Actual source code: bvbiorthog.c

slepc-main 2024-11-09
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    BV bi-orthogonalization routines
 12: */

 14: #include <slepc/private/bvimpl.h>

 16: /*
 17:    BVBiorthogonalizeMGS1 - Compute one step of Modified Gram-Schmidt bi-orthogonalization
 18: */
 19: static PetscErrorCode BVBiorthogonalizeMGS1(BV V,BV W,Vec v,PetscScalar *h,PetscScalar *c)
 20: {
 21:   PetscInt       i;
 22:   PetscScalar    dot;
 23:   Vec            vi,wi;

 25:   PetscFunctionBegin;
 26:   for (i=-V->nc;i<V->k;i++) {
 27:     PetscCall(BVGetColumn(W,i,&wi));
 28:     /* h_i = (v, w_i) */
 29:     PetscCall(VecDot(v,wi,&dot));
 30:     PetscCall(BVRestoreColumn(W,i,&wi));
 31:     /* v <- v - h_i v_i */
 32:     PetscCall(BV_SetValue(V,i,0,c,dot));
 33:     PetscCall(BVGetColumn(V,i,&vi));
 34:     PetscCall(VecAXPY(v,-dot,vi));
 35:     PetscCall(BVRestoreColumn(V,i,&vi));
 36:   }
 37:   PetscCall(BV_AddCoefficients(V,V->k,h,c));
 38:   PetscFunctionReturn(PETSC_SUCCESS);
 39: }

 41: /*
 42:    BVBiorthogonalizeCGS1 - Compute one step of CGS bi-orthogonalization: v = (I-V*W')*v
 43: */
 44: static PetscErrorCode BVBiorthogonalizeCGS1(BV V,BV W,Vec v,PetscScalar *h,PetscScalar *c)
 45: {
 46:   PetscFunctionBegin;
 47:   /* h = W'*v */
 48:   PetscCall(BVDotVec(W,v,c));

 50:   /* v = v - V h */
 51:   PetscCall(BVMultVec(V,-1.0,1.0,v,c));

 53:   PetscCall(BV_AddCoefficients(V,V->k,h,c));
 54:   PetscFunctionReturn(PETSC_SUCCESS);
 55: }

 57: #define BVBiorthogonalizeGS1(a,b,c,d,e) ((V->orthog_type==BV_ORTHOG_MGS)?BVBiorthogonalizeMGS1:BVBiorthogonalizeCGS1)(a,b,c,d,e)

 59: /*
 60:    BVBiorthogonalizeGS - Orthogonalize with (classical or modified) Gram-Schmidt

 62:    V, W - the two basis vectors objects
 63:    v    - the vector to bi-orthogonalize
 64: */
 65: static PetscErrorCode BVBiorthogonalizeGS(BV V,BV W,Vec v)
 66: {
 67:   PetscScalar    *h,*c;

 69:   PetscFunctionBegin;
 70:   h = V->h;
 71:   c = V->c;
 72:   PetscCall(BV_CleanCoefficients(V,V->k,h));
 73:   PetscCall(BVBiorthogonalizeGS1(V,W,v,h,c));
 74:   if (V->orthog_ref!=BV_ORTHOG_REFINE_NEVER) PetscCall(BVBiorthogonalizeGS1(V,W,v,h,c));
 75:   PetscFunctionReturn(PETSC_SUCCESS);
 76: }

 78: /*@
 79:    BVBiorthogonalizeColumn - Bi-orthogonalize a column of two BV objects.

 81:    Collective

 83:    Input Parameters:
 84: +  V - first basis vectors context
 85: .  W - second basis vectors context
 86: -  j - index of column to be bi-orthonormalized

 88:    Notes:
 89:    This function bi-orthogonalizes vectors V[j],W[j] against W[0..j-1],
 90:    and V[0..j-1], respectively, so that W[0..j]'*V[0..j] = diagonal.

 92:    Level: advanced

 94: .seealso: BVOrthogonalizeColumn(), BVBiorthonormalizeColumn()
 95: @*/
 96: PetscErrorCode BVBiorthogonalizeColumn(BV V,BV W,PetscInt j)
 97: {
 98:   PetscInt       ksavev,lsavev,ksavew,lsavew;
 99:   Vec            y,z;

101:   PetscFunctionBegin;
106:   BVCheckSizes(V,1);
108:   BVCheckSizes(W,2);
109:   PetscCheckSameTypeAndComm(V,1,W,2);
110:   PetscCheck(j>=0,PetscObjectComm((PetscObject)V),PETSC_ERR_ARG_OUTOFRANGE,"Index j must be non-negative");
111:   PetscCheck(j<V->m,PetscObjectComm((PetscObject)V),PETSC_ERR_ARG_OUTOFRANGE,"Index j=%" PetscInt_FMT " but V only has %" PetscInt_FMT " columns",j,V->m);
112:   PetscCheck(j<W->m,PetscObjectComm((PetscObject)V),PETSC_ERR_ARG_OUTOFRANGE,"Index j=%" PetscInt_FMT " but W only has %" PetscInt_FMT " columns",j,W->m);
113:   PetscCheck(V->n==W->n,PetscObjectComm((PetscObject)V),PETSC_ERR_ARG_INCOMP,"Mismatching local dimension V %" PetscInt_FMT ", W %" PetscInt_FMT,V->n,W->n);
114:   PetscCheck(!V->matrix && !W->matrix,PetscObjectComm((PetscObject)V),PETSC_ERR_ARG_WRONGSTATE,"V,W must not have an inner product matrix");
115:   PetscCheck(!V->nc && !W->nc,PetscObjectComm((PetscObject)V),PETSC_ERR_ARG_WRONGSTATE,"V,W cannot have different number of constraints");
116:   PetscCheck(!V->ops->gramschmidt && !W->ops->gramschmidt,PetscObjectComm((PetscObject)V),PETSC_ERR_SUP,"Object has a special GS function");

118:   /* bi-orthogonalize */
119:   PetscCall(PetscLogEventBegin(BV_OrthogonalizeVec,V,0,0,0));
120:   ksavev = V->k;
121:   lsavev = V->l;
122:   ksavew = W->k;
123:   lsavew = W->l;
124:   V->k = j;
125:   V->l = -V->nc;  /* must also bi-orthogonalize against constraints and leading columns */
126:   W->k = j;
127:   W->l = -W->nc;
128:   PetscCall(BV_AllocateCoeffs(V));
129:   PetscCall(BV_AllocateCoeffs(W));
130:   PetscCall(BVGetColumn(V,j,&y));
131:   PetscCall(BVBiorthogonalizeGS(V,W,y));
132:   PetscCall(BVRestoreColumn(V,j,&y));
133:   PetscCall(BVGetColumn(W,j,&z));
134:   PetscCall(BVBiorthogonalizeGS(W,V,z));
135:   PetscCall(BVRestoreColumn(W,j,&z));
136:   V->k = ksavev;
137:   V->l = lsavev;
138:   W->k = ksavew;
139:   W->l = lsavew;
140:   PetscCall(PetscLogEventEnd(BV_OrthogonalizeVec,V,0,0,0));
141:   PetscCall(PetscObjectStateIncrease((PetscObject)V));
142:   PetscCall(PetscObjectStateIncrease((PetscObject)W));
143:   PetscFunctionReturn(PETSC_SUCCESS);
144: }

146: /*@
147:    BVBiorthonormalizeColumn - Bi-orthonormalize a column of two BV objects.

149:    Collective

151:    Input Parameters:
152: +  V - first basis vectors context
153: .  W - second basis vectors context
154: -  j - index of column to be bi-orthonormalized

156:    Output Parameters:
157: .  delta - (optional) value used for normalization

159:    Notes:
160:    This function first bi-orthogonalizes vectors V[j],W[j] against W[0..j-1],
161:    and V[0..j-1], respectively. Then, it scales the vectors with 1/delta, so
162:    that the resulting vectors satisfy W[j]'*V[j] = 1.

164:    Level: advanced

166: .seealso: BVOrthonormalizeColumn(), BVBiorthogonalizeColumn()
167: @*/
168: PetscErrorCode BVBiorthonormalizeColumn(BV V,BV W,PetscInt j,PetscReal *delta)
169: {
170:   PetscScalar    alpha;
171:   PetscReal      deltat;
172:   PetscInt       ksavev,lsavev,ksavew,lsavew;
173:   Vec            y,z;

175:   PetscFunctionBegin;
180:   BVCheckSizes(V,1);
182:   BVCheckSizes(W,2);
183:   PetscCheckSameTypeAndComm(V,1,W,2);
184:   PetscCheck(j>=0,PetscObjectComm((PetscObject)V),PETSC_ERR_ARG_OUTOFRANGE,"Index j must be non-negative");
185:   PetscCheck(j<V->m,PetscObjectComm((PetscObject)V),PETSC_ERR_ARG_OUTOFRANGE,"Index j=%" PetscInt_FMT " but V only has %" PetscInt_FMT " columns",j,V->m);
186:   PetscCheck(j<W->m,PetscObjectComm((PetscObject)V),PETSC_ERR_ARG_OUTOFRANGE,"Index j=%" PetscInt_FMT " but W only has %" PetscInt_FMT " columns",j,W->m);
187:   PetscCheck(V->n==W->n,PetscObjectComm((PetscObject)V),PETSC_ERR_ARG_INCOMP,"Mismatching local dimension V %" PetscInt_FMT ", W %" PetscInt_FMT,V->n,W->n);
188:   PetscCheck(!V->matrix && !W->matrix,PetscObjectComm((PetscObject)V),PETSC_ERR_ARG_WRONGSTATE,"V,W must not have an inner product matrix");
189:   PetscCheck(!V->nc && !W->nc,PetscObjectComm((PetscObject)V),PETSC_ERR_ARG_WRONGSTATE,"V,W cannot have different number of constraints");
190:   PetscCheck(!V->ops->gramschmidt && !W->ops->gramschmidt,PetscObjectComm((PetscObject)V),PETSC_ERR_SUP,"Object has a special GS function");

192:   /* bi-orthogonalize */
193:   PetscCall(PetscLogEventBegin(BV_OrthogonalizeVec,V,0,0,0));
194:   ksavev = V->k;
195:   lsavev = V->l;
196:   ksavew = W->k;
197:   lsavew = W->l;
198:   V->k = j;
199:   V->l = -V->nc;  /* must also bi-orthogonalize against constraints and leading columns */
200:   W->k = j;
201:   W->l = -W->nc;
202:   PetscCall(BV_AllocateCoeffs(V));
203:   PetscCall(BV_AllocateCoeffs(W));
204:   PetscCall(BVGetColumn(V,j,&y));
205:   PetscCall(BVBiorthogonalizeGS(V,W,y));
206:   PetscCall(BVRestoreColumn(V,j,&y));
207:   PetscCall(BVGetColumn(W,j,&z));
208:   PetscCall(BVBiorthogonalizeGS(W,V,z));
209:   PetscCall(BVRestoreColumn(W,j,&z));
210:   V->k = ksavev;
211:   V->l = lsavev;
212:   W->k = ksavew;
213:   W->l = lsavew;
214:   PetscCall(PetscLogEventEnd(BV_OrthogonalizeVec,V,0,0,0));

216:   /* scale */
217:   PetscCall(PetscLogEventBegin(BV_Scale,V,0,0,0));
218:   PetscCall(BVGetColumn(V,j,&y));
219:   PetscCall(BVGetColumn(W,j,&z));
220:   PetscCall(VecDot(z,y,&alpha));
221:   PetscCall(BVRestoreColumn(V,j,&y));
222:   PetscCall(BVRestoreColumn(W,j,&z));
223:   deltat = PetscSqrtReal(PetscAbsScalar(alpha));
224:   PetscUseTypeMethod(V,scale,j,1.0/PetscConj(alpha/deltat));
225:   PetscUseTypeMethod(W,scale,j,1.0/deltat);
226:   PetscCall(PetscLogEventEnd(BV_Scale,V,0,0,0));
227:   if (delta) *delta = deltat;
228:   PetscCall(PetscObjectStateIncrease((PetscObject)V));
229:   PetscCall(PetscObjectStateIncrease((PetscObject)W));
230:   PetscFunctionReturn(PETSC_SUCCESS);
231: }