGPushScale(pep->rg,sinv?pep->sfactor:1.0/pep->sfactor));
211:   PetscCall(STScaleShift(pep->st,sinv?pep->sfactor:1.0/pep->sfactor));

213:   /* Get the starting Arnoldi vector */
214:   for (j=0;j<2;j++) {
215:     if (j>=pep->nini) PetscCall(BVSetRandomColumn(pep->V,j));
216:   }
217:   PetscCall(BVCopyVec(pep->V,0,v));
218:   PetscCall(BVCopyVec(pep->V,1,w));
219:   PetscCall(VecNorm(v,NORM_2,&x));
220:   PetscCall(VecNorm(w,NORM_2,&y));
221:   norm = SlepcAbs(x,y);
222:   PetscCall(VecScale(v,1.0/norm));
223:   PetscCall(VecScale(w,1.0/norm));

225:   /* clean projected matrix (including the extra-arrow) */
226:   PetscCall(DSSetDimensions(pep->ds,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT));
227:   PetscCall(DSGetMat(pep->ds,DS_MAT_A,&S));
228:   PetscCall(MatZeroEntries(S));
229:   PetscCall(DSRestoreMat(pep->ds,DS_MAT_A,&S));

231:    /* Restart loop */
232:   l = 0;
233:   while (pep->reason == PEP_CONVERGED_ITERATING) {
234:     pep->its++;

236:     /* Compute an nv-step Arnoldi factorization */
237:     nv = PetscMin(pep->nconv+pep->mpd,pep->ncv);
238:     PetscCall(DSGetMat(pep->ds,DS_MAT_A,&S));
239:     PetscCall(PEPQArnoldi(pep,S,pep->nconv+l,&nv,v,w,&beta,&breakdown,work));
240:     PetscCall(DSRestoreMat(pep->ds,DS_MAT_A,&S));
241:     PetscCall(DSSetDimensions(pep->ds,nv,pep->nconv,pep->nconv+l));
242:     PetscCall(DSSetState(pep->ds,l?DS_STATE_RAW:DS_STATE_INTERMEDIATE));
243:     PetscCall(BVSetActiveColumns(pep->V,pep->nconv,nv));

245:     /* Solve projected problem */
246:     PetscCall(DSSolve(pep->ds,pep->eigr,pep->eigi));
247:     PetscCall(DSSort(pep->ds,pep->eigr,pep->eigi,NULL,NULL,NULL));
248:     PetscCall(DSUpdateExtraRow(pep->ds));
249:     PetscCall(DSSynchronize(pep->ds,pep->eigr,pep->eigi));

251:     /* Check convergence */
252:     PetscCall(PEPKrylovConvergence(pep,PETSC_FALSE,pep->nconv,nv-pep->nconv,beta,&k));
253:     PetscCall((*pep->stopping)(pep,pep->its,pep->max_it,k,pep->nev,&pep->reason,pep->stoppingctx));
254:     nconv = k;

256:     /* Update l */
257:     if (pep->reason != PEP_CONVERGED_ITERATING || breakdown) l = 0;
258:     else {
259:       l = PetscMax(1,(PetscInt)((nv-k)*ctx->keep));
260:       PetscCall(DSGetTruncateSize(pep->ds,k,nv,&l));
261:     }
262:     if (!ctx->lock && l>0) { l += k; k = 0; } /* non-locking variant: reset no. of converged pairs */
263:     if (l) PetscCall(PetscInfo(pep,"Preparing to restart keeping l=%" PetscInt_FMT " vectors\n",l));

265:     if (pep->reason == PEP_CONVERGED_ITERATING) {
266:       if (PetscUnlikely(breakdown)) {
267:         /* Stop if breakdown */
268:         PetscCall(PetscInfo(pep,"Breakdown Quadratic Arnoldi method (it=%" PetscInt_FMT " norm=%g)\n",pep->its,(double)beta));
269:         pep->reason = PEP_DIVERGED_BREAKDOWN;
270:       } else {
271:         /* Prepare the Rayleigh quotient for restart */
272:         PetscCall(DSTruncate(pep->ds,k+l,PETSC_FALSE));
273:       }
274:     }
275:     /* Update the corresponding vectors V(:,idx) = V*Q(:,idx) */
276:     PetscCall(DSGetMat(pep->ds,DS_MAT_Q,&Q));
277:     PetscCall(BVMultInPlace(pep->V,Q,pep->nconv,k+l));
278:     PetscCall(DSRestoreMat(pep->ds,DS_MAT_Q,&Q));

280:     pep->nconv = k;
281:     PetscCall(PEPMonitor(pep,pep->its,nconv,pep->eigr,pep->eigi,pep->errest,nv));
282:   }
283:   PetscCall(BVSetActiveColumns(pep->V,0,pep->nconv));
284:   for (j=0;j<pep->nconv;j++) {
285:     pep->eigr[j] *= pep->sfactor;
286:     pep->eigi[j] *= pep->sfactor;
287:   }

289:   PetscCall(STScaleShift(pep->st,sinv?1.0/pep->sfactor:pep->sfactor));
290:   PetscCall(RGPopScale(pep->rg));

292:   PetscCall(DSTruncate(pep->ds,pep->nconv,PETSC_TRUE));
293:   PetscCall(PetscFree(work));
294:   PetscFunctionReturn(PETSC_SUCCESS);
295: }

297: static PetscErrorCode PEPQArnoldiSetRestart_QArnoldi(PEP pep,PetscReal keep)
298: {
299:   PEP_QARNOLDI *ctx = (PEP_QARNOLDI*)pep->data;

301:   PetscFunctionBegin;
302:   if (keep==(PetscReal)PETSC_DEFAULT) ctx->keep = 0.5;
303:   else {
304:     PetscCheck(keep>=0.1 && keep<=0.9,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"The keep argument must be in the range [0.1,0.9]");
305:     ctx->keep = keep;
306:   }
307:   PetscFunctionReturn(PETSC_SUCCESS);
308: }

310: /*@
311:    PEPQArnoldiSetRestart - Sets the restart parameter for the Q-Arnoldi
312:    method, in particular the proportion of basis vectors that must be kept
313:    after restart.

315:    Logically Collective

317:    Input Parameters:
318: +  pep  - the eigenproblem solver context
319: -  keep - the number of vectors to be kept at restart

321:    Options Database Key:
322: .  -pep_qarnoldi_restart - Sets the restart parameter

324:    Notes:
325:    Allowed values are in the range [0.1,0.9]. The default is 0.5.

327:    Level: advanced

329: .seealso: PEPQArnoldiGetRestart()
330: @*/
331: PetscErrorCode PEPQArnoldiSetRestart(PEP pep,PetscReal keep)
332: {
333:   PetscFunctionBegin;
336:   PetscTryMethod(pep,"PEPQArnoldiSetRestart_C",(PEP,PetscReal),(pep,keep));
337:   PetscFunctionReturn(PETSC_SUCCESS);
338: }

340: static PetscErrorCode PEPQArnoldiGetRestart_QArnoldi(PEP pep,PetscReal *keep)
341: {
342:   PEP_QARNOLDI *ctx = (PEP_QARNOLDI*)pep->data;

344:   PetscFunctionBegin;
345:   *keep = ctx->keep;
346:   PetscFunctionReturn(PETSC_SUCCESS);
347: }

349: /*@
350:    PEPQArnoldiGetRestart - Gets the restart parameter used in the Q-Arnoldi method.

352:    Not Collective

354:    Input Parameter:
355: .  pep - the eigenproblem solver context

357:    Output Parameter:
358: .  keep - the restart parameter

360:    Level: advanced

362: .seealso: PEPQArnoldiSetRestart()
363: @*/
364: PetscErrorCode PEPQArnoldiGetRestart(PEP pep,PetscReal *keep)
365: {
366:   PetscFunctionBegin;
368:   PetscAssertPointer(keep,2);
369:   PetscUseMethod(pep,"PEPQArnoldiGetRestart_C",(PEP,PetscReal*),(pep,keep));
370:   PetscFunctionReturn(PETSC_SUCCESS);
371: }

373: static PetscErrorCode PEPQArnoldiSetLocking_QArnoldi(PEP pep,PetscBool lock)
374: {
375:   PEP_QARNOLDI *ctx = (PEP_QARNOLDI*)pep->data;

377:   PetscFunctionBegin;
378:   ctx->lock = lock;
379:   PetscFunctionReturn(PETSC_SUCCESS);
380: }

382: /*@
383:    PEPQArnoldiSetLocking - Choose between locking and non-locking variants of
384:    the Q-Arnoldi method.

386:    Logically Collective

388:    Input Parameters:
389: +  pep  - the eigenproblem solver context
390: -  lock - true if the locking variant must be selected

392:    Options Database Key:
393: .  -pep_qarnoldi_locking - Sets the locking flag

395:    Notes:
396:    The default is to lock converged eigenpairs when the method restarts.
397:    This behaviour can be changed so that all directions are kept in the
398:    working subspace even if already converged to working accuracy (the
399:    non-locking variant).

401:    Level: advanced

403: .seealso: PEPQArnoldiGetLocking()
404: @*/
405: PetscErrorCode PEPQArnoldiSetLocking(PEP pep,PetscBool lock)
406: {
407:   PetscFunctionBegin;
410:   PetscTryMethod(pep,"PEPQArnoldiSetLocking_C",(PEP,PetscBool),(pep,lock));
411:   PetscFunctionReturn(PETSC_SUCCESS);
412: }

414: static PetscErrorCode PEPQArnoldiGetLocking_QArnoldi(PEP pep,PetscBool *lock)
415: {
416:   PEP_QARNOLDI *ctx = (PEP_QARNOLDI*)pep->data;

418:   PetscFunctionBegin;
419:   *lock = ctx->lock;
420:   PetscFunctionReturn(PETSC_SUCCESS);
421: }

423: /*@
424:    PEPQArnoldiGetLocking - Gets the locking flag used in the Q-Arnoldi method.

426:    Not Collective

428:    Input Parameter:
429: .  pep - the eigenproblem solver context

431:    Output Parameter:
432: .  lock - the locking flag

434:    Level: advanced

436: .seealso: PEPQArnoldiSetLocking()
437: @*/
438: PetscErrorCode PEPQArnoldiGetLocking(PEP pep,PetscBool *lock)
439: {
440:   PetscFunctionBegin;
442:   PetscAssertPointer(lock,2);
443:   PetscUseMethod(pep,"PEPQArnoldiGetLocking_C",(PEP,PetscBool*),(pep,lock));
444:   PetscFunctionReturn(PETSC_SUCCESS);
445: }

447: static PetscErrorCode PEPSetFromOptions_QArnoldi(PEP pep,PetscOptionItems *PetscOptionsObject)
448: {
449:   PetscBool      flg,lock;
450:   PetscReal      keep;

452:   PetscFunctionBegin;
453:   PetscOptionsHeadBegin(PetscOptionsObject,"PEP Q-Arnoldi Options");

455:     PetscCall(PetscOptionsReal("-pep_qarnoldi_restart","Proportion of vectors kept after restart","PEPQArnoldiSetRestart",0.5,&keep,&flg));
456:     if (flg) PetscCall(PEPQArnoldiSetRestart(pep,keep));

458:     PetscCall(PetscOptionsBool("-pep_qarnoldi_locking","Choose between locking and non-locking variants","PEPQArnoldiSetLocking",PETSC_FALSE,&lock,&flg));
459:     if (flg) PetscCall(PEPQArnoldiSetLocking(pep,lock));

461:   PetscOptionsHeadEnd();
462:   PetscFunctionReturn(PETSC_SUCCESS);
463: }

465: static PetscErrorCode PEPView_QArnoldi(PEP pep,PetscViewer viewer)
466: {
467:   PEP_QARNOLDI   *ctx = (PEP_QARNOLDI*)pep->data;
468:   PetscBool      isascii;

470:   PetscFunctionBegin;
471:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
472:   if (isascii) {
473:     PetscCall(PetscViewerASCIIPrintf(viewer,"  %d%% of basis vectors kept after restart\n",(int)(100*ctx->keep)));
474:     PetscCall(PetscViewerASCIIPrintf(viewer,"  using the %slocking variant\n",ctx->lock?"":"non-"));
475:   }
476:   PetscFunctionReturn(PETSC_SUCCESS);
477: }

479: static PetscErrorCode PEPDestroy_QArnoldi(PEP pep)
480: {
481:   PetscFunctionBegin;
482:   PetscCall(PetscFree(pep->data));
483:   PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPQArnoldiSetRestart_C",NULL));
484:   PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPQArnoldiGetRestart_C",NULL));
485:   PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPQArnoldiSetLocking_C",NULL));
486:   PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPQArnoldiGetLocking_C",NULL));
487:   PetscFunctionReturn(PETSC_SUCCESS);
488: }

490: SLEPC_EXTERN PetscErrorCode PEPCreate_QArnoldi(PEP pep)
491: {
492:   PEP_QARNOLDI   *ctx;

494:   PetscFunctionBegin;
495:   PetscCall(PetscNew(&ctx));
496:   pep->data = (void*)ctx;

498:   pep->lineariz = PETSC_TRUE;
499:   ctx->lock     = PETSC_TRUE;

501:   pep->ops->solve          = PEPSolve_QArnoldi;
502:   pep->ops->setup          = PEPSetUp_QArnoldi;
503:   pep->ops->setfromoptions = PEPSetFromOptions_QArnoldi;
504:   pep->ops->destroy        = PEPDestroy_QArnoldi;
505:   pep->ops->view           = PEPView_QArnoldi;
506:   pep->ops->backtransform  = PEPBackTransform_Default;
507:   pep->ops->computevectors = PEPComputeVectors_Default;
508:   pep->ops->extractvectors = PEPExtractVectors_QArnoldi;
509:   pep->ops->setdefaultst   = PEPSetDefaultST_Transform;

511:   PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPQArnoldiSetRestart_C",PEPQArnoldiSetRestart_QArnoldi));
512:   PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPQArnoldiGetRestart_C",PEPQArnoldiGetRestart_QArnoldi));
513:   PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPQArnoldiSetLocking_C",PEPQArnoldiSetLocking_QArnoldi));
514:   PetscCall(PetscObjectComposeFunction((PetscObject)pep,"PEPQArnoldiGetLocking_C",PEPQArnoldiGetLocking_QArnoldi));
515:   PetscFunctionReturn(PETSC_SUCCESS);
516: }