Actual source code: svddefault.c

  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    Simple default routines for common SVD operations
 12: */

 14: #include <slepc/private/svdimpl.h>

 16: /*
 17:   SVDConvergedAbsolute - Checks convergence absolutely.
 18: */
 19: PetscErrorCode SVDConvergedAbsolute(SVD svd,PetscReal sigma,PetscReal res,PetscReal *errest,void *ctx)
 20: {
 21:   PetscFunctionBegin;
 22:   *errest = res;
 23:   PetscFunctionReturn(PETSC_SUCCESS);
 24: }

 26: /*
 27:   SVDConvergedRelative - Checks convergence relative to the singular value.
 28: */
 29: PetscErrorCode SVDConvergedRelative(SVD svd,PetscReal sigma,PetscReal res,PetscReal *errest,void *ctx)
 30: {
 31:   PetscFunctionBegin;
 32:   *errest = (sigma!=0.0)? res/sigma: PETSC_MAX_REAL;
 33:   PetscFunctionReturn(PETSC_SUCCESS);
 34: }

 36: /*
 37:   SVDConvergedNorm - Checks convergence relative to the matrix norms.
 38: */
 39: PetscErrorCode SVDConvergedNorm(SVD svd,PetscReal sigma,PetscReal res,PetscReal *errest,void *ctx)
 40: {
 41:   PetscFunctionBegin;
 42:   *errest = res/PetscMax(svd->nrma,svd->nrmb);
 43:   PetscFunctionReturn(PETSC_SUCCESS);
 44: }

 46: /*
 47:   SVDConvergedMaxIt - Always returns Inf to force reaching the maximum number of iterations.
 48: */
 49: PetscErrorCode SVDConvergedMaxIt(SVD svd,PetscReal sigma,PetscReal res,PetscReal *errest,void *ctx)
 50: {
 51:   PetscFunctionBegin;
 52:   *errest = PETSC_MAX_REAL;
 53:   PetscFunctionReturn(PETSC_SUCCESS);
 54: }

 56: /*@C
 57:    SVDStoppingBasic - Default routine to determine whether the outer singular value
 58:    solver iteration must be stopped.

 60:    Collective

 62:    Input Parameters:
 63: +  svd    - the singular value solver context
 64: .  its    - current number of iterations
 65: .  max_it - maximum number of iterations
 66: .  nconv  - number of currently converged singular triplets
 67: .  nsv    - number of requested singular triplets
 68: -  ctx    - context (not used here)

 70:    Output Parameter:
 71: .  reason - result of the stopping test

 73:    Notes:
 74:    `SVDStoppingBasic()` will stop if all requested singular values are converged, or if
 75:    the maximum number of iterations has been reached.

 77:    This is the default stopping test.
 78:    Use `SVDSetStoppingTest()` to provide your own test instead of using this one.

 80:    Level: advanced

 82: .seealso: [](ch:svd), `SVDSetStoppingTest()`, `SVDStoppingThreshold()`, `SVDConvergedReason`, `SVDGetConvergedReason()`
 83: @*/
 84: PetscErrorCode SVDStoppingBasic(SVD svd,PetscInt its,PetscInt max_it,PetscInt nconv,PetscInt nsv,SVDConvergedReason *reason,void *ctx)
 85: {
 86:   PetscFunctionBegin;
 87:   *reason = SVD_CONVERGED_ITERATING;
 88:   if (nconv >= nsv && svd->conv != SVD_CONV_MAXIT) {
 89:     PetscCall(PetscInfo(svd,"Singular value solver finished successfully: %" PetscInt_FMT " singular triplets converged at iteration %" PetscInt_FMT "\n",nconv,its));
 90:     *reason = SVD_CONVERGED_TOL;
 91:   } else if (its >= max_it) {
 92:     if (svd->conv == SVD_CONV_MAXIT) *reason = SVD_CONVERGED_MAXIT;
 93:     else {
 94:       *reason = SVD_DIVERGED_ITS;
 95:       PetscCall(PetscInfo(svd,"Singular value solver iteration reached maximum number of iterations (%" PetscInt_FMT ")\n",its));
 96:     }
 97:   }
 98:   PetscFunctionReturn(PETSC_SUCCESS);
 99: }

101: /*@C
102:    SVDStoppingThreshold - Routine to determine whether the outer singular value
103:    solver iteration must be stopped, according to some threshold for the computed values.

105:    Collective

107:    Input Parameters:
108: +  svd    - the singular value solver context
109: .  its    - current number of iterations
110: .  max_it - maximum number of iterations
111: .  nconv  - number of currently converged singular triplets (ignored here)
112: .  nsv    - number of requested singular triplets (ignored here)
113: -  ctx    - context containing additional data (`SVDStoppingCtx`)

115:    Output Parameter:
116: .  reason - result of the stopping test

118:    Notes:
119:    `SVDStoppingThreshold()` will stop when one of the computed singular values is not
120:    above/below the threshold given at `SVDSetThreshold()`. If a number of wanted singular
121:    values has been specified via `SVDSetDimensions()` then it is also taken into account,
122:    and the solver will stop when one of the two conditions (threshold or number of
123:    converged values) is met.

125:    Use `SVDSetStoppingTest()` to provide your own test instead of using this one.

127:    Level: advanced

129: .seealso: [](ch:svd), `SVDSetStoppingTest()`, `SVDStoppingBasic()`, `SVDSetThreshold()`, `SVDSetDimensions()`, `SVDConvergedReason`, `SVDGetConvergedReason()`
130: @*/
131: PetscErrorCode SVDStoppingThreshold(SVD svd,PetscInt its,PetscInt max_it,PetscInt nconv,PetscInt nsv,SVDConvergedReason *reason,void *ctx)
132: {
133:   PetscReal thres,firstsv,lastsv;
134:   PetscBool rel;
135:   SVDWhich  which;

137:   PetscFunctionBegin;
138:   *reason = SVD_CONVERGED_ITERATING;
139:   firstsv = ((SVDStoppingCtx)ctx)->firstsv;
140:   lastsv  = ((SVDStoppingCtx)ctx)->lastsv;
141:   thres   = ((SVDStoppingCtx)ctx)->thres;
142:   rel     = ((SVDStoppingCtx)ctx)->threlative;
143:   which   = ((SVDStoppingCtx)ctx)->which;
144:   if (nconv && ((which==SVD_LARGEST && ((rel && lastsv<thres*firstsv) || (!rel && lastsv<thres))) || (which==SVD_SMALLEST && lastsv>thres))) {
145:     if (which==SVD_SMALLEST) PetscCall(PetscInfo(svd,"Singular value solver finished successfully: singular value %g is above the threshold %g\n",(double)lastsv,(double)thres));
146:     else if (!rel) PetscCall(PetscInfo(svd,"Singular value solver finished successfully: singular value %g is below the threshold %g\n",(double)lastsv,(double)thres));
147:     else PetscCall(PetscInfo(svd,"Singular value solver finished successfully: the ratio %g/%g is below the threshold %g\n",(double)lastsv,(double)firstsv,(double)thres));
148:     *reason = SVD_CONVERGED_TOL;
149:   } else if (nsv && nconv >= nsv) {
150:     PetscCall(PetscInfo(svd,"Singular value solver finished successfully: %" PetscInt_FMT " singular triplets converged at iteration %" PetscInt_FMT "\n",nconv,its));
151:     *reason = SVD_CONVERGED_TOL;
152:   } else if (its >= max_it) {
153:     if (svd->conv == SVD_CONV_MAXIT) *reason = SVD_CONVERGED_MAXIT;
154:     else {
155:       *reason = SVD_DIVERGED_ITS;
156:       PetscCall(PetscInfo(svd,"Singular value solver iteration reached maximum number of iterations (%" PetscInt_FMT ")\n",its));
157:     }
158:   }
159:   PetscFunctionReturn(PETSC_SUCCESS);
160: }

162: /*@
163:    SVDSetWorkVecs - Sets a number of work vectors into an `SVD` object.

165:    Collective

167:    Input Parameters:
168: +  svd    - the singular value solver context
169: .  nleft  - number of work vectors of dimension equal to left singular vector
170: -  nright - number of work vectors of dimension equal to right singular vector

172:    Developer Note:
173:    This is `SLEPC_EXTERN` because it may be required by user plugin `SVD`
174:    implementations.

176:    Level: developer

178: .seealso: [](ch:svd), `SVDSetUp()`
179: @*/
180: PetscErrorCode SVDSetWorkVecs(SVD svd,PetscInt nleft,PetscInt nright)
181: {
182:   Vec            t;

184:   PetscFunctionBegin;
188:   PetscCheck(nleft>=0,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_OUTOFRANGE,"nleft must be >= 0: nleft = %" PetscInt_FMT,nleft);
189:   PetscCheck(nright>=0,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_OUTOFRANGE,"nright must be >= 0: nright = %" PetscInt_FMT,nright);
190:   PetscCheck(nleft>0 || nright>0,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_OUTOFRANGE,"nleft and nright cannot be both zero");
191:   if (svd->nworkl < nleft) {
192:     PetscCall(VecDestroyVecs(svd->nworkl,&svd->workl));
193:     svd->nworkl = nleft;
194:     if (svd->isgeneralized) PetscCall(SVDCreateLeftTemplate(svd,&t));
195:     else PetscCall(MatCreateVecsEmpty(svd->OP,NULL,&t));
196:     PetscCall(VecDuplicateVecs(t,nleft,&svd->workl));
197:     PetscCall(VecDestroy(&t));
198:   }
199:   if (svd->nworkr < nright) {
200:     PetscCall(VecDestroyVecs(svd->nworkr,&svd->workr));
201:     svd->nworkr = nright;
202:     PetscCall(MatCreateVecsEmpty(svd->OP,&t,NULL));
203:     PetscCall(VecDuplicateVecs(t,nright,&svd->workr));
204:     PetscCall(VecDestroy(&t));
205:   }
206:   PetscFunctionReturn(PETSC_SUCCESS);
207: }