Actual source code: davidson.c

slepc-3.22.2 2024-12-02
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    Skeleton of Davidson solver. Actual solvers are GD and JD.

 13:    References:

 15:        [1] E. Romero and J.E. Roman, "A parallel implementation of Davidson
 16:            methods for large-scale eigenvalue problems in SLEPc", ACM Trans.
 17:            Math. Software 40(2):13, 2014.
 18: */

 20: #include "davidson.h"

 22: static PetscBool  cited = PETSC_FALSE;
 23: static const char citation[] =
 24:   "@Article{slepc-davidson,\n"
 25:   "   author = \"E. Romero and J. E. Roman\",\n"
 26:   "   title = \"A parallel implementation of {Davidson} methods for large-scale eigenvalue problems in {SLEPc}\",\n"
 27:   "   journal = \"{ACM} Trans. Math. Software\",\n"
 28:   "   volume = \"40\",\n"
 29:   "   number = \"2\",\n"
 30:   "   pages = \"13:1--13:29\",\n"
 31:   "   year = \"2014,\"\n"
 32:   "   doi = \"https://doi.org/10.1145/2543696\"\n"
 33:   "}\n";

 35: PetscErrorCode EPSSetUp_XD(EPS eps)
 36: {
 37:   EPS_DAVIDSON   *data = (EPS_DAVIDSON*)eps->data;
 38:   dvdDashboard   *dvd = &data->ddb;
 39:   dvdBlackboard  b;
 40:   PetscInt       min_size_V,bs,initv,nmat;
 41:   Mat            A,B;
 42:   KSP            ksp;
 43:   PetscBool      ipB,ispositive;
 44:   HarmType_t     harm;
 45:   InitType_t     init;
 46:   PetscScalar    target;

 48:   PetscFunctionBegin;
 49:   EPSCheckNotStructured(eps);
 50:   /* Setup EPS options and get the problem specification */
 51:   bs = data->blocksize;
 52:   if (bs <= 0) bs = 1;
 53:   if (eps->ncv!=PETSC_DETERMINE) {
 54:     PetscCheck(eps->ncv>=eps->nev,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The value of ncv must be at least nev");
 55:   } else if (eps->mpd!=PETSC_DETERMINE) eps->ncv = eps->mpd + eps->nev + bs;
 56:   else if (eps->n < 10) eps->ncv = eps->n+eps->nev+bs;
 57:   else if (eps->nev < 500) eps->ncv = PetscMax(eps->nev,PetscMin(eps->n-bs,PetscMax(2*eps->nev,eps->nev+15))+bs);
 58:   else eps->ncv = PetscMax(eps->nev,PetscMin(eps->n-bs,eps->nev+500)+bs);
 59:   if (eps->mpd==PETSC_DETERMINE) eps->mpd = PetscMin(eps->n,eps->ncv);
 60:   PetscCheck(eps->mpd<=eps->ncv,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The mpd parameter has to be less than or equal to ncv");
 61:   PetscCheck(eps->mpd>=2,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The mpd parameter has to be greater than 2");
 62:   if (eps->max_it == PETSC_DETERMINE) eps->max_it = PetscMax(100*eps->ncv,2*eps->n);
 63:   if (!eps->which) eps->which = EPS_LARGEST_MAGNITUDE;
 64:   PetscCheck(eps->nev+bs<=eps->ncv,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The value of ncv has to be greater than nev plus blocksize");
 65:   PetscCheck(!eps->trueres,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"-eps_true_residual is disabled in this solver.");
 66:   EPSCheckUnsupported(eps,EPS_FEATURE_REGION | EPS_FEATURE_TWOSIDED);

 68:   if (!data->minv) data->minv = (eps->n && eps->n<10)? 1: PetscMin(PetscMax(bs,6),eps->mpd/2);
 69:   min_size_V = data->minv;
 70:   PetscCheck(min_size_V+bs<=eps->mpd,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The value of minv must be less than mpd minus blocksize");
 71:   if (data->plusk == PETSC_DETERMINE) {
 72:     if (eps->problem_type == EPS_GHIEP || eps->nev+bs>eps->ncv) data->plusk = 0;
 73:     else data->plusk = 1;
 74:   }
 75:   if (!data->initialsize) data->initialsize = (eps->n && eps->n<10)? 1: 6;
 76:   initv = data->initialsize;
 77:   PetscCheck(eps->mpd>=initv,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The initv parameter has to be less than or equal to mpd");

 79:   /* Change the default sigma to inf if necessary */
 80:   if (eps->which == EPS_LARGEST_MAGNITUDE || eps->which == EPS_LARGEST_REAL || eps->which == EPS_LARGEST_IMAGINARY) PetscCall(STSetDefaultShift(eps->st,PETSC_MAX_REAL));

 82:   /* Set up preconditioner */
 83:   PetscCall(STSetUp(eps->st));

 85:   /* Setup problem specification in dvd */
 86:   PetscCall(STGetNumMatrices(eps->st,&nmat));
 87:   PetscCall(STGetMatrix(eps->st,0,&A));
 88:   if (nmat>1) PetscCall(STGetMatrix(eps->st,1,&B));
 89:   PetscCall(EPSReset_XD(eps));
 90:   PetscCall(PetscMemzero(dvd,sizeof(dvdDashboard)));
 91:   dvd->A = A; dvd->B = eps->isgeneralized? B: NULL;
 92:   ispositive = eps->ispositive;
 93:   dvd->sA = DVD_MAT_IMPLICIT | (eps->ishermitian? DVD_MAT_HERMITIAN: 0) | ((ispositive && !eps->isgeneralized) ? DVD_MAT_POS_DEF: 0);
 94:   /* Assume -eps_hermitian means hermitian-definite in generalized problems */
 95:   if (!ispositive && !eps->isgeneralized && eps->ishermitian) ispositive = PETSC_TRUE;
 96:   if (!eps->isgeneralized) dvd->sB = DVD_MAT_IMPLICIT | DVD_MAT_HERMITIAN | DVD_MAT_IDENTITY | DVD_MAT_UNITARY | DVD_MAT_POS_DEF;
 97:   else dvd->sB = DVD_MAT_IMPLICIT | (eps->ishermitian? DVD_MAT_HERMITIAN: 0) | (ispositive? DVD_MAT_POS_DEF: 0);
 98:   ipB = (dvd->B && data->ipB && DVD_IS(dvd->sB,DVD_MAT_HERMITIAN))?PETSC_TRUE:PETSC_FALSE;
 99:   dvd->sEP = ((!eps->isgeneralized || (eps->isgeneralized && ipB))? DVD_EP_STD: 0) | (ispositive? DVD_EP_HERMITIAN: 0) | ((eps->problem_type == EPS_GHIEP && ipB) ? DVD_EP_INDEFINITE : 0);
100:   if (data->ipB && !ipB) data->ipB = PETSC_FALSE;
101:   dvd->correctXnorm = (dvd->B && (DVD_IS(dvd->sB,DVD_MAT_HERMITIAN)||DVD_IS(dvd->sEP,DVD_EP_INDEFINITE)))?PETSC_TRUE:PETSC_FALSE;
102:   dvd->nev        = eps->nev;
103:   dvd->which      = eps->which;
104:   dvd->withTarget = PETSC_TRUE;
105:   switch (eps->which) {
106:     case EPS_TARGET_MAGNITUDE:
107:     case EPS_TARGET_IMAGINARY:
108:       dvd->target[0] = target = eps->target;
109:       dvd->target[1] = 1.0;
110:       break;
111:     case EPS_TARGET_REAL:
112:       dvd->target[0] = PetscRealPart(target = eps->target);
113:       dvd->target[1] = 1.0;
114:       break;
115:     case EPS_LARGEST_REAL:
116:     case EPS_LARGEST_MAGNITUDE:
117:     case EPS_LARGEST_IMAGINARY: /* TODO: think about this case */
118:       dvd->target[0] = 1.0;
119:       dvd->target[1] = target = 0.0;
120:       break;
121:     case EPS_SMALLEST_MAGNITUDE:
122:     case EPS_SMALLEST_REAL:
123:     case EPS_SMALLEST_IMAGINARY: /* TODO: think about this case */
124:       dvd->target[0] = target = 0.0;
125:       dvd->target[1] = 1.0;
126:       break;
127:     case EPS_WHICH_USER:
128:       PetscCall(STGetShift(eps->st,&target));
129:       dvd->target[0] = target;
130:       dvd->target[1] = 1.0;
131:       break;
132:     case EPS_ALL:
133:       SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver does not support computing all eigenvalues");
134:     default:
135:       SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Unsupported value of option 'which'");
136:   }
137:   dvd->tol = SlepcDefaultTol(eps->tol);
138:   dvd->eps = eps;

140:   /* Setup the extraction technique */
141:   if (!eps->extraction) {
142:     if (ipB || ispositive) eps->extraction = EPS_RITZ;
143:     else {
144:       switch (eps->which) {
145:         case EPS_TARGET_REAL:
146:         case EPS_TARGET_MAGNITUDE:
147:         case EPS_TARGET_IMAGINARY:
148:         case EPS_SMALLEST_MAGNITUDE:
149:         case EPS_SMALLEST_REAL:
150:         case EPS_SMALLEST_IMAGINARY:
151:           eps->extraction = EPS_HARMONIC;
152:           break;
153:         case EPS_LARGEST_REAL:
154:         case EPS_LARGEST_MAGNITUDE:
155:         case EPS_LARGEST_IMAGINARY:
156:           eps->extraction = EPS_HARMONIC_LARGEST;
157:           break;
158:         default:
159:           eps->extraction = EPS_RITZ;
160:       }
161:     }
162:   }
163:   switch (eps->extraction) {
164:     case EPS_RITZ:              harm = DVD_HARM_NONE; break;
165:     case EPS_HARMONIC:          harm = DVD_HARM_RR; break;
166:     case EPS_HARMONIC_RELATIVE: harm = DVD_HARM_RRR; break;
167:     case EPS_HARMONIC_RIGHT:    harm = DVD_HARM_REIGS; break;
168:     case EPS_HARMONIC_LARGEST:  harm = DVD_HARM_LEIGS; break;
169:     default: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Unsupported extraction type");
170:   }

172:   /* Setup the type of starting subspace */
173:   init = data->krylovstart? DVD_INITV_KRYLOV: DVD_INITV_CLASSIC;

175:   /* Preconfigure dvd */
176:   PetscCall(STGetKSP(eps->st,&ksp));
177:   PetscCall(dvd_schm_basic_preconf(dvd,&b,eps->mpd,min_size_V,bs,initv,PetscAbs(eps->nini),data->plusk,harm,ksp,init,eps->trackall,data->ipB,data->doubleexp));

179:   /* Allocate memory */
180:   PetscCall(EPSAllocateSolution(eps,0));

182:   /* Setup orthogonalization */
183:   PetscCall(EPS_SetInnerProduct(eps));
184:   if (!(ipB && dvd->B)) PetscCall(BVSetMatrix(eps->V,NULL,PETSC_FALSE));

186:   /* Configure dvd for a basic GD */
187:   PetscCall(dvd_schm_basic_conf(dvd,&b,eps->mpd,min_size_V,bs,initv,PetscAbs(eps->nini),data->plusk,harm,dvd->withTarget,target,ksp,data->fix,init,eps->trackall,data->ipB,data->dynamic,data->doubleexp));
188:   PetscFunctionReturn(PETSC_SUCCESS);
189: }

191: PetscErrorCode EPSSolve_XD(EPS eps)
192: {
193:   EPS_DAVIDSON   *data = (EPS_DAVIDSON*)eps->data;
194:   dvdDashboard   *d = &data->ddb;
195:   PetscInt       l,k;

197:   PetscFunctionBegin;
198:   PetscCall(PetscCitationsRegister(citation,&cited));
199:   /* Call the starting routines */
200:   PetscCall(EPSDavidsonFLCall(d->startList,d));

202:   while (eps->reason == EPS_CONVERGED_ITERATING) {

204:     /* Initialize V, if it is needed */
205:     PetscCall(BVGetActiveColumns(d->eps->V,&l,&k));
206:     if (PetscUnlikely(l == k)) PetscCall(d->initV(d));

208:     /* Find the best approximated eigenpairs in V, X */
209:     PetscCall(d->calcPairs(d));

211:     /* Test for convergence */
212:     PetscCall((*eps->stopping)(eps,eps->its,eps->max_it,eps->nconv,eps->nev,&eps->reason,eps->stoppingctx));
213:     if (eps->reason != EPS_CONVERGED_ITERATING) break;

215:     /* Expand the subspace */
216:     PetscCall(d->updateV(d));

218:     /* Monitor progress */
219:     eps->nconv = d->nconv;
220:     eps->its++;
221:     PetscCall(BVGetActiveColumns(d->eps->V,NULL,&k));
222:     PetscCall(EPSMonitor(eps,eps->its,eps->nconv+d->npreconv,eps->eigr,eps->eigi,eps->errest,PetscMin(k,eps->nev)));
223:   }

225:   /* Call the ending routines */
226:   PetscCall(EPSDavidsonFLCall(d->endList,d));
227:   PetscFunctionReturn(PETSC_SUCCESS);
228: }

230: PetscErrorCode EPSReset_XD(EPS eps)
231: {
232:   EPS_DAVIDSON   *data = (EPS_DAVIDSON*)eps->data;
233:   dvdDashboard   *dvd = &data->ddb;

235:   PetscFunctionBegin;
236:   /* Call step destructors and destroys the list */
237:   PetscCall(EPSDavidsonFLCall(dvd->destroyList,dvd));
238:   PetscCall(EPSDavidsonFLDestroy(&dvd->destroyList));
239:   PetscCall(EPSDavidsonFLDestroy(&dvd->startList));
240:   PetscCall(EPSDavidsonFLDestroy(&dvd->endList));
241:   PetscFunctionReturn(PETSC_SUCCESS);
242: }

244: PetscErrorCode EPSXDSetKrylovStart_XD(EPS eps,PetscBool krylovstart)
245: {
246:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

248:   PetscFunctionBegin;
249:   data->krylovstart = krylovstart;
250:   PetscFunctionReturn(PETSC_SUCCESS);
251: }

253: PetscErrorCode EPSXDGetKrylovStart_XD(EPS eps,PetscBool *krylovstart)
254: {
255:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

257:   PetscFunctionBegin;
258:   *krylovstart = data->krylovstart;
259:   PetscFunctionReturn(PETSC_SUCCESS);
260: }

262: PetscErrorCode EPSXDSetBlockSize_XD(EPS eps,PetscInt blocksize)
263: {
264:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

266:   PetscFunctionBegin;
267:   if (blocksize == PETSC_DEFAULT || blocksize == PETSC_DECIDE) blocksize = 1;
268:   PetscCheck(blocksize>0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid blocksize value, must be >0");
269:   if (data->blocksize != blocksize) {
270:     data->blocksize = blocksize;
271:     eps->state      = EPS_STATE_INITIAL;
272:   }
273:   PetscFunctionReturn(PETSC_SUCCESS);
274: }

276: PetscErrorCode EPSXDGetBlockSize_XD(EPS eps,PetscInt *blocksize)
277: {
278:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

280:   PetscFunctionBegin;
281:   *blocksize = data->blocksize;
282:   PetscFunctionReturn(PETSC_SUCCESS);
283: }

285: PetscErrorCode EPSXDSetRestart_XD(EPS eps,PetscInt minv,PetscInt plusk)
286: {
287:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

289:   PetscFunctionBegin;
290:   if (minv == PETSC_DETERMINE) {
291:     if (data->minv != 0) eps->state = EPS_STATE_INITIAL;
292:     data->minv = 0;
293:   } else if (minv != PETSC_CURRENT) {
294:     PetscCheck(minv>0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid minv value, must be >0");
295:     if (data->minv != minv) eps->state = EPS_STATE_INITIAL;
296:     data->minv = minv;
297:   }
298:   if (plusk == PETSC_DETERMINE) {
299:     if (data->plusk != PETSC_DETERMINE) eps->state = EPS_STATE_INITIAL;
300:     data->plusk = PETSC_DETERMINE;
301:   } else if (plusk != PETSC_CURRENT) {
302:     PetscCheck(plusk>=0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid plusk value, must be >0");
303:     if (data->plusk != plusk) eps->state = EPS_STATE_INITIAL;
304:     data->plusk = plusk;
305:   }
306:   PetscFunctionReturn(PETSC_SUCCESS);
307: }

309: PetscErrorCode EPSXDGetRestart_XD(EPS eps,PetscInt *minv,PetscInt *plusk)
310: {
311:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

313:   PetscFunctionBegin;
314:   if (minv) *minv = data->minv;
315:   if (plusk) *plusk = data->plusk;
316:   PetscFunctionReturn(PETSC_SUCCESS);
317: }

319: PetscErrorCode EPSXDGetInitialSize_XD(EPS eps,PetscInt *initialsize)
320: {
321:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

323:   PetscFunctionBegin;
324:   *initialsize = data->initialsize;
325:   PetscFunctionReturn(PETSC_SUCCESS);
326: }

328: PetscErrorCode EPSXDSetInitialSize_XD(EPS eps,PetscInt initialsize)
329: {
330:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

332:   PetscFunctionBegin;
333:   if (initialsize == PETSC_DEFAULT || initialsize == PETSC_DECIDE) initialsize = 0;
334:   else PetscCheck(initialsize>0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid initial size value, must be >0");
335:   if (data->initialsize != initialsize) {
336:     data->initialsize = initialsize;
337:     eps->state        = EPS_STATE_INITIAL;
338:   }
339:   PetscFunctionReturn(PETSC_SUCCESS);
340: }

342: PetscErrorCode EPSXDSetBOrth_XD(EPS eps,PetscBool borth)
343: {
344:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

346:   PetscFunctionBegin;
347:   data->ipB = borth;
348:   PetscFunctionReturn(PETSC_SUCCESS);
349: }

351: PetscErrorCode EPSXDGetBOrth_XD(EPS eps,PetscBool *borth)
352: {
353:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

355:   PetscFunctionBegin;
356:   *borth = data->ipB;
357:   PetscFunctionReturn(PETSC_SUCCESS);
358: }

360: /*
361:   EPSComputeVectors_XD - Compute eigenvectors from the vectors
362:   provided by the eigensolver. This version is intended for solvers
363:   that provide Schur vectors from the QZ decomposition. Given the partial
364:   Schur decomposition OP*V=V*T, the following steps are performed:
365:       1) compute eigenvectors of (S,T): S*Z=T*Z*D
366:       2) compute eigenvectors of OP: X=V*Z
367:  */
368: PetscErrorCode EPSComputeVectors_XD(EPS eps)
369: {
370:   Mat            X;
371:   PetscBool      symm;

373:   PetscFunctionBegin;
374:   PetscCall(PetscObjectTypeCompare((PetscObject)eps->ds,DSHEP,&symm));
375:   if (symm) PetscFunctionReturn(PETSC_SUCCESS);
376:   PetscCall(DSVectors(eps->ds,DS_MAT_X,NULL,NULL));

378:   /* V <- V * X */
379:   PetscCall(DSGetMat(eps->ds,DS_MAT_X,&X));
380:   PetscCall(BVSetActiveColumns(eps->V,0,eps->nconv));
381:   PetscCall(BVMultInPlace(eps->V,X,0,eps->nconv));
382:   PetscCall(DSRestoreMat(eps->ds,DS_MAT_X,&X));
383:   PetscFunctionReturn(PETSC_SUCCESS);
384: }