Actual source code: lyapii.c

slepc-main 2025-01-19
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    SLEPc eigensolver: "lyapii"

 13:    Method: Lyapunov inverse iteration

 15:    Algorithm:

 17:        Lyapunov inverse iteration using LME solvers

 19:    References:

 21:        [1] H.C. Elman and M. Wu, "Lyapunov inverse iteration for computing a
 22:            few rightmost eigenvalues of large generalized eigenvalue problems",
 23:            SIAM J. Matrix Anal. Appl. 34(4):1685-1707, 2013.

 25:        [2] K. Meerbergen and A. Spence, "Inverse iteration for purely imaginary
 26:            eigenvalues with application to the detection of Hopf bifurcations in
 27:            large-scale problems", SIAM J. Matrix Anal. Appl. 31:1982-1999, 2010.
 28: */

 30: #include <slepc/private/epsimpl.h>
 31: #include <slepcblaslapack.h>

 33: typedef struct {
 34:   LME      lme;      /* Lyapunov solver */
 35:   DS       ds;       /* used to compute the SVD for compression */
 36:   PetscInt rkl;      /* prescribed rank for the Lyapunov solver */
 37:   PetscInt rkc;      /* the compressed rank, cannot be larger than rkl */
 38: } EPS_LYAPII;

 40: typedef struct {
 41:   Mat      S;        /* the operator matrix, S=A^{-1}*B */
 42:   BV       Q;        /* orthogonal basis of converged eigenvectors */
 43: } EPS_LYAPII_MATSHELL;

 45: typedef struct {
 46:   Mat      S;        /* the matrix from which the implicit operator is built */
 47:   PetscInt n;        /* the size of matrix S, the operator is nxn */
 48:   LME      lme;      /* dummy LME object */
 49: #if defined(PETSC_USE_COMPLEX)
 50:   Mat      A,B,F;
 51:   Vec      w;
 52: #endif
 53: } EPS_EIG_MATSHELL;

 55: static PetscErrorCode EPSSetUp_LyapII(EPS eps)
 56: {
 57:   PetscRandom    rand;
 58:   EPS_LYAPII     *ctx = (EPS_LYAPII*)eps->data;

 60:   PetscFunctionBegin;
 61:   EPSCheckSinvert(eps);
 62:   EPSCheckNotStructured(eps);
 63:   if (eps->nev==0) eps->nev = 1;
 64:   if (eps->ncv!=PETSC_DETERMINE) {
 65:     PetscCheck(eps->ncv>=eps->nev+1,PetscObjectComm((PetscObject)eps),PETSC_ERR_USER_INPUT,"The value of ncv must be at least nev+1");
 66:   } else eps->ncv = eps->nev+1;
 67:   if (eps->mpd!=PETSC_DETERMINE) PetscCall(PetscInfo(eps,"Warning: parameter mpd ignored\n"));
 68:   if (eps->max_it==PETSC_DETERMINE) eps->max_it = PetscMax(1000*eps->nev,100*eps->n);
 69:   if (!eps->which) eps->which=EPS_LARGEST_REAL;
 70:   PetscCheck(eps->which==EPS_LARGEST_REAL,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver supports only largest real eigenvalues");
 71:   EPSCheckUnsupported(eps,EPS_FEATURE_BALANCE | EPS_FEATURE_ARBITRARY | EPS_FEATURE_REGION | EPS_FEATURE_EXTRACTION | EPS_FEATURE_THRESHOLD | EPS_FEATURE_TWOSIDED);

 73:   if (!ctx->rkc) ctx->rkc = 10;
 74:   if (!ctx->rkl) ctx->rkl = 3*ctx->rkc;
 75:   if (!ctx->lme) PetscCall(EPSLyapIIGetLME(eps,&ctx->lme));
 76:   PetscCall(LMESetProblemType(ctx->lme,LME_LYAPUNOV));
 77:   PetscCall(LMESetErrorIfNotConverged(ctx->lme,PETSC_TRUE));

 79:   if (!ctx->ds) {
 80:     PetscCall(DSCreate(PetscObjectComm((PetscObject)eps),&ctx->ds));
 81:     PetscCall(DSSetType(ctx->ds,DSSVD));
 82:   }
 83:   PetscCall(DSAllocate(ctx->ds,ctx->rkl));

 85:   PetscCall(DSSetType(eps->ds,DSNHEP));
 86:   PetscCall(DSAllocate(eps->ds,eps->ncv));

 88:   PetscCall(EPSAllocateSolution(eps,0));
 89:   PetscCall(BVGetRandomContext(eps->V,&rand));  /* make sure the random context is available when duplicating */
 90:   PetscCall(EPSSetWorkVecs(eps,3));
 91:   PetscFunctionReturn(PETSC_SUCCESS);
 92: }

 94: static PetscErrorCode MatMult_EPSLyapIIOperator(Mat M,Vec x,Vec r)
 95: {
 96:   EPS_LYAPII_MATSHELL *matctx;

 98:   PetscFunctionBegin;
 99:   PetscCall(MatShellGetContext(M,&matctx));
100:   PetscCall(MatMult(matctx->S,x,r));
101:   PetscCall(BVOrthogonalizeVec(matctx->Q,r,NULL,NULL,NULL));
102:   PetscFunctionReturn(PETSC_SUCCESS);
103: }

105: static PetscErrorCode MatDestroy_EPSLyapIIOperator(Mat M)
106: {
107:   EPS_LYAPII_MATSHELL *matctx;

109:   PetscFunctionBegin;
110:   PetscCall(MatShellGetContext(M,&matctx));
111:   PetscCall(MatDestroy(&matctx->S));
112:   PetscCall(PetscFree(matctx));
113:   PetscFunctionReturn(PETSC_SUCCESS);
114: }

116: static PetscErrorCode MatMult_EigOperator(Mat M,Vec x,Vec y)
117: {
118:   EPS_EIG_MATSHELL  *matctx;
119: #if !defined(PETSC_USE_COMPLEX)
120:   PetscInt          n,lds;
121:   PetscScalar       *Y,*C,zero=0.0,done=1.0,dtwo=2.0;
122:   const PetscScalar *S,*X;
123:   PetscBLASInt      n_,lds_;
124: #endif

126:   PetscFunctionBegin;
127:   PetscCall(MatShellGetContext(M,&matctx));

129: #if defined(PETSC_USE_COMPLEX)
130:   PetscCall(MatMult(matctx->B,x,matctx->w));
131:   PetscCall(MatSolve(matctx->F,matctx->w,y));
132: #else
133:   PetscCall(VecGetArrayRead(x,&X));
134:   PetscCall(VecGetArray(y,&Y));
135:   PetscCall(MatDenseGetArrayRead(matctx->S,&S));
136:   PetscCall(MatDenseGetLDA(matctx->S,&lds));

138:   n = matctx->n;
139:   PetscCall(PetscCalloc1(n*n,&C));
140:   PetscCall(PetscBLASIntCast(n,&n_));
141:   PetscCall(PetscBLASIntCast(lds,&lds_));

143:   /* C = 2*S*X*S.' */
144:   PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&dtwo,S,&lds_,X,&n_,&zero,Y,&n_));
145:   PetscCallBLAS("BLASgemm",BLASgemm_("N","T",&n_,&n_,&n_,&done,Y,&n_,S,&lds_,&zero,C,&n_));

147:   /* Solve S*Y + Y*S' = -C */
148:   PetscCall(LMEDenseLyapunov(matctx->lme,n,(PetscScalar*)S,lds,C,n,Y,n));

150:   PetscCall(PetscFree(C));
151:   PetscCall(VecRestoreArrayRead(x,&X));
152:   PetscCall(VecRestoreArray(y,&Y));
153:   PetscCall(MatDenseRestoreArrayRead(matctx->S,&S));
154: #endif
155:   PetscFunctionReturn(PETSC_SUCCESS);
156: }

158: static PetscErrorCode MatDestroy_EigOperator(Mat M)
159: {
160:   EPS_EIG_MATSHELL *matctx;

162:   PetscFunctionBegin;
163:   PetscCall(MatShellGetContext(M,&matctx));
164: #if defined(PETSC_USE_COMPLEX)
165:   PetscCall(MatDestroy(&matctx->A));
166:   PetscCall(MatDestroy(&matctx->B));
167:   PetscCall(MatDestroy(&matctx->F));
168:   PetscCall(VecDestroy(&matctx->w));
169: #else
170:   PetscCall(MatDestroy(&matctx->S));
171: #endif
172:   PetscCall(PetscFree(matctx));
173:   PetscFunctionReturn(PETSC_SUCCESS);
174: }

176: /*
177:    EV2x2: solve the eigenproblem for a 2x2 matrix M
178:  */
179: static PetscErrorCode EV2x2(PetscScalar *M,PetscInt ld,PetscScalar *wr,PetscScalar *wi,PetscScalar *vec)
180: {
181:   PetscBLASInt   lwork=10,ld_;
182:   PetscScalar    work[10];
183:   PetscBLASInt   two=2,info;
184: #if defined(PETSC_USE_COMPLEX)
185:   PetscReal      rwork[6];
186: #endif

188:   PetscFunctionBegin;
189:   PetscCall(PetscBLASIntCast(ld,&ld_));
190:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
191: #if !defined(PETSC_USE_COMPLEX)
192:   PetscCallBLAS("LAPACKgeev",LAPACKgeev_("N","V",&two,M,&ld_,wr,wi,NULL,&ld_,vec,&ld_,work,&lwork,&info));
193: #else
194:   PetscCallBLAS("LAPACKgeev",LAPACKgeev_("N","V",&two,M,&ld_,wr,NULL,&ld_,vec,&ld_,work,&lwork,rwork,&info));
195: #endif
196:   SlepcCheckLapackInfo("geev",info);
197:   PetscCall(PetscFPTrapPop());
198:   PetscFunctionReturn(PETSC_SUCCESS);
199: }

201: /*
202:    LyapIIBuildRHS: prepare the right-hand side of the Lyapunov equation SY + YS' = -2*S*Z*S'
203:    in factored form:
204:       if (V)  U=sqrt(2)*S*V    (uses 1 work vector)
205:       else    U=sqrt(2)*S*U    (uses 2 work vectors)
206:    where U,V are assumed to have rk columns.
207:  */
208: static PetscErrorCode LyapIIBuildRHS(Mat S,PetscInt rk,Mat U,BV V,Vec *work)
209: {
210:   PetscScalar    *array,*uu;
211:   PetscInt       i,nloc;
212:   Vec            v,u=work[0];

214:   PetscFunctionBegin;
215:   PetscCall(MatGetLocalSize(U,&nloc,NULL));
216:   for (i=0;i<rk;i++) {
217:     PetscCall(MatDenseGetColumn(U,i,&array));
218:     if (V) PetscCall(BVGetColumn(V,i,&v));
219:     else {
220:       v = work[1];
221:       PetscCall(VecPlaceArray(v,array));
222:     }
223:     PetscCall(MatMult(S,v,u));
224:     if (V) PetscCall(BVRestoreColumn(V,i,&v));
225:     else PetscCall(VecResetArray(v));
226:     PetscCall(VecScale(u,PETSC_SQRT2));
227:     PetscCall(VecGetArray(u,&uu));
228:     PetscCall(PetscArraycpy(array,uu,nloc));
229:     PetscCall(VecRestoreArray(u,&uu));
230:     PetscCall(MatDenseRestoreColumn(U,&array));
231:   }
232:   PetscFunctionReturn(PETSC_SUCCESS);
233: }

235: /*
236:    LyapIIBuildEigenMat: create shell matrix Op=A\B with A = kron(I,S)+kron(S,I), B = -2*kron(S,S)
237:    where S is a sequential square dense matrix of order n.
238:    v0 is the initial vector, should have the form v0 = w*w' (for instance 1*1')
239:  */
240: static PetscErrorCode LyapIIBuildEigenMat(LME lme,Mat S,Mat *Op,Vec *v0)
241: {
242:   PetscInt          n,m;
243:   PetscBool         create=PETSC_FALSE;
244:   EPS_EIG_MATSHELL  *matctx;
245: #if defined(PETSC_USE_COMPLEX)
246:   PetscScalar       theta,*aa,*bb;
247:   const PetscScalar *ss;
248:   PetscInt          i,j,f,c,off,ld,lds;
249:   IS                perm;
250: #endif

252:   PetscFunctionBegin;
253:   PetscCall(MatGetSize(S,&n,NULL));
254:   if (!*Op) create=PETSC_TRUE;
255:   else {
256:     PetscCall(MatGetSize(*Op,&m,NULL));
257:     if (m!=n*n) create=PETSC_TRUE;
258:   }
259:   if (create) {
260:     PetscCall(MatDestroy(Op));
261:     PetscCall(VecDestroy(v0));
262:     PetscCall(PetscNew(&matctx));
263: #if defined(PETSC_USE_COMPLEX)
264:     PetscCall(MatCreateSeqDense(PETSC_COMM_SELF,n*n,n*n,NULL,&matctx->A));
265:     PetscCall(MatCreateSeqDense(PETSC_COMM_SELF,n*n,n*n,NULL,&matctx->B));
266:     PetscCall(MatCreateVecs(matctx->A,NULL,&matctx->w));
267: #else
268:     PetscCall(MatCreateSeqDense(PETSC_COMM_SELF,n,n,NULL,&matctx->S));
269: #endif
270:     PetscCall(MatCreateShell(PETSC_COMM_SELF,n*n,n*n,PETSC_DETERMINE,PETSC_DETERMINE,matctx,Op));
271:     PetscCall(MatShellSetOperation(*Op,MATOP_MULT,(void(*)(void))MatMult_EigOperator));
272:     PetscCall(MatShellSetOperation(*Op,MATOP_DESTROY,(void(*)(void))MatDestroy_EigOperator));
273:     PetscCall(MatCreateVecs(*Op,NULL,v0));
274:   } else {
275:     PetscCall(MatShellGetContext(*Op,&matctx));
276: #if defined(PETSC_USE_COMPLEX)
277:     PetscCall(MatZeroEntries(matctx->A));
278: #endif
279:   }
280: #if defined(PETSC_USE_COMPLEX)
281:   PetscCall(MatDenseGetArray(matctx->A,&aa));
282:   PetscCall(MatDenseGetArray(matctx->B,&bb));
283:   PetscCall(MatDenseGetArrayRead(S,&ss));
284:   PetscCall(MatDenseGetLDA(S,&lds));
285:   ld = n*n;
286:   for (f=0;f<n;f++) {
287:     off = f*n+f*n*ld;
288:     for (i=0;i<n;i++) for (j=0;j<n;j++) aa[off+i+j*ld] = ss[i+j*lds];
289:     for (c=0;c<n;c++) {
290:       off = f*n+c*n*ld;
291:       theta = ss[f+c*lds];
292:       for (i=0;i<n;i++) aa[off+i+i*ld] += theta;
293:       for (i=0;i<n;i++) for (j=0;j<n;j++) bb[off+i+j*ld] = -2*theta*ss[i+j*lds];
294:     }
295:   }
296:   PetscCall(MatDenseRestoreArray(matctx->A,&aa));
297:   PetscCall(MatDenseRestoreArray(matctx->B,&bb));
298:   PetscCall(MatDenseRestoreArrayRead(S,&ss));
299:   PetscCall(ISCreateStride(PETSC_COMM_SELF,n*n,0,1,&perm));
300:   PetscCall(MatDestroy(&matctx->F));
301:   PetscCall(MatDuplicate(matctx->A,MAT_COPY_VALUES,&matctx->F));
302:   PetscCall(MatLUFactor(matctx->F,perm,perm,NULL));
303:   PetscCall(ISDestroy(&perm));
304: #else
305:   PetscCall(MatCopy(S,matctx->S,SAME_NONZERO_PATTERN));
306: #endif
307:   matctx->lme = lme;
308:   matctx->n = n;
309:   PetscCall(VecSet(*v0,1.0));
310:   PetscFunctionReturn(PETSC_SUCCESS);
311: }

313: static PetscErrorCode EPSSolve_LyapII(EPS eps)
314: {
315:   EPS_LYAPII          *ctx = (EPS_LYAPII*)eps->data;
316:   PetscInt            i,ldds,rk,nloc,mloc,nv,idx,k;
317:   Vec                 v,w,z=eps->work[0],v0=NULL;
318:   Mat                 S,C,Ux[2],Y,Y1,R,U,W,X,Op=NULL;
319:   BV                  V;
320:   BVOrthogType        type;
321:   BVOrthogRefineType  refine;
322:   PetscScalar         eigr[2],eigi[2],*array,er,ei,*uu,*s,*xx,*aa,pM[4],vec[4];
323:   PetscReal           eta;
324:   EPS                 epsrr;
325:   PetscReal           norm;
326:   EPS_LYAPII_MATSHELL *matctx;

328:   PetscFunctionBegin;
329:   PetscCall(DSGetLeadingDimension(ctx->ds,&ldds));

331:   /* Operator for the Lyapunov equation */
332:   PetscCall(PetscNew(&matctx));
333:   PetscCall(STGetOperator(eps->st,&matctx->S));
334:   PetscCall(MatGetLocalSize(matctx->S,&mloc,&nloc));
335:   PetscCall(MatCreateShell(PetscObjectComm((PetscObject)eps),mloc,nloc,PETSC_DETERMINE,PETSC_DETERMINE,matctx,&S));
336:   matctx->Q = eps->V;
337:   PetscCall(MatShellSetOperation(S,MATOP_MULT,(void(*)(void))MatMult_EPSLyapIIOperator));
338:   PetscCall(MatShellSetOperation(S,MATOP_DESTROY,(void(*)(void))MatDestroy_EPSLyapIIOperator));
339:   PetscCall(LMESetCoefficients(ctx->lme,S,NULL,NULL,NULL));

341:   /* Right-hand side */
342:   PetscCall(BVDuplicateResize(eps->V,ctx->rkl,&V));
343:   PetscCall(BVGetOrthogonalization(V,&type,&refine,&eta,NULL));
344:   PetscCall(BVSetOrthogonalization(V,type,refine,eta,BV_ORTHOG_BLOCK_TSQR));
345:   PetscCall(MatCreateDense(PetscObjectComm((PetscObject)eps),eps->nloc,PETSC_DECIDE,PETSC_DECIDE,1,NULL,&Ux[0]));
346:   PetscCall(MatCreateDense(PetscObjectComm((PetscObject)eps),eps->nloc,PETSC_DECIDE,PETSC_DECIDE,2,NULL,&Ux[1]));
347:   nv = ctx->rkl;
348:   PetscCall(PetscMalloc1(nv,&s));

350:   /* Initialize first column */
351:   PetscCall(EPSGetStartVector(eps,0,NULL));
352:   PetscCall(BVGetColumn(eps->V,0,&v));
353:   PetscCall(BVInsertVec(V,0,v));
354:   PetscCall(BVRestoreColumn(eps->V,0,&v));
355:   PetscCall(BVSetActiveColumns(eps->V,0,0));  /* no deflation at the beginning */
356:   PetscCall(LyapIIBuildRHS(S,1,Ux[0],V,eps->work));
357:   idx = 0;

359:   /* EPS for rank reduction */
360:   PetscCall(EPSCreate(PETSC_COMM_SELF,&epsrr));
361:   PetscCall(EPSSetOptionsPrefix(epsrr,((PetscObject)eps)->prefix));
362:   PetscCall(EPSAppendOptionsPrefix(epsrr,"eps_lyapii_"));
363:   PetscCall(EPSSetDimensions(epsrr,1,PETSC_CURRENT,PETSC_CURRENT));
364:   PetscCall(EPSSetTolerances(epsrr,PETSC_MACHINE_EPSILON*100,PETSC_CURRENT));

366:   while (eps->reason == EPS_CONVERGED_ITERATING) {
367:     eps->its++;

369:     /* Matrix for placing the solution of the Lyapunov equation (an alias of V) */
370:     PetscCall(BVSetActiveColumns(V,0,nv));
371:     PetscCall(BVGetMat(V,&Y1));
372:     PetscCall(MatZeroEntries(Y1));
373:     PetscCall(MatCreateLRC(NULL,Y1,NULL,NULL,&Y));
374:     PetscCall(LMESetSolution(ctx->lme,Y));

376:     /* Solve the Lyapunov equation SY + YS' = -2*S*Z*S' */
377:     PetscCall(MatCreateLRC(NULL,Ux[idx],NULL,NULL,&C));
378:     PetscCall(LMESetRHS(ctx->lme,C));
379:     PetscCall(MatDestroy(&C));
380:     PetscCall(LMESolve(ctx->lme));
381:     PetscCall(BVRestoreMat(V,&Y1));
382:     PetscCall(MatDestroy(&Y));

384:     /* SVD of the solution: [Q,R]=qr(V); [U,Sigma,~]=svd(R) */
385:     PetscCall(DSSetDimensions(ctx->ds,nv,0,0));
386:     PetscCall(DSSVDSetDimensions(ctx->ds,nv));
387:     PetscCall(DSGetMat(ctx->ds,DS_MAT_A,&R));
388:     PetscCall(BVOrthogonalize(V,R));
389:     PetscCall(DSRestoreMat(ctx->ds,DS_MAT_A,&R));
390:     PetscCall(DSSetState(ctx->ds,DS_STATE_RAW));
391:     PetscCall(DSSolve(ctx->ds,s,NULL));

393:     /* Determine rank */
394:     rk = nv;
395:     for (i=1;i<nv;i++) if (PetscAbsScalar(s[i]/s[0])<PETSC_SQRT_MACHINE_EPSILON) {rk=i; break;}
396:     PetscCall(PetscInfo(eps,"The computed solution of the Lyapunov equation has rank %" PetscInt_FMT "\n",rk));
397:     rk = PetscMin(rk,ctx->rkc);
398:     PetscCall(DSGetMat(ctx->ds,DS_MAT_U,&U));
399:     PetscCall(BVMultInPlace(V,U,0,rk));
400:     PetscCall(DSRestoreMat(ctx->ds,DS_MAT_U,&U));
401:     PetscCall(BVSetActiveColumns(V,0,rk));

403:     /* Rank reduction */
404:     PetscCall(DSSetDimensions(ctx->ds,rk,0,0));
405:     PetscCall(DSSVDSetDimensions(ctx->ds,rk));
406:     PetscCall(DSGetMat(ctx->ds,DS_MAT_A,&W));
407:     PetscCall(BVMatProject(V,S,V,W));
408:     PetscCall(LyapIIBuildEigenMat(ctx->lme,W,&Op,&v0)); /* Op=A\B, A=kron(I,S)+kron(S,I), B=-2*kron(S,S) */
409:     PetscCall(DSRestoreMat(ctx->ds,DS_MAT_A,&W));
410:     PetscCall(EPSSetOperators(epsrr,Op,NULL));
411:     PetscCall(EPSSetInitialSpace(epsrr,1,&v0));
412:     PetscCall(EPSSolve(epsrr));
413:     PetscCall(EPSComputeVectors(epsrr));
414:     /* Copy first eigenvector, vec(A)=x */
415:     PetscCall(BVGetArray(epsrr->V,&xx));
416:     PetscCall(DSGetArray(ctx->ds,DS_MAT_A,&aa));
417:     for (i=0;i<rk;i++) PetscCall(PetscArraycpy(aa+i*ldds,xx+i*rk,rk));
418:     PetscCall(DSRestoreArray(ctx->ds,DS_MAT_A,&aa));
419:     PetscCall(BVRestoreArray(epsrr->V,&xx));
420:     PetscCall(DSSetState(ctx->ds,DS_STATE_RAW));
421:     /* Compute [U,Sigma,~] = svd(A), its rank should be 1 or 2 */
422:     PetscCall(DSSolve(ctx->ds,s,NULL));
423:     if (PetscAbsScalar(s[1]/s[0])<PETSC_SQRT_MACHINE_EPSILON) rk=1;
424:     else rk = 2;
425:     PetscCall(PetscInfo(eps,"The eigenvector has rank %" PetscInt_FMT "\n",rk));
426:     PetscCall(DSGetMat(ctx->ds,DS_MAT_U,&U));
427:     PetscCall(BVMultInPlace(V,U,0,rk));
428:     PetscCall(DSRestoreMat(ctx->ds,DS_MAT_U,&U));

430:     /* Save V in Ux */
431:     idx = (rk==2)?1:0;
432:     for (i=0;i<rk;i++) {
433:       PetscCall(BVGetColumn(V,i,&v));
434:       PetscCall(VecGetArray(v,&uu));
435:       PetscCall(MatDenseGetColumn(Ux[idx],i,&array));
436:       PetscCall(PetscArraycpy(array,uu,eps->nloc));
437:       PetscCall(MatDenseRestoreColumn(Ux[idx],&array));
438:       PetscCall(VecRestoreArray(v,&uu));
439:       PetscCall(BVRestoreColumn(V,i,&v));
440:     }

442:     /* Eigenpair approximation */
443:     PetscCall(BVGetColumn(V,0,&v));
444:     PetscCall(MatMult(S,v,z));
445:     PetscCall(VecDot(z,v,pM));
446:     PetscCall(BVRestoreColumn(V,0,&v));
447:     if (rk>1) {
448:       PetscCall(BVGetColumn(V,1,&w));
449:       PetscCall(VecDot(z,w,pM+1));
450:       PetscCall(MatMult(S,w,z));
451:       PetscCall(VecDot(z,w,pM+3));
452:       PetscCall(BVGetColumn(V,0,&v));
453:       PetscCall(VecDot(z,v,pM+2));
454:       PetscCall(BVRestoreColumn(V,0,&v));
455:       PetscCall(BVRestoreColumn(V,1,&w));
456:       PetscCall(EV2x2(pM,2,eigr,eigi,vec));
457:       PetscCall(MatCreateSeqDense(PETSC_COMM_SELF,2,2,vec,&X));
458:       PetscCall(BVSetActiveColumns(V,0,rk));
459:       PetscCall(BVMultInPlace(V,X,0,rk));
460:       PetscCall(MatDestroy(&X));
461: #if !defined(PETSC_USE_COMPLEX)
462:       norm = eigr[0]*eigr[0]+eigi[0]*eigi[0];
463:       er = eigr[0]/norm; ei = -eigi[0]/norm;
464: #else
465:       er =1.0/eigr[0]; ei = 0.0;
466: #endif
467:     } else {
468:       eigr[0] = pM[0]; eigi[0] = 0.0;
469:       er = 1.0/eigr[0]; ei = 0.0;
470:     }
471:     PetscCall(BVGetColumn(V,0,&v));
472:     if (eigi[0]!=0.0) PetscCall(BVGetColumn(V,1,&w));
473:     else w = NULL;
474:     eps->eigr[eps->nconv] = eigr[0]; eps->eigi[eps->nconv] = eigi[0];
475:     PetscCall(EPSComputeResidualNorm_Private(eps,PETSC_FALSE,er,ei,v,w,eps->work,&norm));
476:     PetscCall(BVRestoreColumn(V,0,&v));
477:     if (w) PetscCall(BVRestoreColumn(V,1,&w));
478:     PetscCall((*eps->converged)(eps,er,ei,norm,&eps->errest[eps->nconv],eps->convergedctx));
479:     k = 0;
480:     if (eps->errest[eps->nconv]<eps->tol) {
481:       k++;
482:       if (rk==2) {
483: #if !defined (PETSC_USE_COMPLEX)
484:         eps->eigr[eps->nconv+k] = eigr[0]; eps->eigi[eps->nconv+k] = -eigi[0];
485: #else
486:         eps->eigr[eps->nconv+k] = PetscConj(eps->eigr[eps->nconv]);
487: #endif
488:         k++;
489:       }
490:       /* Store converged eigenpairs and vectors for deflation */
491:       for (i=0;i<k;i++) {
492:         PetscCall(BVGetColumn(V,i,&v));
493:         PetscCall(BVInsertVec(eps->V,eps->nconv+i,v));
494:         PetscCall(BVRestoreColumn(V,i,&v));
495:       }
496:       eps->nconv += k;
497:       PetscCall(BVSetActiveColumns(eps->V,eps->nconv-rk,eps->nconv));
498:       PetscCall(BVOrthogonalize(eps->V,NULL));
499:       PetscCall(DSSetDimensions(eps->ds,eps->nconv,0,0));
500:       PetscCall(DSGetMat(eps->ds,DS_MAT_A,&W));
501:       PetscCall(BVMatProject(eps->V,matctx->S,eps->V,W));
502:       PetscCall(DSRestoreMat(eps->ds,DS_MAT_A,&W));
503:       if (eps->nconv<eps->nev) {
504:         idx = 0;
505:         PetscCall(BVSetRandomColumn(V,0));
506:         PetscCall(BVNormColumn(V,0,NORM_2,&norm));
507:         PetscCall(BVScaleColumn(V,0,1.0/norm));
508:         PetscCall(LyapIIBuildRHS(S,1,Ux[idx],V,eps->work));
509:       }
510:     } else {
511:       /* Prepare right-hand side */
512:       PetscCall(LyapIIBuildRHS(S,rk,Ux[idx],NULL,eps->work));
513:     }
514:     PetscCall((*eps->stopping)(eps,eps->its,eps->max_it,eps->nconv,eps->nev,&eps->reason,eps->stoppingctx));
515:     PetscCall(EPSMonitor(eps,eps->its,eps->nconv,eps->eigr,eps->eigi,eps->errest,eps->nconv+1));
516:   }
517:   PetscCall(STRestoreOperator(eps->st,&matctx->S));
518:   PetscCall(MatDestroy(&S));
519:   PetscCall(MatDestroy(&Ux[0]));
520:   PetscCall(MatDestroy(&Ux[1]));
521:   PetscCall(MatDestroy(&Op));
522:   PetscCall(VecDestroy(&v0));
523:   PetscCall(BVDestroy(&V));
524:   PetscCall(EPSDestroy(&epsrr));
525:   PetscCall(PetscFree(s));
526:   PetscFunctionReturn(PETSC_SUCCESS);
527: }

529: static PetscErrorCode EPSSetFromOptions_LyapII(EPS eps,PetscOptionItems *PetscOptionsObject)
530: {
531:   EPS_LYAPII     *ctx = (EPS_LYAPII*)eps->data;
532:   PetscInt       k,array[2]={PETSC_DETERMINE,PETSC_DETERMINE};
533:   PetscBool      flg;

535:   PetscFunctionBegin;
536:   PetscOptionsHeadBegin(PetscOptionsObject,"EPS Lyapunov Inverse Iteration Options");

538:     k = 2;
539:     PetscCall(PetscOptionsIntArray("-eps_lyapii_ranks","Ranks for Lyapunov equation (one or two comma-separated integers)","EPSLyapIISetRanks",array,&k,&flg));
540:     if (flg) PetscCall(EPSLyapIISetRanks(eps,array[0],array[1]));

542:   PetscOptionsHeadEnd();

544:   if (!ctx->lme) PetscCall(EPSLyapIIGetLME(eps,&ctx->lme));
545:   PetscCall(LMESetFromOptions(ctx->lme));
546:   PetscFunctionReturn(PETSC_SUCCESS);
547: }

549: static PetscErrorCode EPSLyapIISetRanks_LyapII(EPS eps,PetscInt rkc,PetscInt rkl)
550: {
551:   EPS_LYAPII *ctx = (EPS_LYAPII*)eps->data;

553:   PetscFunctionBegin;
554:   if (rkc==PETSC_DETERMINE) {
555:     if (ctx->rkc != 10) eps->state = EPS_STATE_INITIAL;
556:     ctx->rkc = 10;
557:   } else if (rkc!=PETSC_CURRENT) {
558:     PetscCheck(rkc>1,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The compressed rank %" PetscInt_FMT " must be larger than 1",rkc);
559:     if (ctx->rkc != rkc) eps->state = EPS_STATE_INITIAL;
560:     ctx->rkc = rkc;
561:   }
562:   if (rkl==PETSC_DETERMINE) {
563:     if (ctx->rkl != 3*rkc) eps->state = EPS_STATE_INITIAL;
564:     ctx->rkl = 3*rkc;
565:   } else if (rkl!=PETSC_CURRENT) {
566:     PetscCheck(rkl>=rkc,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The Lyapunov rank %" PetscInt_FMT " cannot be smaller than the compressed rank %" PetscInt_FMT,rkl,rkc);
567:     if (ctx->rkl != rkl) eps->state = EPS_STATE_INITIAL;
568:     ctx->rkl = rkl;
569:   }
570:   PetscFunctionReturn(PETSC_SUCCESS);
571: }

573: /*@
574:    EPSLyapIISetRanks - Set the ranks used in the solution of the Lyapunov equation.

576:    Logically Collective

578:    Input Parameters:
579: +  eps - the eigenproblem solver context
580: .  rkc - the compressed rank
581: -  rkl - the Lyapunov rank

583:    Options Database Key:
584: .  -eps_lyapii_ranks <rkc,rkl> - Sets the rank parameters

586:    Notes:
587:    PETSC_CURRENT can be used to preserve the current value of any of the
588:    arguments, and PETSC_DETERMINE to set them to a default value.

590:    Lyapunov inverse iteration needs to solve a large-scale Lyapunov equation
591:    at each iteration of the eigensolver. For this, an iterative solver (LME)
592:    is used, which requires to prescribe the rank of the solution matrix X. This
593:    is the meaning of parameter rkl. Later, this matrix is compressed into
594:    another matrix of rank rkc. If not provided, rkl is a small multiple of rkc.

596:    Level: intermediate

598: .seealso: EPSLyapIIGetRanks()
599: @*/
600: PetscErrorCode EPSLyapIISetRanks(EPS eps,PetscInt rkc,PetscInt rkl)
601: {
602:   PetscFunctionBegin;
606:   PetscTryMethod(eps,"EPSLyapIISetRanks_C",(EPS,PetscInt,PetscInt),(eps,rkc,rkl));
607:   PetscFunctionReturn(PETSC_SUCCESS);
608: }

610: static PetscErrorCode EPSLyapIIGetRanks_LyapII(EPS eps,PetscInt *rkc,PetscInt *rkl)
611: {
612:   EPS_LYAPII *ctx = (EPS_LYAPII*)eps->data;

614:   PetscFunctionBegin;
615:   if (rkc) *rkc = ctx->rkc;
616:   if (rkl) *rkl = ctx->rkl;
617:   PetscFunctionReturn(PETSC_SUCCESS);
618: }

620: /*@
621:    EPSLyapIIGetRanks - Return the rank values used for the Lyapunov step.

623:    Not Collective

625:    Input Parameter:
626: .  eps - the eigenproblem solver context

628:    Output Parameters:
629: +  rkc - the compressed rank
630: -  rkl - the Lyapunov rank

632:    Level: intermediate

634: .seealso: EPSLyapIISetRanks()
635: @*/
636: PetscErrorCode EPSLyapIIGetRanks(EPS eps,PetscInt *rkc,PetscInt *rkl)
637: {
638:   PetscFunctionBegin;
640:   PetscUseMethod(eps,"EPSLyapIIGetRanks_C",(EPS,PetscInt*,PetscInt*),(eps,rkc,rkl));
641:   PetscFunctionReturn(PETSC_SUCCESS);
642: }

644: static PetscErrorCode EPSLyapIISetLME_LyapII(EPS eps,LME lme)
645: {
646:   EPS_LYAPII     *ctx = (EPS_LYAPII*)eps->data;

648:   PetscFunctionBegin;
649:   PetscCall(PetscObjectReference((PetscObject)lme));
650:   PetscCall(LMEDestroy(&ctx->lme));
651:   ctx->lme = lme;
652:   eps->state = EPS_STATE_INITIAL;
653:   PetscFunctionReturn(PETSC_SUCCESS);
654: }

656: /*@
657:    EPSLyapIISetLME - Associate a linear matrix equation solver object (LME) to the
658:    eigenvalue solver.

660:    Collective

662:    Input Parameters:
663: +  eps - the eigenproblem solver context
664: -  lme - the linear matrix equation solver object

666:    Level: advanced

668: .seealso: EPSLyapIIGetLME()
669: @*/
670: PetscErrorCode EPSLyapIISetLME(EPS eps,LME lme)
671: {
672:   PetscFunctionBegin;
675:   PetscCheckSameComm(eps,1,lme,2);
676:   PetscTryMethod(eps,"EPSLyapIISetLME_C",(EPS,LME),(eps,lme));
677:   PetscFunctionReturn(PETSC_SUCCESS);
678: }

680: static PetscErrorCode EPSLyapIIGetLME_LyapII(EPS eps,LME *lme)
681: {
682:   EPS_LYAPII     *ctx = (EPS_LYAPII*)eps->data;

684:   PetscFunctionBegin;
685:   if (!ctx->lme) {
686:     PetscCall(LMECreate(PetscObjectComm((PetscObject)eps),&ctx->lme));
687:     PetscCall(LMESetOptionsPrefix(ctx->lme,((PetscObject)eps)->prefix));
688:     PetscCall(LMEAppendOptionsPrefix(ctx->lme,"eps_lyapii_"));
689:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)ctx->lme,(PetscObject)eps,1));
690:   }
691:   *lme = ctx->lme;
692:   PetscFunctionReturn(PETSC_SUCCESS);
693: }

695: /*@
696:    EPSLyapIIGetLME - Retrieve the linear matrix equation solver object (LME)
697:    associated with the eigenvalue solver.

699:    Not Collective

701:    Input Parameter:
702: .  eps - the eigenproblem solver context

704:    Output Parameter:
705: .  lme - the linear matrix equation solver object

707:    Level: advanced

709: .seealso: EPSLyapIISetLME()
710: @*/
711: PetscErrorCode EPSLyapIIGetLME(EPS eps,LME *lme)
712: {
713:   PetscFunctionBegin;
715:   PetscAssertPointer(lme,2);
716:   PetscUseMethod(eps,"EPSLyapIIGetLME_C",(EPS,LME*),(eps,lme));
717:   PetscFunctionReturn(PETSC_SUCCESS);
718: }

720: static PetscErrorCode EPSView_LyapII(EPS eps,PetscViewer viewer)
721: {
722:   EPS_LYAPII     *ctx = (EPS_LYAPII*)eps->data;
723:   PetscBool      isascii;

725:   PetscFunctionBegin;
726:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
727:   if (isascii) {
728:     PetscCall(PetscViewerASCIIPrintf(viewer,"  ranks: for Lyapunov solver=%" PetscInt_FMT ", after compression=%" PetscInt_FMT "\n",ctx->rkl,ctx->rkc));
729:     if (!ctx->lme) PetscCall(EPSLyapIIGetLME(eps,&ctx->lme));
730:     PetscCall(PetscViewerASCIIPushTab(viewer));
731:     PetscCall(LMEView(ctx->lme,viewer));
732:     PetscCall(PetscViewerASCIIPopTab(viewer));
733:   }
734:   PetscFunctionReturn(PETSC_SUCCESS);
735: }

737: static PetscErrorCode EPSReset_LyapII(EPS eps)
738: {
739:   EPS_LYAPII     *ctx = (EPS_LYAPII*)eps->data;

741:   PetscFunctionBegin;
742:   if (!ctx->lme) PetscCall(LMEReset(ctx->lme));
743:   PetscFunctionReturn(PETSC_SUCCESS);
744: }

746: static PetscErrorCode EPSDestroy_LyapII(EPS eps)
747: {
748:   EPS_LYAPII     *ctx = (EPS_LYAPII*)eps->data;

750:   PetscFunctionBegin;
751:   PetscCall(LMEDestroy(&ctx->lme));
752:   PetscCall(DSDestroy(&ctx->ds));
753:   PetscCall(PetscFree(eps->data));
754:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSLyapIISetLME_C",NULL));
755:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSLyapIIGetLME_C",NULL));
756:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSLyapIISetRanks_C",NULL));
757:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSLyapIIGetRanks_C",NULL));
758:   PetscFunctionReturn(PETSC_SUCCESS);
759: }

761: static PetscErrorCode EPSSetDefaultST_LyapII(EPS eps)
762: {
763:   PetscFunctionBegin;
764:   if (!((PetscObject)eps->st)->type_name) PetscCall(STSetType(eps->st,STSINVERT));
765:   PetscFunctionReturn(PETSC_SUCCESS);
766: }

768: SLEPC_EXTERN PetscErrorCode EPSCreate_LyapII(EPS eps)
769: {
770:   EPS_LYAPII     *ctx;

772:   PetscFunctionBegin;
773:   PetscCall(PetscNew(&ctx));
774:   eps->data = (void*)ctx;

776:   eps->useds = PETSC_TRUE;

778:   eps->ops->solve          = EPSSolve_LyapII;
779:   eps->ops->setup          = EPSSetUp_LyapII;
780:   eps->ops->setupsort      = EPSSetUpSort_Default;
781:   eps->ops->setfromoptions = EPSSetFromOptions_LyapII;
782:   eps->ops->reset          = EPSReset_LyapII;
783:   eps->ops->destroy        = EPSDestroy_LyapII;
784:   eps->ops->view           = EPSView_LyapII;
785:   eps->ops->setdefaultst   = EPSSetDefaultST_LyapII;
786:   eps->ops->backtransform  = EPSBackTransform_Default;
787:   eps->ops->computevectors = EPSComputeVectors_Schur;

789:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSLyapIISetLME_C",EPSLyapIISetLME_LyapII));
790:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSLyapIIGetLME_C",EPSLyapIIGetLME_LyapII));
791:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSLyapIISetRanks_C",EPSLyapIISetRanks_LyapII));
792:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSLyapIIGetRanks_C",EPSLyapIIGetRanks_LyapII));
793:   PetscFunctionReturn(PETSC_SUCCESS);
794: }