Actual source code: arnoldi.c

slepc-3.22.1 2024-10-28
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    SLEPc eigensolver: "arnoldi"

 13:    Method: Explicitly Restarted Arnoldi

 15:    Algorithm:

 17:        Arnoldi method with explicit restart and deflation.

 19:    References:

 21:        [1] "Arnoldi Methods in SLEPc", SLEPc Technical Report STR-4,
 22:            available at https://slepc.upv.es.
 23: */

 25: #include <slepc/private/epsimpl.h>

 27: typedef struct {
 28:   PetscBool delayed;
 29: } EPS_ARNOLDI;

 31: static PetscErrorCode EPSSetUp_Arnoldi(EPS eps)
 32: {
 33:   PetscFunctionBegin;
 34:   EPSCheckDefinite(eps);
 35:   EPSCheckNotStructured(eps);
 36:   PetscCall(EPSSetDimensions_Default(eps,eps->nev,&eps->ncv,&eps->mpd));
 37:   PetscCheck(eps->ncv<=eps->nev+eps->mpd,PetscObjectComm((PetscObject)eps),PETSC_ERR_USER_INPUT,"The value of ncv must not be larger than nev+mpd");
 38:   if (eps->max_it==PETSC_DETERMINE) eps->max_it = PetscMax(100,2*eps->n/eps->ncv);
 39:   if (!eps->which) PetscCall(EPSSetWhichEigenpairs_Default(eps));
 40:   PetscCheck(eps->which!=EPS_ALL,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver does not support computing all eigenvalues");
 41:   EPSCheckUnsupported(eps,EPS_FEATURE_ARBITRARY | EPS_FEATURE_TWOSIDED);

 43:   PetscCall(EPSAllocateSolution(eps,1));
 44:   PetscCall(EPS_SetInnerProduct(eps));
 45:   PetscCall(DSSetType(eps->ds,DSNHEP));
 46:   if (eps->extraction==EPS_REFINED || eps->extraction==EPS_REFINED_HARMONIC) PetscCall(DSSetRefined(eps->ds,PETSC_TRUE));
 47:   PetscCall(DSSetExtraRow(eps->ds,PETSC_TRUE));
 48:   PetscCall(DSAllocate(eps->ds,eps->ncv+1));
 49:   PetscFunctionReturn(PETSC_SUCCESS);
 50: }

 52: static PetscErrorCode EPSSolve_Arnoldi(EPS eps)
 53: {
 54:   PetscInt           k,nv,ld;
 55:   Mat                U,Op,H;
 56:   PetscScalar        *Harray;
 57:   PetscReal          beta,gamma=1.0;
 58:   PetscBool          breakdown,harmonic,refined;
 59:   BVOrthogRefineType orthog_ref;
 60:   EPS_ARNOLDI        *arnoldi = (EPS_ARNOLDI*)eps->data;

 62:   PetscFunctionBegin;
 63:   PetscCall(DSGetLeadingDimension(eps->ds,&ld));
 64:   PetscCall(DSGetRefined(eps->ds,&refined));
 65:   harmonic = (eps->extraction==EPS_HARMONIC || eps->extraction==EPS_REFINED_HARMONIC)?PETSC_TRUE:PETSC_FALSE;
 66:   PetscCall(BVGetOrthogonalization(eps->V,NULL,&orthog_ref,NULL,NULL));

 68:   /* Get the starting Arnoldi vector */
 69:   PetscCall(EPSGetStartVector(eps,0,NULL));

 71:   /* Restart loop */
 72:   while (eps->reason == EPS_CONVERGED_ITERATING) {
 73:     eps->its++;

 75:     /* Compute an nv-step Arnoldi factorization */
 76:     nv = PetscMin(eps->nconv+eps->mpd,eps->ncv);
 77:     PetscCall(DSSetDimensions(eps->ds,nv,eps->nconv,0));
 78:     if (!arnoldi->delayed) {
 79:       PetscCall(STGetOperator(eps->st,&Op));
 80:       PetscCall(DSGetMat(eps->ds,DS_MAT_A,&H));
 81:       PetscCall(BVMatArnoldi(eps->V,Op,H,eps->nconv,&nv,&beta,&breakdown));
 82:       PetscCall(DSRestoreMat(eps->ds,DS_MAT_A,&H));
 83:       PetscCall(STRestoreOperator(eps->st,&Op));
 84:     } else if (orthog_ref == BV_ORTHOG_REFINE_NEVER) {
 85:       PetscCall(DSGetArray(eps->ds,DS_MAT_A,&Harray));
 86:       PetscCall(EPSDelayedArnoldi1(eps,Harray,ld,eps->nconv,&nv,&beta,&breakdown));
 87:       PetscCall(DSRestoreArray(eps->ds,DS_MAT_A,&Harray));
 88:     } else {
 89:       PetscCall(DSGetArray(eps->ds,DS_MAT_A,&Harray));
 90:       PetscCall(EPSDelayedArnoldi(eps,Harray,ld,eps->nconv,&nv,&beta,&breakdown));
 91:       PetscCall(DSRestoreArray(eps->ds,DS_MAT_A,&Harray));
 92:     }
 93:     PetscCall(DSSetState(eps->ds,DS_STATE_INTERMEDIATE));
 94:     PetscCall(BVSetActiveColumns(eps->V,eps->nconv,nv));

 96:     /* Compute translation of Krylov decomposition if harmonic extraction used */
 97:     if (harmonic) PetscCall(DSTranslateHarmonic(eps->ds,eps->target,beta,PETSC_FALSE,NULL,&gamma));

 99:     /* Solve projected problem */
100:     PetscCall(DSSolve(eps->ds,eps->eigr,eps->eigi));
101:     PetscCall(DSSort(eps->ds,eps->eigr,eps->eigi,NULL,NULL,NULL));
102:     PetscCall(DSUpdateExtraRow(eps->ds));
103:     PetscCall(DSSynchronize(eps->ds,eps->eigr,eps->eigi));

105:     /* Check convergence */
106:     PetscCall(EPSKrylovConvergence(eps,PETSC_FALSE,eps->nconv,nv-eps->nconv,beta,0.0,gamma,&k));
107:     if (refined) {
108:       PetscCall(DSGetMat(eps->ds,DS_MAT_X,&U));
109:       PetscCall(BVMultInPlace(eps->V,U,eps->nconv,k+1));
110:       PetscCall(DSRestoreMat(eps->ds,DS_MAT_X,&U));
111:       PetscCall(BVOrthonormalizeColumn(eps->V,k,PETSC_FALSE,NULL,NULL));
112:     } else {
113:       PetscCall(DSGetMat(eps->ds,DS_MAT_Q,&U));
114:       PetscCall(BVMultInPlace(eps->V,U,eps->nconv,PetscMin(k+1,nv)));
115:       PetscCall(DSRestoreMat(eps->ds,DS_MAT_Q,&U));
116:     }
117:     PetscCall((*eps->stopping)(eps,eps->its,eps->max_it,k,eps->nev,&eps->reason,eps->stoppingctx));
118:     if (eps->reason == EPS_CONVERGED_ITERATING && breakdown) {
119:       PetscCall(PetscInfo(eps,"Breakdown in Arnoldi method (it=%" PetscInt_FMT " norm=%g)\n",eps->its,(double)beta));
120:       PetscCall(EPSGetStartVector(eps,k,&breakdown));
121:       if (breakdown) {
122:         eps->reason = EPS_DIVERGED_BREAKDOWN;
123:         PetscCall(PetscInfo(eps,"Unable to generate more start vectors\n"));
124:       }
125:     }
126:     eps->nconv = k;
127:     PetscCall(EPSMonitor(eps,eps->its,eps->nconv,eps->eigr,eps->eigi,eps->errest,nv));
128:   }
129:   PetscCall(DSTruncate(eps->ds,eps->nconv,PETSC_TRUE));
130:   PetscFunctionReturn(PETSC_SUCCESS);
131: }

133: static PetscErrorCode EPSSetFromOptions_Arnoldi(EPS eps,PetscOptionItems *PetscOptionsObject)
134: {
135:   PetscBool      set,val;
136:   EPS_ARNOLDI    *arnoldi = (EPS_ARNOLDI*)eps->data;

138:   PetscFunctionBegin;
139:   PetscOptionsHeadBegin(PetscOptionsObject,"EPS Arnoldi Options");

141:     PetscCall(PetscOptionsBool("-eps_arnoldi_delayed","Use delayed reorthogonalization","EPSArnoldiSetDelayed",arnoldi->delayed,&val,&set));
142:     if (set) PetscCall(EPSArnoldiSetDelayed(eps,val));

144:   PetscOptionsHeadEnd();
145:   PetscFunctionReturn(PETSC_SUCCESS);
146: }

148: static PetscErrorCode EPSArnoldiSetDelayed_Arnoldi(EPS eps,PetscBool delayed)
149: {
150:   EPS_ARNOLDI *arnoldi = (EPS_ARNOLDI*)eps->data;

152:   PetscFunctionBegin;
153:   arnoldi->delayed = delayed;
154:   PetscFunctionReturn(PETSC_SUCCESS);
155: }

157: /*@
158:    EPSArnoldiSetDelayed - Activates or deactivates delayed reorthogonalization
159:    in the Arnoldi iteration.

161:    Logically Collective

163:    Input Parameters:
164: +  eps - the eigenproblem solver context
165: -  delayed - boolean flag

167:    Options Database Key:
168: .  -eps_arnoldi_delayed - Activates delayed reorthogonalization in Arnoldi

170:    Note:
171:    Delayed reorthogonalization is an aggressive optimization for the Arnoldi
172:    eigensolver than may provide better scalability, but sometimes makes the
173:    solver converge less than the default algorithm.

175:    Level: advanced

177: .seealso: EPSArnoldiGetDelayed()
178: @*/
179: PetscErrorCode EPSArnoldiSetDelayed(EPS eps,PetscBool delayed)
180: {
181:   PetscFunctionBegin;
184:   PetscTryMethod(eps,"EPSArnoldiSetDelayed_C",(EPS,PetscBool),(eps,delayed));
185:   PetscFunctionReturn(PETSC_SUCCESS);
186: }

188: static PetscErrorCode EPSArnoldiGetDelayed_Arnoldi(EPS eps,PetscBool *delayed)
189: {
190:   EPS_ARNOLDI *arnoldi = (EPS_ARNOLDI*)eps->data;

192:   PetscFunctionBegin;
193:   *delayed = arnoldi->delayed;
194:   PetscFunctionReturn(PETSC_SUCCESS);
195: }

197: /*@
198:    EPSArnoldiGetDelayed - Gets the type of reorthogonalization used during the Arnoldi
199:    iteration.

201:    Not Collective

203:    Input Parameter:
204: .  eps - the eigenproblem solver context

206:    Output Parameter:
207: .  delayed - boolean flag indicating if delayed reorthogonalization has been enabled

209:    Level: advanced

211: .seealso: EPSArnoldiSetDelayed()
212: @*/
213: PetscErrorCode EPSArnoldiGetDelayed(EPS eps,PetscBool *delayed)
214: {
215:   PetscFunctionBegin;
217:   PetscAssertPointer(delayed,2);
218:   PetscUseMethod(eps,"EPSArnoldiGetDelayed_C",(EPS,PetscBool*),(eps,delayed));
219:   PetscFunctionReturn(PETSC_SUCCESS);
220: }

222: static PetscErrorCode EPSDestroy_Arnoldi(EPS eps)
223: {
224:   PetscFunctionBegin;
225:   PetscCall(PetscFree(eps->data));
226:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSArnoldiSetDelayed_C",NULL));
227:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSArnoldiGetDelayed_C",NULL));
228:   PetscFunctionReturn(PETSC_SUCCESS);
229: }

231: static PetscErrorCode EPSView_Arnoldi(EPS eps,PetscViewer viewer)
232: {
233:   PetscBool      isascii;
234:   EPS_ARNOLDI    *arnoldi = (EPS_ARNOLDI*)eps->data;

236:   PetscFunctionBegin;
237:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
238:   if (isascii && arnoldi->delayed) PetscCall(PetscViewerASCIIPrintf(viewer,"  using delayed reorthogonalization\n"));
239:   PetscFunctionReturn(PETSC_SUCCESS);
240: }

242: SLEPC_EXTERN PetscErrorCode EPSCreate_Arnoldi(EPS eps)
243: {
244:   EPS_ARNOLDI    *ctx;

246:   PetscFunctionBegin;
247:   PetscCall(PetscNew(&ctx));
248:   eps->data = (void*)ctx;

250:   eps->useds = PETSC_TRUE;

252:   eps->ops->solve          = EPSSolve_Arnoldi;
253:   eps->ops->setup          = EPSSetUp_Arnoldi;
254:   eps->ops->setupsort      = EPSSetUpSort_Default;
255:   eps->ops->setfromoptions = EPSSetFromOptions_Arnoldi;
256:   eps->ops->destroy        = EPSDestroy_Arnoldi;
257:   eps->ops->view           = EPSView_Arnoldi;
258:   eps->ops->backtransform  = EPSBackTransform_Default;
259:   eps->ops->computevectors = EPSComputeVectors_Schur;

261:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSArnoldiSetDelayed_C",EPSArnoldiSetDelayed_Arnoldi));
262:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSArnoldiGetDelayed_C",EPSArnoldiGetDelayed_Arnoldi));
263:   PetscFunctionReturn(PETSC_SUCCESS);
264: }