Actual source code: bvorthog.c

  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    BV orthogonalization routines
 12: */

 14: #include <slepc/private/bvimpl.h>

 16: /*
 17:    BV_NormVecOrColumn - Compute the 2-norm of the working vector, irrespective of
 18:    whether it is in a column or not
 19: */
 20: static inline PetscErrorCode BV_NormVecOrColumn(BV bv,PetscInt j,Vec v,PetscReal *nrm)
 21: {
 22:   PetscFunctionBegin;
 23:   if (v) PetscCall(BVNormVec(bv,v,NORM_2,nrm));
 24:   else PetscCall(BVNormColumn(bv,j,NORM_2,nrm));
 25:   PetscFunctionReturn(PETSC_SUCCESS);
 26: }

 28: /*
 29:    BVDotColumnInc - Same as BVDotColumn() but also including column j, which
 30:    is multiplied by itself
 31: */
 32: static inline PetscErrorCode BVDotColumnInc(BV X,PetscInt j,PetscScalar *q)
 33: {
 34:   PetscInt       ksave;
 35:   Vec            y;

 37:   PetscFunctionBegin;
 38:   PetscCall(PetscLogEventBegin(BV_DotVec,X,0,0,0));
 39:   ksave = X->k;
 40:   X->k = j+1;
 41:   PetscCall(BVGetColumn(X,j,&y));
 42:   PetscUseTypeMethod(X,dotvec,y,q);
 43:   PetscCall(BVRestoreColumn(X,j,&y));
 44:   X->k = ksave;
 45:   PetscCall(PetscLogEventEnd(BV_DotVec,X,0,0,0));
 46:   PetscFunctionReturn(PETSC_SUCCESS);
 47: }

 49: /*
 50:    BVOrthogonalizeMGS1 - Compute one step of Modified Gram-Schmidt
 51: */
 52: static PetscErrorCode BVOrthogonalizeMGS1(BV bv,PetscInt j,Vec v,PetscBool *which,PetscScalar *h,PetscScalar *c,PetscReal *onrm,PetscReal *nrm)
 53: {
 54:   PetscInt          i;
 55:   PetscScalar       dot;
 56:   PetscBool         indef=bv->indef;
 57:   Vec               vi,z,w=v;
 58:   const PetscScalar *omega;

 60:   PetscFunctionBegin;
 61:   if (!v) PetscCall(BVGetColumn(bv,j,&w));
 62:   if (onrm) PetscCall(BVNormVec(bv,w,NORM_2,onrm));
 63:   z = w;
 64:   if (indef) PetscCall(VecGetArrayRead(bv->omega,&omega));
 65:   for (i=-bv->nc;i<j;i++) {
 66:     if (which && i>=0 && !which[i]) continue;
 67:     PetscCall(BVGetColumn(bv,i,&vi));
 68:     /* h_i = (v, v_i) */
 69:     if (bv->matrix) {
 70:       PetscCall(BV_IPMatMult(bv,w));
 71:       z = bv->Bx;
 72:     }
 73:     PetscCall(VecDot(z,vi,&dot));
 74:     /* v <- v - h_i v_i */
 75:     PetscCall(BV_SetValue(bv,i,0,c,dot));
 76:     if (indef) dot /= PetscRealPart(omega[bv->nc+i]);
 77:     PetscCall(VecAXPY(w,-dot,vi));
 78:     PetscCall(BVRestoreColumn(bv,i,&vi));
 79:   }
 80:   if (nrm) PetscCall(BVNormVec(bv,w,NORM_2,nrm));
 81:   if (!v) PetscCall(BVRestoreColumn(bv,j,&w));
 82:   PetscCall(BV_AddCoefficients(bv,j,h,c));
 83:   if (indef) PetscCall(VecRestoreArrayRead(bv->omega,&omega));
 84:   PetscFunctionReturn(PETSC_SUCCESS);
 85: }

 87: /*
 88:    BVOrthogonalizeCGS1 - Compute |v'| (estimated), |v| and one step of CGS with
 89:    only one global synchronization
 90: */
 91: static PetscErrorCode BVOrthogonalizeCGS1(BV bv,PetscInt j,Vec v,PetscBool *which,PetscScalar *h,PetscScalar *c,PetscReal *onorm,PetscReal *norm)
 92: {
 93:   PetscReal      sum,beta;

 95:   PetscFunctionBegin;
 96:   /* h = W^* v ; alpha = (v, v) */
 97:   bv->k = j;
 98:   if (onorm || norm) {
 99:     if (!v) {
100:       PetscCall(BVDotColumnInc(bv,j,c));
101:       PetscCall(BV_SquareRoot(bv,j,c,&beta));
102:     } else {
103:       PetscCall(BVDotVec(bv,v,c));
104:       PetscCall(BVNormVec(bv,v,NORM_2,&beta));
105:     }
106:   } else {
107:     if (!v) PetscCall(BVDotColumn(bv,j,c));
108:     else PetscCall(BVDotVec(bv,v,c));
109:   }

111:   /* q = v - V h */
112:   if (PetscUnlikely(bv->indef)) PetscCall(BV_ApplySignature(bv,j,c,PETSC_TRUE));
113:   if (!v) PetscCall(BVMultColumn(bv,-1.0,1.0,j,c));
114:   else PetscCall(BVMultVec(bv,-1.0,1.0,v,c));
115:   if (PetscUnlikely(bv->indef)) PetscCall(BV_ApplySignature(bv,j,c,PETSC_FALSE));

117:   /* compute |v| */
118:   if (onorm) *onorm = beta;

120:   if (norm) {
121:     if (PetscUnlikely(bv->indef)) PetscCall(BV_NormVecOrColumn(bv,j,v,norm));
122:     else {
123:       /* estimate |v'| from |v| */
124:       PetscCall(BV_SquareSum(bv,j,c,&sum));
125:       *norm = beta*beta-sum;
126:       if (PetscUnlikely(*norm <= 0.0)) PetscCall(BV_NormVecOrColumn(bv,j,v,norm));
127:       else *norm = PetscSqrtReal(*norm);
128:     }
129:   }
130:   PetscCall(BV_AddCoefficients(bv,j,h,c));
131:   PetscFunctionReturn(PETSC_SUCCESS);
132: }

134: #define BVOrthogonalizeGS1(a,b,c,d,e,f,g,h) (bv->ops->gramschmidt?(*bv->ops->gramschmidt):(mgs?BVOrthogonalizeMGS1:BVOrthogonalizeCGS1))(a,b,c,d,e,f,g,h)

136: /*
137:    BVOrthogonalizeGS - Orthogonalize with (classical or modified) Gram-Schmidt

139:    j      - the index of the column to orthogonalize (cannot use both j and v)
140:    v      - the vector to orthogonalize (cannot use both j and v)
141:    which  - logical array indicating selected columns (only used in MGS)
142:    norm   - (optional) norm of the vector after being orthogonalized
143:    lindep - (optional) flag indicating possible linear dependence
144: */
145: static PetscErrorCode BVOrthogonalizeGS(BV bv,PetscInt j,Vec v,PetscBool *which,PetscReal *norm,PetscBool *lindep)
146: {
147:   PetscScalar    *h,*c,*omega;
148:   PetscReal      onrm,nrm;
149:   PetscInt       k,l;
150:   PetscBool      mgs,dolindep,signature;

152:   PetscFunctionBegin;
153:   if (v) {
154:     k = bv->k;
155:     h = bv->h;
156:     c = bv->c;
157:   } else {
158:     k = j;
159:     h = NULL;
160:     c = NULL;
161:   }

163:   mgs = (bv->orthog_type==BV_ORTHOG_MGS)? PETSC_TRUE: PETSC_FALSE;

165:   /* if indefinite inner product, skip the computation of lindep */
166:   if (bv->indef && lindep) *lindep = PETSC_FALSE;
167:   dolindep = (!bv->indef && lindep)? PETSC_TRUE: PETSC_FALSE;

169:   /* if indefinite and we are orthogonalizing a column, the norm must always be computed */
170:   signature = (bv->indef && !v)? PETSC_TRUE: PETSC_FALSE;

172:   PetscCall(BV_CleanCoefficients(bv,k,h));

174:   switch (bv->orthog_ref) {

176:   case BV_ORTHOG_REFINE_IFNEEDED:
177:     PetscCall(BVOrthogonalizeGS1(bv,k,v,which,h,c,&onrm,&nrm));
178:     /* repeat if ||q|| < eta ||h|| */
179:     l = 1;
180:     while (l<3 && nrm && PetscAbsReal(nrm) < bv->orthog_eta*PetscAbsReal(onrm)) {
181:       l++;
182:       if (mgs||bv->indef) onrm = nrm;
183:       PetscCall(BVOrthogonalizeGS1(bv,k,v,which,h,c,(mgs||bv->indef)?NULL:&onrm,&nrm));
184:     }
185:     /* linear dependence check: criterion not satisfied in the last iteration */
186:     if (dolindep) *lindep = PetscNot(nrm && PetscAbsReal(nrm) >= bv->orthog_eta*PetscAbsReal(onrm));
187:     break;

189:   case BV_ORTHOG_REFINE_NEVER:
190:     PetscCall(BVOrthogonalizeGS1(bv,k,v,which,h,c,NULL,NULL));
191:     /* compute ||v|| */
192:     if (norm || dolindep || signature) PetscCall(BV_NormVecOrColumn(bv,k,v,&nrm));
193:     /* linear dependence check: just test for exactly zero norm */
194:     if (dolindep) *lindep = PetscNot(nrm);
195:     break;

197:   case BV_ORTHOG_REFINE_ALWAYS:
198:     PetscCall(BVOrthogonalizeGS1(bv,k,v,which,h,c,NULL,NULL));
199:     PetscCall(BVOrthogonalizeGS1(bv,k,v,which,h,c,dolindep?&onrm:NULL,(norm||dolindep||signature)?&nrm:NULL));
200:     /* linear dependence check: criterion not satisfied in the second iteration */
201:     if (dolindep) *lindep = PetscNot(nrm && PetscAbsReal(nrm) >= bv->orthog_eta*PetscAbsReal(onrm));
202:     break;
203:   }
204:   if (signature) {
205:     PetscCall(VecGetArray(bv->omega,&omega));
206:     omega[bv->nc+k] = (nrm<0.0)? -1.0: 1.0;
207:     PetscCall(VecRestoreArray(bv->omega,&omega));
208:   }
209:   if (norm) {
210:     *norm = nrm;
211:     if (!v) { /* store norm value next to the orthogonalization coefficients */
212:       if (dolindep && *lindep) PetscCall(BV_SetValue(bv,k,k,h,0.0));
213:       else PetscCall(BV_SetValue(bv,k,k,h,nrm));
214:     }
215:   }
216:   PetscFunctionReturn(PETSC_SUCCESS);
217: }

219: /*@
220:    BVOrthogonalizeVec - Orthogonalize a given vector with respect to all
221:    active columns.

223:    Collective

225:    Input Parameters:
226: +  bv     - the basis vectors context
227: -  v      - the vector

229:    Output Parameters:
230: +  H      - (optional) coefficients computed during orthogonalization
231: .  norm   - (optional) norm of the vector after being orthogonalized
232: -  lindep - (optional) flag indicating that refinement did not improve the quality
233:             of orthogonalization

235:    Notes:
236:    This function is equivalent to `BVOrthogonalizeColumn()` but orthogonalizes
237:    a vector as an argument rather than taking one of the `BV` columns. The
238:    vector is orthogonalized against all active columns (`k`) and the constraints.
239:    If `H` is given, it must have enough space to store `k-l` coefficients, where `l`
240:    is the number of leading columns.

242:    In the case of an indefinite inner product, the `lindep` parameter is not
243:    computed (set to false).

245:    Level: advanced

247: .seealso: [](sec:bv), `BVOrthogonalizeColumn()`, `BVSetOrthogonalization()`, `BVSetActiveColumns()`, `BVGetNumConstraints()`
248: @*/
249: PetscErrorCode BVOrthogonalizeVec(BV bv,Vec v,PetscScalar H[],PetscReal *norm,PetscBool *lindep)
250: {
251:   PetscInt       ksave,lsave;

253:   PetscFunctionBegin;
257:   BVCheckSizes(bv,1);
259:   PetscCheckSameComm(bv,1,v,2);

261:   PetscCall(PetscLogEventBegin(BV_OrthogonalizeVec,bv,0,0,0));
262:   ksave = bv->k;
263:   lsave = bv->l;
264:   bv->l = -bv->nc;  /* must also orthogonalize against constraints and leading columns */
265:   PetscCall(BV_AllocateCoeffs(bv));
266:   PetscCall(BV_AllocateSignature(bv));
267:   PetscCall(BVOrthogonalizeGS(bv,0,v,NULL,norm,lindep));
268:   bv->k = ksave;
269:   bv->l = lsave;
270:   if (H) PetscCall(BV_StoreCoefficients(bv,bv->k,bv->h,H));
271:   PetscCall(PetscLogEventEnd(BV_OrthogonalizeVec,bv,0,0,0));
272:   PetscFunctionReturn(PETSC_SUCCESS);
273: }

275: /*@
276:    BVOrthogonalizeColumn - Orthogonalize one of the column vectors with respect to
277:    the previous ones.

279:    Collective

281:    Input Parameters:
282: +  bv     - the basis vectors context
283: -  j      - index of column to be orthogonalized

285:    Output Parameters:
286: +  H      - (optional) coefficients computed during orthogonalization
287: .  norm   - (optional) norm of the vector after being orthogonalized
288: -  lindep - (optional) flag indicating that refinement did not improve the quality
289:             of orthogonalization

291:    Notes:
292:    This function applies an orthogonal projector to project vector $v_j$ onto
293:    the orthogonal complement of the span of the columns $v_{0:j-1}$.
294:    The columns $v_{0:j-1}$ are assumed to be mutually orthonormal.

296:    Leading columns $v_{0:\ell-1}$ also participate in the orthogonalization, as well
297:    as the constraints. If `H` is given, it must have enough space to store
298:    $j-\ell+1$ coefficients (the last coefficient will contain the value `norm`, unless
299:    the `norm` argument is `NULL`).

301:    If a non-standard inner product has been specified with `BVSetMatrix()`,
302:    then the vector is B-orthogonalized, using the non-standard inner product
303:    defined by matrix $B$. The output vector satisfies $v_j^*Bv_{0:j-1} = 0$.

305:    This routine does not normalize the resulting vector, see `BVOrthonormalizeColumn()`.

307:    In the case of an indefinite inner product, the `lindep` parameter is not
308:    computed (set to false).

310:    Level: advanced

312: .seealso: [](sec:bv), `BVSetOrthogonalization()`, `BVSetMatrix()`, `BVSetActiveColumns()`, `BVOrthogonalize()`, `BVOrthogonalizeVec()`, `BVGetNumConstraints()`, `BVOrthonormalizeColumn()`
313: @*/
314: PetscErrorCode BVOrthogonalizeColumn(BV bv,PetscInt j,PetscScalar H[],PetscReal *norm,PetscBool *lindep)
315: {
316:   PetscInt       ksave,lsave;

318:   PetscFunctionBegin;
322:   BVCheckSizes(bv,1);
323:   PetscCheck(j>=0,PetscObjectComm((PetscObject)bv),PETSC_ERR_ARG_OUTOFRANGE,"Index j must be non-negative");
324:   PetscCheck(j<bv->m,PetscObjectComm((PetscObject)bv),PETSC_ERR_ARG_OUTOFRANGE,"Index j=%" PetscInt_FMT " but BV only has %" PetscInt_FMT " columns",j,bv->m);

326:   PetscCall(PetscLogEventBegin(BV_OrthogonalizeVec,bv,0,0,0));
327:   ksave = bv->k;
328:   lsave = bv->l;
329:   bv->l = -bv->nc;  /* must also orthogonalize against constraints and leading columns */
330:   if (!bv->buffer) PetscCall(BVGetBufferVec(bv,&bv->buffer));
331:   PetscCall(BV_AllocateSignature(bv));
332:   PetscCall(BVOrthogonalizeGS(bv,j,NULL,NULL,norm,lindep));
333:   bv->k = ksave;
334:   bv->l = lsave;
335:   if (H) PetscCall(BV_StoreCoefficients(bv,j,NULL,H));
336:   PetscCall(PetscLogEventEnd(BV_OrthogonalizeVec,bv,0,0,0));
337:   PetscCall(PetscObjectStateIncrease((PetscObject)bv));
338:   PetscFunctionReturn(PETSC_SUCCESS);
339: }

341: /*@
342:    BVOrthonormalizeColumn - Orthonormalize one of the column vectors with respect to
343:    the previous ones.

345:    Collective

347:    Input Parameters:
348: +  bv      - the basis vectors context
349: .  j       - index of column to be orthonormalized
350: -  replace - whether it is allowed to set the vector randomly

352:    Output Parameters:
353: +  norm    - (optional) norm of the vector after orthogonalization and before normalization
354: -  lindep  - (optional) flag indicating that linear dependence was determined during
355:              orthogonalization

357:    Notes:
358:    This is equivalent to a call to `BVOrthogonalizeColumn()` followed by a
359:    call to `BVScaleColumn()` with the reciprocal of the norm.

361:    This function first orthogonalizes vector $v_j$ with respect to $v_{0:j-1}$.
362:    A byproduct of this computation is `norm`, the norm of the vector after
363:    orthogonalization. Secondly, it scales the vector with `1/norm`, so that the
364:    resulting vector has unit norm.

366:    If after orthogonalization the vector $v_j$ is exactly zero, it cannot be normalized
367:    because `norm=0`. In that case, it could be left as zero or replaced by a random
368:    vector that is then orthonormalized. The latter is achieved by setting the
369:    argument `replace` to `PETSC_TRUE`. The vector will be replaced by a random vector also
370:    if `lindep` was set to `PETSC_TRUE`, even if the norm is not exactly zero.

372:    If the vector has been replaced by a random vector, the output arguments `norm` and
373:    `lindep` will be set according to the orthogonalization of this new vector.

375:    Level: advanced

377: .seealso: [](sec:bv), `BVOrthogonalizeColumn()`, `BVScaleColumn()`
378: @*/
379: PetscErrorCode BVOrthonormalizeColumn(BV bv,PetscInt j,PetscBool replace,PetscReal *norm,PetscBool *lindep)
380: {
381:   PetscScalar    alpha;
382:   PetscReal      nrm;
383:   PetscInt       ksave,lsave;
384:   PetscBool      lndep;

386:   PetscFunctionBegin;
390:   BVCheckSizes(bv,1);
391:   PetscCheck(j>=0,PetscObjectComm((PetscObject)bv),PETSC_ERR_ARG_OUTOFRANGE,"Index j must be non-negative");
392:   PetscCheck(j<bv->m,PetscObjectComm((PetscObject)bv),PETSC_ERR_ARG_OUTOFRANGE,"Index j=%" PetscInt_FMT " but BV only has %" PetscInt_FMT " columns",j,bv->m);

394:   /* orthogonalize */
395:   PetscCall(PetscLogEventBegin(BV_OrthogonalizeVec,bv,0,0,0));
396:   ksave = bv->k;
397:   lsave = bv->l;
398:   bv->l = -bv->nc;  /* must also orthogonalize against constraints and leading columns */
399:   if (!bv->buffer) PetscCall(BVGetBufferVec(bv,&bv->buffer));
400:   PetscCall(BV_AllocateSignature(bv));
401:   PetscCall(BVOrthogonalizeGS(bv,j,NULL,NULL,&nrm,&lndep));
402:   if (replace && (nrm==0.0 || lndep)) {
403:     PetscCall(PetscInfo(bv,"Vector was linearly dependent, generating a new random vector\n"));
404:     PetscCall(BVSetRandomColumn(bv,j));
405:     PetscCall(BVOrthogonalizeGS(bv,j,NULL,NULL,&nrm,&lndep));
406:     if (nrm==0.0 || lndep) {  /* yet another attempt */
407:       PetscCall(BVSetRandomColumn(bv,j));
408:       PetscCall(BVOrthogonalizeGS(bv,j,NULL,NULL,&nrm,&lndep));
409:     }
410:   }
411:   bv->k = ksave;
412:   bv->l = lsave;
413:   PetscCall(PetscLogEventEnd(BV_OrthogonalizeVec,bv,0,0,0));

415:   /* scale */
416:   if (nrm!=1.0 && nrm!=0.0) {
417:     alpha = 1.0/nrm;
418:     PetscCall(PetscLogEventBegin(BV_Scale,bv,0,0,0));
419:     PetscUseTypeMethod(bv,scale,j,alpha);
420:     PetscCall(PetscLogEventEnd(BV_Scale,bv,0,0,0));
421:   }
422:   if (norm) *norm = nrm;
423:   if (lindep) *lindep = lndep;
424:   PetscCall(PetscObjectStateIncrease((PetscObject)bv));
425:   PetscFunctionReturn(PETSC_SUCCESS);
426: }

428: /*@
429:    BVOrthogonalizeSomeColumn - Orthogonalize one of the column vectors with
430:    respect to some of the previous ones.

432:    Collective

434:    Input Parameters:
435: +  bv     - the basis vectors context
436: .  j      - index of column to be orthogonalized
437: -  which  - logical array indicating selected columns

439:    Output Parameters:
440: +  H      - (optional) coefficients computed during orthogonalization
441: .  norm   - (optional) norm of the vector after being orthogonalized
442: -  lindep - (optional) flag indicating that refinement did not improve the quality
443:             of orthogonalization

445:    Notes:
446:    This function is similar to `BVOrthogonalizeColumn()`, but $v_j$ is
447:    orthogonalized only against columns $v_i$ having `which[i]=PETSC_TRUE`.
448:    The length of array `which` must be `j` at least.

450:    The use of this operation is restricted to MGS orthogonalization type,
451:    `BV_ORTHOG_MGS`.

453:    In the case of an indefinite inner product, the `lindep` parameter is not
454:    computed (set to false).

456:    Level: advanced

458: .seealso: [](sec:bv), `BVOrthogonalizeColumn()`, `BVSetOrthogonalization()`
459: @*/
460: PetscErrorCode BVOrthogonalizeSomeColumn(BV bv,PetscInt j,PetscBool *which,PetscScalar H[],PetscReal *norm,PetscBool *lindep)
461: {
462:   PetscInt       ksave,lsave;

464:   PetscFunctionBegin;
467:   PetscAssertPointer(which,3);
469:   BVCheckSizes(bv,1);
470:   PetscCheck(j>=0,PetscObjectComm((PetscObject)bv),PETSC_ERR_ARG_OUTOFRANGE,"Index j must be non-negative");
471:   PetscCheck(j<bv->m,PetscObjectComm((PetscObject)bv),PETSC_ERR_ARG_OUTOFRANGE,"Index j=%" PetscInt_FMT " but BV only has %" PetscInt_FMT " columns",j,bv->m);
472:   PetscCheck(bv->orthog_type==BV_ORTHOG_MGS,PetscObjectComm((PetscObject)bv),PETSC_ERR_SUP,"Operation only available for MGS orthogonalization");

474:   PetscCall(PetscLogEventBegin(BV_OrthogonalizeVec,bv,0,0,0));
475:   ksave = bv->k;
476:   lsave = bv->l;
477:   bv->l = -bv->nc;  /* must also orthogonalize against constraints and leading columns */
478:   if (!bv->buffer) PetscCall(BVGetBufferVec(bv,&bv->buffer));
479:   PetscCall(BV_AllocateSignature(bv));
480:   PetscCall(BVOrthogonalizeGS(bv,j,NULL,which,norm,lindep));
481:   bv->k = ksave;
482:   bv->l = lsave;
483:   if (H) PetscCall(BV_StoreCoefficients(bv,j,NULL,H));
484:   PetscCall(PetscLogEventEnd(BV_OrthogonalizeVec,bv,0,0,0));
485:   PetscCall(PetscObjectStateIncrease((PetscObject)bv));
486:   PetscFunctionReturn(PETSC_SUCCESS);
487: }

489: /*
490:    Block Gram-Schmidt: V2 = V2 - V1*R12, where R12 = V1'*V2
491:  */
492: static PetscErrorCode BVOrthogonalize_BlockGS(BV V,Mat R)
493: {
494:   BV             V1;

496:   PetscFunctionBegin;
497:   PetscCall(BVGetSplit(V,&V1,NULL));
498:   PetscCall(BVDot(V,V1,R));
499:   PetscCall(BVMult(V,-1.0,1.0,V1,R));
500:   PetscCall(BVRestoreSplit(V,&V1,NULL));
501:   PetscFunctionReturn(PETSC_SUCCESS);
502: }

504: /*MC
505:    BV_ORTHOG_BLOCK_GS - Orthogonalize a set of vectors with Gram-Schmidt, column by column.

507:    Note:
508:    In this case, the block orthogonalization is done in the same way as the
509:    orthogonalization of individual vectors, e.g., `BVOrthogonalizeColumn`, and
510:    hence the settings provided via `BVSetOrthogonalization()` apply.

512:    Level: advanced

514: .seealso: [](sec:bv), `BVOrthogBlockType`, `BVSetOrthogonalization()`, `BVOrthogonalize()`, `BV_ORTHOG_BLOCK_CHOL`, `BV_ORTHOG_BLOCK_TSQR`, `BV_ORTHOG_BLOCK_TSQRCHOL`, `BV_ORTHOG_BLOCK_SVQB`
515: M*/
516: static PetscErrorCode BVOrthogonalize_GS(BV V,Mat R)
517: {
518:   PetscScalar    *r=NULL;
519:   PetscReal      norm;
520:   PetscInt       j,ldr,lsave;
521:   Vec            v,w;

523:   PetscFunctionBegin;
524:   if (R) {
525:     PetscCall(MatDenseGetLDA(R,&ldr));
526:     PetscCall(MatDenseGetArray(R,&r));
527:   }
528:   if (V->matrix) {
529:     PetscCall(BVGetCachedBV(V,&V->cached));
530:     PetscCall(BVSetActiveColumns(V->cached,V->l,V->k));
531:   }
532:   for (j=V->l;j<V->k;j++) {
533:     if (V->matrix && V->orthog_type==BV_ORTHOG_MGS) {  /* fill cached BV */
534:       PetscCall(BVGetColumn(V->cached,j,&v));
535:       PetscCall(BVGetColumn(V,j,&w));
536:       PetscCall(MatMult(V->matrix,w,v));
537:       PetscCall(BVRestoreColumn(V,j,&w));
538:       PetscCall(BVRestoreColumn(V->cached,j,&v));
539:     }
540:     if (R) {
541:       PetscCall(BVOrthogonalizeColumn(V,j,NULL,&norm,NULL));
542:       lsave = V->l;
543:       V->l = -V->nc;
544:       PetscCall(BV_StoreCoefficients(V,j,NULL,r+j*ldr));
545:       V->l = lsave;
546:       r[j+j*ldr] = norm;
547:     } else PetscCall(BVOrthogonalizeColumn(V,j,NULL,&norm,NULL));
548:     PetscCheck(norm,PetscObjectComm((PetscObject)V),PETSC_ERR_CONV_FAILED,"Breakdown in BVOrthogonalize due to a linearly dependent column");
549:     if (V->matrix && V->orthog_type==BV_ORTHOG_CGS) {  /* fill cached BV */
550:       PetscCall(BVGetColumn(V->cached,j,&v));
551:       PetscCall(VecCopy(V->Bx,v));
552:       PetscCall(BVRestoreColumn(V->cached,j,&v));
553:     }
554:     PetscCall(BVScaleColumn(V,j,1.0/norm));
555:   }
556:   if (R) PetscCall(MatDenseRestoreArray(R,&r));
557:   PetscFunctionReturn(PETSC_SUCCESS);
558: }

560: /*
561:   BV_GetBufferMat - Create auxiliary seqdense matrix that wraps the bv->buffer.
562: */
563: static inline PetscErrorCode BV_GetBufferMat(BV bv)
564: {
565:   PetscInt       ld;
566:   PetscScalar    *array;

568:   PetscFunctionBegin;
569:   if (!bv->Abuffer) {
570:     if (!bv->buffer) PetscCall(BVGetBufferVec(bv,&bv->buffer));
571:     ld = bv->m+bv->nc;
572:     PetscCall(VecGetArray(bv->buffer,&array));
573:     PetscCall(MatCreateSeqDense(PETSC_COMM_SELF,ld,bv->m,array,&bv->Abuffer));
574:     PetscCall(VecRestoreArray(bv->buffer,&array));
575:   }
576:   PetscFunctionReturn(PETSC_SUCCESS);
577: }

579: /*
580:    BV_StoreCoeffsBlock_Default - Copy the contents of the BV buffer to a dense Mat
581:    provided by the caller. Only columns l:k-1 are copied, restricting to the upper
582:    triangular part if tri=PETSC_TRUE.
583: */
584: static inline PetscErrorCode BV_StoreCoeffsBlock_Default(BV bv,Mat R,PetscBool tri)
585: {
586:   const PetscScalar *bb;
587:   PetscScalar       *rr;
588:   PetscInt          j,ldr,ldb;

590:   PetscFunctionBegin;
591:   PetscCall(MatDenseGetLDA(R,&ldr));
592:   PetscCall(MatDenseGetArray(R,&rr));
593:   ldb  = bv->m+bv->nc;
594:   PetscCall(VecGetArrayRead(bv->buffer,&bb));
595:   for (j=bv->l;j<bv->k;j++) PetscCall(PetscArraycpy(rr+j*ldr,bb+j*ldb,(tri?(j+1):bv->k)+bv->nc));
596:   PetscCall(VecRestoreArrayRead(bv->buffer,&bb));
597:   PetscCall(MatDenseRestoreArray(R,&rr));
598:   PetscFunctionReturn(PETSC_SUCCESS);
599: }

601: /*MC
602:    BV_ORTHOG_BLOCK_CHOL - Orthogonalize a set of vectors $V$ with the Cholesky QR
603:    method, that is, compute $R=\mathrm{chol}(V^*V)$, then obtain the
604:    orthogonalized vectors as $Q=V R^{-1}$.

606:    Developer Note:
607:    This is plain Cholesky QR, which may fail in case of ill-conditioned $V$.
608:    An iterated version such as CholeskyQR2 should be preferred {cite:p}`Yam15`.

610:    Level: advanced

612: .seealso: [](sec:bv), `BVOrthogBlockType`, `BVSetOrthogonalization()`, `BVOrthogonalize()`, `BV_ORTHOG_BLOCK_GS`, `BV_ORTHOG_BLOCK_TSQR`, `BV_ORTHOG_BLOCK_TSQRCHOL`, `BV_ORTHOG_BLOCK_SVQB`
613: M*/
614: static PetscErrorCode BVOrthogonalize_Chol(BV V,Mat Rin)
615: {
616:   Mat            R,S;

618:   PetscFunctionBegin;
619:   PetscCall(BV_GetBufferMat(V));
620:   R = V->Abuffer;
621:   if (Rin) S = Rin;   /* use Rin as a workspace for S */
622:   else S = R;
623:   if (V->l) PetscCall(BVOrthogonalize_BlockGS(V,R));
624:   PetscCall(BVDot(V,V,R));
625:   PetscCall(BVMatCholInv_LAPACK_Private(V,R,S));
626:   PetscCall(BVMultInPlace(V,S,V->l,V->k));
627:   if (Rin) PetscCall(BV_StoreCoeffsBlock_Default(V,Rin,PETSC_TRUE));
628:   PetscFunctionReturn(PETSC_SUCCESS);
629: }

631: /*MC
632:    BV_ORTHOG_BLOCK_TSQR - Orthogonalize a set of vectors with the Tall-Skinny QR method {cite:p}`Dem12`.

634:    Level: advanced

636: .seealso: [](sec:bv), `BVOrthogBlockType`, `BVSetOrthogonalization()`, `BVOrthogonalize()`, `BV_ORTHOG_BLOCK_GS`, `BV_ORTHOG_BLOCK_CHOL`, `BV_ORTHOG_BLOCK_TSQRCHOL`, `BV_ORTHOG_BLOCK_SVQB`
637: M*/
638: static PetscErrorCode BVOrthogonalize_TSQR(BV V,Mat Rin)
639: {
640:   PetscScalar    *pv,*r=NULL;
641:   PetscInt       ldr;
642:   Mat            R;

644:   PetscFunctionBegin;
645:   PetscCall(BV_GetBufferMat(V));
646:   R = V->Abuffer;
647:   if (V->l) PetscCall(BVOrthogonalize_BlockGS(V,R));
648:   PetscCall(MatDenseGetLDA(R,&ldr));
649:   PetscCall(MatDenseGetArray(R,&r));
650:   PetscCall(BVGetArray(V,&pv));
651:   PetscCall(BVOrthogonalize_LAPACK_TSQR(V,V->n,V->k-V->l,pv+(V->nc+V->l)*V->ld,V->ld,r+V->l*ldr+V->l,ldr));
652:   PetscCall(BVRestoreArray(V,&pv));
653:   PetscCall(MatDenseRestoreArray(R,&r));
654:   if (Rin) PetscCall(BV_StoreCoeffsBlock_Default(V,Rin,PETSC_TRUE));
655:   PetscFunctionReturn(PETSC_SUCCESS);
656: }

658: /*MC
659:    BV_ORTHOG_BLOCK_TSQRCHOL - Orthogonalize a set of vectors $V$ with the TSQR
660:    method, but computing the triangular factor $R$ only, then retrieving the
661:    orthogonalized vectors as $Q=V R^{-1}$.

663:    Level: advanced

665: .seealso: [](sec:bv), `BVOrthogBlockType`, `BVSetOrthogonalization()`, `BVOrthogonalize()`, `BV_ORTHOG_BLOCK_GS`, `BV_ORTHOG_BLOCK_CHOL`, `BV_ORTHOG_BLOCK_TSQR`, `BV_ORTHOG_BLOCK_SVQB`
666: M*/
667: static PetscErrorCode BVOrthogonalize_TSQRCHOL(BV V,Mat Rin)
668: {
669:   PetscScalar    *pv,*r=NULL;
670:   PetscInt       ldr;
671:   Mat            R,S;

673:   PetscFunctionBegin;
674:   PetscCall(BV_GetBufferMat(V));
675:   R = V->Abuffer;
676:   if (Rin) S = Rin;   /* use Rin as a workspace for S */
677:   else S = R;
678:   if (V->l) PetscCall(BVOrthogonalize_BlockGS(V,R));
679:   PetscCall(MatDenseGetLDA(R,&ldr));
680:   PetscCall(MatDenseGetArray(R,&r));
681:   PetscCall(BVGetArray(V,&pv));
682:   PetscCall(BVOrthogonalize_LAPACK_TSQR_OnlyR(V,V->n,V->k-V->l,pv+(V->nc+V->l)*V->ld,V->ld,r+V->l*ldr+V->l,ldr));
683:   PetscCall(BVRestoreArray(V,&pv));
684:   PetscCall(MatDenseRestoreArray(R,&r));
685:   PetscCall(BVMatTriInv_LAPACK_Private(V,R,S));
686:   PetscCall(BVMultInPlace(V,S,V->l,V->k));
687:   if (Rin) PetscCall(BV_StoreCoeffsBlock_Default(V,Rin,PETSC_TRUE));
688:   PetscFunctionReturn(PETSC_SUCCESS);
689: }

691: /*MC
692:    BV_ORTHOG_BLOCK_SVQB - Orthogonalize a set of vectors with the SVQB method {cite:p}`Sta02`.

694:    Note:
695:    As opposed to other block orthogonalization methods, SVQB does not compute a
696:    QR decomposition but a QB decomposition, i.e., the second factor is not
697:    triangular.

699:    Level: advanced

701: .seealso: [](sec:bv), `BVOrthogBlockType`, `BVSetOrthogonalization()`, `BVOrthogonalize()`, `BV_ORTHOG_BLOCK_GS`, `BV_ORTHOG_BLOCK_CHOL`, `BV_ORTHOG_BLOCK_TSQR`, `BV_ORTHOG_BLOCK_TSQRCHOL`
702: M*/
703: static PetscErrorCode BVOrthogonalize_SVQB(BV V,Mat Rin)
704: {
705:   Mat            R,S;

707:   PetscFunctionBegin;
708:   PetscCall(BV_GetBufferMat(V));
709:   R = V->Abuffer;
710:   if (Rin) S = Rin;   /* use Rin as a workspace for S */
711:   else S = R;
712:   if (V->l) PetscCall(BVOrthogonalize_BlockGS(V,R));
713:   PetscCall(BVDot(V,V,R));
714:   PetscCall(BVMatSVQB_LAPACK_Private(V,R,S));
715:   PetscCall(BVMultInPlace(V,S,V->l,V->k));
716:   if (Rin) PetscCall(BV_StoreCoeffsBlock_Default(V,Rin,PETSC_FALSE));
717:   PetscFunctionReturn(PETSC_SUCCESS);
718: }

720: /*@
721:    BVOrthogonalize - Orthogonalize all columns (starting from the leading ones),
722:    that is, compute the QR decomposition.

724:    Collective

726:    Input Parameters:
727: +  V - basis vectors to be orthogonalized (or $B$-orthogonalized), modified on output
728: -  R - a sequential dense matrix (or `NULL`), on output the triangular factor of
729:        the QR decomposition

731:    Notes:
732:    On input, matrix `R` must be a square sequential dense `Mat`, with at least as many
733:    rows and columns as the number of active columns of `V`. The output satisfies
734:    $V = \tilde V R$ (where $\tilde V$ represents `V` on exit) and $\tilde V^*\tilde V = I$
735:    (or $\tilde V^*B\tilde V = I$ if an inner product matrix $B$ has been specified with
736:    `BVSetMatrix()`).

738:    If `V` has leading columns, then they are not modified (are assumed to be already
739:    orthonormal) and the leading columns of `R` are not referenced. Let the
740:    decomposition be
741:    $$
742:      \begin{bmatrix}
743:        V_1 & V_2
744:      \end{bmatrix}=
745:      \begin{bmatrix}
746:        \tilde V_1 & \tilde V_2
747:      \end{bmatrix}
748:      \begin{bmatrix}
749:        R_{11} & R_{12} \\
750:             0 & R_{22}
751:      \end{bmatrix}
752:    $$
753:    then $\tilde V_1$ is left unchanged (equal to $V_1$) as well as $R_{11}$ (they should
754:    satisfy $V_1 = \tilde V_1 R_{11}$).

756:    Can pass `NULL` if `R` is not required.

758:    The method to be used for block orthogonalization can be set with
759:    `BVSetOrthogonalization()`. If set to `BV_ORTHOG_BLOCK_GS`, the computation is done
760:    column by column with successive calls to `BVOrthogonalizeColumn()`. Note that in the
761:    `BV_ORTHOG_BLOCK_SVQB` method the `R` factor is not upper triangular.

763:    If `V` is rank-deficient or very ill-conditioned, that is, one or more columns are
764:    (almost) linearly dependent with respect to the rest, then the algorithm may
765:    break down or result in larger numerical error. Linearly dependent columns are
766:    essentially replaced by random directions, and the corresponding diagonal entry
767:    in `R` is set to (nearly) zero.

769:    Level: intermediate

771: .seealso: [](sec:bv), `BVOrthogonalizeColumn()`, `BVOrthogonalizeVec()`, `BVSetMatrix()`, `BVSetActiveColumns()`, `BVSetOrthogonalization()`, `BVOrthogBlockType`
772: @*/
773: PetscErrorCode BVOrthogonalize(BV V,Mat R)
774: {
775:   PetscInt       m,n;

777:   PetscFunctionBegin;
780:   BVCheckSizes(V,1);
781:   if (R) {
784:     PetscCheckTypeName(R,MATSEQDENSE);
785:     PetscCall(MatGetSize(R,&m,&n));
786:     PetscCheck(m==n,PetscObjectComm((PetscObject)V),PETSC_ERR_ARG_SIZ,"Mat argument is not square, it has %" PetscInt_FMT " rows and %" PetscInt_FMT " columns",m,n);
787:     PetscCheck(n>=V->k,PetscObjectComm((PetscObject)V),PETSC_ERR_ARG_SIZ,"Mat size %" PetscInt_FMT " is smaller than the number of BV active columns %" PetscInt_FMT,n,V->k);
788:   }
789:   PetscCheck(!V->nc,PetscObjectComm((PetscObject)V),PETSC_ERR_SUP,"Not implemented for BV with constraints, use BVOrthogonalizeColumn() instead");

791:   PetscCall(PetscLogEventBegin(BV_Orthogonalize,V,R,0,0));
792:   switch (V->orthog_block) {
793:   case BV_ORTHOG_BLOCK_GS: /* proceed column by column with Gram-Schmidt */
794:     PetscCall(BVOrthogonalize_GS(V,R));
795:     break;
796:   case BV_ORTHOG_BLOCK_CHOL:
797:     PetscCall(BVOrthogonalize_Chol(V,R));
798:     break;
799:   case BV_ORTHOG_BLOCK_TSQR:
800:     PetscCheck(!V->matrix,PetscObjectComm((PetscObject)V),PETSC_ERR_SUP,"Orthogonalization method not available for non-standard inner product");
801:     PetscCall(BVOrthogonalize_TSQR(V,R));
802:     break;
803:   case BV_ORTHOG_BLOCK_TSQRCHOL:
804:     PetscCheck(!V->matrix,PetscObjectComm((PetscObject)V),PETSC_ERR_SUP,"Orthogonalization method not available for non-standard inner product");
805:     PetscCall(BVOrthogonalize_TSQRCHOL(V,R));
806:     break;
807:   case BV_ORTHOG_BLOCK_SVQB:
808:     PetscCall(BVOrthogonalize_SVQB(V,R));
809:     break;
810:   }
811:   PetscCall(PetscLogEventEnd(BV_Orthogonalize,V,R,0,0));
812:   PetscCall(PetscObjectStateIncrease((PetscObject)V));
813:   PetscFunctionReturn(PETSC_SUCCESS);
814: }