Actual source code: nepsolve.c

  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    NEP routines related to the solution process

 13:    References:

 15:        [1] C. Campos and J.E. Roman, "NEP: a module for the parallel solution
 16:            of nonlinear eigenvalue problems in SLEPc", ACM Trans. Math. Soft.
 17:            47(3), 23:1--23:29, 2021.
 18: */

 20: #include <slepc/private/nepimpl.h>
 21: #include <slepc/private/bvimpl.h>
 22: #include <petscdraw.h>

 24: static PetscBool  cited = PETSC_FALSE;
 25: static const char citation[] =
 26:   "@Article{slepc-nep,\n"
 27:   "   author = \"C. Campos and J. E. Roman\",\n"
 28:   "   title = \"{NEP}: a module for the parallel solution of nonlinear eigenvalue problems in {SLEPc}\",\n"
 29:   "   journal = \"{ACM} Trans. Math. Software\",\n"
 30:   "   volume = \"47\",\n"
 31:   "   number = \"3\",\n"
 32:   "   pages = \"23:1--23:29\",\n"
 33:   "   year = \"2021\",\n"
 34:   "   doi = \"10.1145/3447544\"\n"
 35:   "}\n";

 37: PetscErrorCode NEPComputeVectors(NEP nep)
 38: {
 39:   PetscFunctionBegin;
 40:   NEPCheckSolved(nep,1);
 41:   if (nep->state==NEP_STATE_SOLVED) PetscTryTypeMethod(nep,computevectors);
 42:   nep->state = NEP_STATE_EIGENVECTORS;
 43:   PetscFunctionReturn(PETSC_SUCCESS);
 44: }

 46: /*@
 47:    NEPSolve - Solves the nonlinear eigenproblem.

 49:    Collective

 51:    Input Parameter:
 52: .  nep - the nonlinear eigensolver context

 54:    Options Database Keys:
 55: +  -nep_view             - print information about the solver once the solve is complete
 56: .  -nep_view_pre         - print information about the solver before the solve starts
 57: .  -nep_view_matk        - view the split form matrix $A_k$ (replace `k` by an integer from 0 to `nt`-1)
 58: .  -nep_view_fnk         - view the split form function $f_k$ (replace `k` by an integer from 0 to `nt`-1)
 59: .  -nep_view_vectors     - view the computed eigenvectors
 60: .  -nep_view_values      - view the computed eigenvalues
 61: .  -nep_converged_reason - print reason for convergence/divergence, and number of iterations
 62: .  -nep_error_absolute   - print absolute errors of each eigenpair
 63: .  -nep_error_relative   - print relative errors of each eigenpair
 64: -  -nep_error_backward   - print backward errors of each eigenpair

 66:    Notes:
 67:    `NEPSolve()` will return without generating an error regardless of whether
 68:    all requested solutions were computed or not. Call `NEPGetConverged()` to get the
 69:    actual number of computed solutions, and `NEPGetConvergedReason()` to determine if
 70:    the solver converged or failed and why.

 72:    All the command-line options listed above admit an optional argument specifying
 73:    the viewer type and options. For instance, use `-nep_view_vectors binary:myvecs.bin`
 74:    to save the eigenvectors to a binary file, `-nep_view_values draw` to draw the computed
 75:    eigenvalues graphically, or `-nep_error_relative :myerr.m:ascii_matlab` to save
 76:    the errors in a file that can be executed in Matlab.

 78:    Level: beginner

 80: .seealso: [](ch:nep), `NEPCreate()`, `NEPSetUp()`, `NEPDestroy()`, `NEPSetTolerances()`, `NEPGetConverged()`, `NEPGetConvergedReason()`
 81: @*/
 82: PetscErrorCode NEPSolve(NEP nep)
 83: {
 84:   PetscInt       i;
 85:   char           str[16];

 87:   PetscFunctionBegin;
 89:   if (nep->state>=NEP_STATE_SOLVED) PetscFunctionReturn(PETSC_SUCCESS);
 90:   PetscCall(PetscCitationsRegister(citation,&cited));
 91:   PetscCall(PetscLogEventBegin(NEP_Solve,nep,0,0,0));

 93:   /* call setup */
 94:   PetscCall(NEPSetUp(nep));
 95:   nep->nconv = 0;
 96:   nep->its = 0;
 97:   for (i=0;i<nep->ncv;i++) {
 98:     nep->eigr[i]   = 0.0;
 99:     nep->eigi[i]   = 0.0;
100:     nep->errest[i] = 0.0;
101:     nep->perm[i]   = i;
102:   }
103:   PetscCall(NEPViewFromOptions(nep,NULL,"-nep_view_pre"));
104:   PetscCall(RGViewFromOptions(nep->rg,NULL,"-rg_view"));

106:   /* call solver */
107:   PetscUseTypeMethod(nep,solve);
108:   PetscCheck(nep->reason,PetscObjectComm((PetscObject)nep),PETSC_ERR_PLIB,"Internal error, solver returned without setting converged reason");
109:   nep->state = NEP_STATE_SOLVED;

111:   /* Only the first nconv columns contain useful information */
112:   PetscCall(BVSetActiveColumns(nep->V,0,nep->nconv));
113:   if (nep->twosided) PetscCall(BVSetActiveColumns(nep->W,0,nep->nconv));

115:   if (nep->refine==NEP_REFINE_SIMPLE && nep->rits>0 && nep->nconv>0) {
116:     PetscCall(NEPComputeVectors(nep));
117:     PetscCall(NEPNewtonRefinementSimple(nep,&nep->rits,nep->rtol,nep->nconv));
118:     nep->state = NEP_STATE_EIGENVECTORS;
119:   }

121:   /* sort eigenvalues according to nep->which parameter */
122:   PetscCall(SlepcSortEigenvalues(nep->sc,nep->nconv,nep->eigr,nep->eigi,nep->perm));
123:   PetscCall(PetscLogEventEnd(NEP_Solve,nep,0,0,0));

125:   /* various viewers */
126:   PetscCall(NEPViewFromOptions(nep,NULL,"-nep_view"));
127:   PetscCall(NEPConvergedReasonViewFromOptions(nep));
128:   PetscCall(NEPErrorViewFromOptions(nep));
129:   PetscCall(NEPValuesViewFromOptions(nep));
130:   PetscCall(NEPVectorsViewFromOptions(nep));
131:   if (nep->fui==NEP_USER_INTERFACE_SPLIT) {
132:     for (i=0;i<nep->nt;i++) {
133:       PetscCall(PetscSNPrintf(str,sizeof(str),"-nep_view_mat%" PetscInt_FMT,i));
134:       PetscCall(MatViewFromOptions(nep->A[i],(PetscObject)nep,str));
135:       PetscCall(PetscSNPrintf(str,sizeof(str),"-nep_view_fn%" PetscInt_FMT,i));
136:       PetscCall(FNViewFromOptions(nep->f[i],(PetscObject)nep,str));
137:     }
138:   }

140:   /* Remove the initial subspace */
141:   nep->nini = 0;

143:   /* Reset resolvent information */
144:   PetscCall(MatDestroy(&nep->resolvent));
145:   PetscFunctionReturn(PETSC_SUCCESS);
146: }

148: /*@
149:    NEPProjectOperator - Computes the projection of the nonlinear operator.

151:    Collective

153:    Input Parameters:
154: +  nep - the nonlinear eigensolver context
155: .  j0  - initial index
156: -  j1  - final index

158:    Notes:
159:    This is available for split operator only.

161:    The nonlinear operator $T(\lambda)$ is projected onto $\operatorname{span}(V)$, where $V$ is
162:    an orthonormal basis built internally by the solver. The projected
163:    operator is equal to $\sum_i V^* A_i V f_i(\lambda)$, so this function
164:    computes all matrices $E_i = V^* A_i V$, and stores them in the extra
165:    matrices inside `DS`, see `DSMatType`. Only rows/columns in the range [`j0`,`j1`-1] are computed,
166:    the previous ones are assumed to be available already.

168:    Level: developer

170: .seealso: [](ch:nep), `NEPSetSplitOperator()`
171: @*/
172: PetscErrorCode NEPProjectOperator(NEP nep,PetscInt j0,PetscInt j1)
173: {
174:   PetscInt       k;
175:   Mat            G;

177:   PetscFunctionBegin;
181:   NEPCheckProblem(nep,1);
182:   NEPCheckSplit(nep,1);
183:   PetscCall(BVSetActiveColumns(nep->V,j0,j1));
184:   for (k=0;k<nep->nt;k++) {
185:     PetscCall(DSGetMat(nep->ds,DSMatExtra[k],&G));
186:     PetscCall(BVMatProject(nep->V,nep->A[k],nep->V,G));
187:     PetscCall(DSRestoreMat(nep->ds,DSMatExtra[k],&G));
188:   }
189:   PetscFunctionReturn(PETSC_SUCCESS);
190: }

192: /*@
193:    NEPApplyFunction - Applies the nonlinear function $T(\lambda)$ to a given vector.

195:    Collective

197:    Input Parameters:
198: +  nep    - the nonlinear eigensolver context
199: .  lambda - scalar argument
200: .  x      - vector to be multiplied against
201: -  v      - workspace vector (used only in the case of split form)

203:    Output Parameters:
204: +  y   - result vector
205: .  A   - (optional) Function matrix, for callback interface only
206: -  B   - (unused) preconditioning matrix

208:    Note:
209:    If the nonlinear operator is represented in split form, the result
210:    $y = T(\lambda)x$ is computed without building $T(\lambda)$ explicitly. In
211:    that case, parameters `A` and `B` are not used. Otherwise, the matrix
212:    $T(\lambda)$ is built and the effect is the same as a call to
213:    `NEPComputeFunction()` followed by a `MatMult()`.

215:    Level: developer

217: .seealso: [](ch:nep), `NEPSetSplitOperator()`, `NEPComputeFunction()`, `NEPApplyAdjoint()`
218: @*/
219: PetscErrorCode NEPApplyFunction(NEP nep,PetscScalar lambda,Vec x,Vec v,Vec y,Mat A,Mat B)
220: {
221:   PetscInt       i;
222:   PetscScalar    alpha;

224:   PetscFunctionBegin;

233:   if (nep->fui==NEP_USER_INTERFACE_SPLIT) {
234:     PetscCall(VecSet(y,0.0));
235:     for (i=0;i<nep->nt;i++) {
236:       PetscCall(FNEvaluateFunction(nep->f[i],lambda,&alpha));
237:       PetscCall(MatMult(nep->A[i],x,v));
238:       PetscCall(VecAXPY(y,alpha,v));
239:     }
240:   } else {
241:     if (!A) A = nep->function;
242:     PetscCall(NEPComputeFunction(nep,lambda,A,A));
243:     PetscCall(MatMult(A,x,y));
244:   }
245:   PetscFunctionReturn(PETSC_SUCCESS);
246: }

248: /*@
249:    NEPApplyAdjoint - Applies the adjoint nonlinear function $T^*(\lambda)$ to a given vector.

251:    Collective

253:    Input Parameters:
254: +  nep    - the nonlinear eigensolver context
255: .  lambda - scalar argument
256: .  x      - vector to be multiplied against
257: -  v      - workspace vector (used only in the case of split form)

259:    Output Parameters:
260: +  y   - result vector
261: .  A   - (optional) Function matrix, for callback interface only
262: -  B   - (unused) preconditioning matrix

264:    Note:
265:    If the nonlinear operator is represented in split form, the result
266:    $y = T^*(\lambda)x$ is computed without building $T(\lambda)$ explicitly. In
267:    that case, parameters `A` and `B` are not used. Otherwise, the matrix
268:    $T(\lambda)$ is built and the effect is the same as a call to
269:    `NEPComputeFunction()` followed by a `MatMultHermitianTranspose()`.

271:    Level: developer

273: .seealso: [](ch:nep), `NEPSetSplitOperator()`, `NEPComputeFunction()`, `NEPApplyFunction()`
274: @*/
275: PetscErrorCode NEPApplyAdjoint(NEP nep,PetscScalar lambda,Vec x,Vec v,Vec y,Mat A,Mat B)
276: {
277:   PetscInt       i;
278:   PetscScalar    alpha;
279:   Vec            w;

281:   PetscFunctionBegin;

290:   PetscCall(VecDuplicate(x,&w));
291:   PetscCall(VecCopy(x,w));
292:   PetscCall(VecConjugate(w));
293:   if (nep->fui==NEP_USER_INTERFACE_SPLIT) {
294:     PetscCall(VecSet(y,0.0));
295:     for (i=0;i<nep->nt;i++) {
296:       PetscCall(FNEvaluateFunction(nep->f[i],lambda,&alpha));
297:       PetscCall(MatMultHermitianTranspose(nep->A[i],w,v));
298:       PetscCall(VecAXPY(y,alpha,v));
299:     }
300:   } else {
301:     if (!A) A = nep->function;
302:     PetscCall(NEPComputeFunction(nep,lambda,A,A));
303:     PetscCall(MatMultHermitianTranspose(A,w,y));
304:   }
305:   PetscCall(VecDestroy(&w));
306:   PetscCall(VecConjugate(y));
307:   PetscFunctionReturn(PETSC_SUCCESS);
308: }

310: /*@
311:    NEPApplyJacobian - Applies the nonlinear Jacobian $T'(\lambda)$ to a given vector.

313:    Collective

315:    Input Parameters:
316: +  nep    - the nonlinear eigensolver context
317: .  lambda - scalar argument
318: .  x      - vector to be multiplied against
319: -  v      - workspace vector (used only in the case of split form)

321:    Output Parameters:
322: +  y   - result vector
323: -  A   - (optional) Jacobian matrix, for callback interface only

325:    Note:
326:    If the nonlinear operator is represented in split form, the result
327:    $y = T'(\lambda)x$ is computed without building $T'(\lambda)$ explicitly. In
328:    that case, parameter `A` is not used. Otherwise, the matrix
329:    $T'(\lambda)$ is built and the effect is the same as a call to
330:    `NEPComputeJacobian()` followed by a `MatMult()`.

332:    Level: developer

334: .seealso: [](ch:nep), `NEPSetSplitOperator()`, `NEPComputeJacobian()`
335: @*/
336: PetscErrorCode NEPApplyJacobian(NEP nep,PetscScalar lambda,Vec x,Vec v,Vec y,Mat A)
337: {
338:   PetscInt       i;
339:   PetscScalar    alpha;

341:   PetscFunctionBegin;

349:   if (nep->fui==NEP_USER_INTERFACE_SPLIT) {
350:     PetscCall(VecSet(y,0.0));
351:     for (i=0;i<nep->nt;i++) {
352:       PetscCall(FNEvaluateDerivative(nep->f[i],lambda,&alpha));
353:       PetscCall(MatMult(nep->A[i],x,v));
354:       PetscCall(VecAXPY(y,alpha,v));
355:     }
356:   } else {
357:     if (!A) A = nep->jacobian;
358:     PetscCall(NEPComputeJacobian(nep,lambda,A));
359:     PetscCall(MatMult(A,x,y));
360:   }
361:   PetscFunctionReturn(PETSC_SUCCESS);
362: }

364: /*@
365:    NEPGetIterationNumber - Gets the current iteration number. If the
366:    call to `NEPSolve()` is complete, then it returns the number of iterations
367:    carried out by the solution method.

369:    Not Collective

371:    Input Parameter:
372: .  nep - the nonlinear eigensolver context

374:    Output Parameter:
375: .  its - number of iterations

377:    Note:
378:    During the $i$-th iteration this call returns $i-1$. If `NEPSolve()` is
379:    complete, then parameter `its` contains either the iteration number at
380:    which convergence was successfully reached, or failure was detected.
381:    Call `NEPGetConvergedReason()` to determine if the solver converged or
382:    failed and why.

384:    Level: intermediate

386: .seealso: [](ch:nep), `NEPGetConvergedReason()`, `NEPSetTolerances()`
387: @*/
388: PetscErrorCode NEPGetIterationNumber(NEP nep,PetscInt *its)
389: {
390:   PetscFunctionBegin;
392:   PetscAssertPointer(its,2);
393:   *its = nep->its;
394:   PetscFunctionReturn(PETSC_SUCCESS);
395: }

397: /*@
398:    NEPGetConverged - Gets the number of converged eigenpairs.

400:    Not Collective

402:    Input Parameter:
403: .  nep - the nonlinear eigensolver context

405:    Output Parameter:
406: .  nconv - number of converged eigenpairs

408:    Note:
409:    This function should be called after `NEPSolve()` has finished.

411:    The value `nconv` may be different from the number of requested solutions
412:    `nev`, but not larger than `ncv`, see `NEPSetDimensions()`.

414:    Level: beginner

416: .seealso: [](ch:nep), `NEPSetDimensions()`, `NEPSolve()`, `NEPGetEigenpair()`
417: @*/
418: PetscErrorCode NEPGetConverged(NEP nep,PetscInt *nconv)
419: {
420:   PetscFunctionBegin;
422:   PetscAssertPointer(nconv,2);
423:   NEPCheckSolved(nep,1);
424:   *nconv = nep->nconv;
425:   PetscFunctionReturn(PETSC_SUCCESS);
426: }

428: /*@
429:    NEPGetConvergedReason - Gets the reason why the `NEPSolve()` iteration was
430:    stopped.

432:    Not Collective

434:    Input Parameter:
435: .  nep - the nonlinear eigensolver context

437:    Output Parameter:
438: .  reason - negative value indicates diverged, positive value converged, see
439:    `NEPConvergedReason` for the possible values

441:    Options Database Key:
442: .  -nep_converged_reason - print reason for convergence/divergence, and number of iterations

444:    Note:
445:    If this routine is called before or doing the `NEPSolve()` the value of
446:    `NEP_CONVERGED_ITERATING` is returned.

448:    Level: intermediate

450: .seealso: [](ch:nep), `NEPSetTolerances()`, `NEPSolve()`, `NEPConvergedReason`
451: @*/
452: PetscErrorCode NEPGetConvergedReason(NEP nep,NEPConvergedReason *reason)
453: {
454:   PetscFunctionBegin;
456:   PetscAssertPointer(reason,2);
457:   NEPCheckSolved(nep,1);
458:   *reason = nep->reason;
459:   PetscFunctionReturn(PETSC_SUCCESS);
460: }

462: /*@
463:    NEPGetEigenpair - Gets the `i`-th solution of the eigenproblem as computed by
464:    `NEPSolve()`. The solution consists in both the eigenvalue and the eigenvector.

466:    Collective

468:    Input Parameters:
469: +  nep - the nonlinear eigensolver context
470: -  i   - index of the solution

472:    Output Parameters:
473: +  eigr - real part of eigenvalue
474: .  eigi - imaginary part of eigenvalue
475: .  Vr   - real part of eigenvector
476: -  Vi   - imaginary part of eigenvector

478:    Notes:
479:    It is allowed to pass `NULL` for `Vr` and `Vi`, if the eigenvector is not
480:    required. Otherwise, the caller must provide valid `Vec` objects, i.e.,
481:    they must be created by the calling program with e.g. `MatCreateVecs()`.

483:    If the eigenvalue is real, then `eigi` and `Vi` are set to zero. If PETSc is
484:    configured with complex scalars the eigenvalue is stored
485:    directly in `eigr` (`eigi` is set to zero) and the eigenvector in `Vr` (`Vi`
486:    is set to zero). In any case, the user can pass `NULL` in any argument that
487:    is not required.

489:    The index `i` should be a value between 0 and `nconv`-1 (see `NEPGetConverged()`).
490:    Eigenpairs are indexed according to the ordering criterion established
491:    with `NEPSetWhichEigenpairs()`.

493:    The eigenvector is normalized to have unit norm.

495:    Level: beginner

497: .seealso: [](ch:nep), `NEPSolve()`, `NEPGetConverged()`, `NEPSetWhichEigenpairs()`, `NEPGetLeftEigenvector()`
498: @*/
499: PetscErrorCode NEPGetEigenpair(NEP nep,PetscInt i,PetscScalar *eigr,PetscScalar *eigi,Vec Vr,Vec Vi)
500: {
501:   PetscInt       k;

503:   PetscFunctionBegin;
508:   NEPCheckSolved(nep,1);
509:   PetscCheck(i>=0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"The index cannot be negative");
510:   PetscCheck(i<nep->nconv,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"The index can be nconv-1 at most, see NEPGetConverged()");

512:   PetscCall(NEPComputeVectors(nep));
513:   k = nep->perm[i];

515:   /* eigenvalue */
516: #if defined(PETSC_USE_COMPLEX)
517:   if (eigr) *eigr = nep->eigr[k];
518:   if (eigi) *eigi = 0;
519: #else
520:   if (eigr) *eigr = nep->eigr[k];
521:   if (eigi) *eigi = nep->eigi[k];
522: #endif

524:   /* eigenvector */
525:   PetscCall(BV_GetEigenvector(nep->V,k,nep->eigi[k],Vr,Vi));
526:   PetscFunctionReturn(PETSC_SUCCESS);
527: }

529: /*@
530:    NEPGetLeftEigenvector - Gets the `i`-th left eigenvector as computed by `NEPSolve()`.

532:    Collective

534:    Input Parameters:
535: +  nep - the nonlinear eigensolver context
536: -  i   - index of the solution

538:    Output Parameters:
539: +  Wr   - real part of left eigenvector
540: -  Wi   - imaginary part of left eigenvector

542:    Notes:
543:    The caller must provide valid `Vec` objects, i.e., they must be created
544:    by the calling program with e.g. `MatCreateVecs()`.

546:    If the corresponding eigenvalue is real, then `Wi` is set to zero. If PETSc is
547:    configured with complex scalars the eigenvector is stored directly in `Wr`
548:    (`Wi` is set to zero). In any case, the user can pass `NULL` in `Wr` or `Wi` if
549:    one of them is not required.

551:    The index `i` should be a value between 0 and `nconv`-1 (see `NEPGetConverged()`).
552:    Eigensolutions are indexed according to the ordering criterion established
553:    with `NEPSetWhichEigenpairs()`.

555:    Left eigenvectors are available only if the twosided flag was set, see
556:    `NEPSetTwoSided()`.

558:    Level: intermediate

560: .seealso: [](ch:nep), `NEPGetEigenpair()`, `NEPGetConverged()`, `NEPSetWhichEigenpairs()`, `NEPSetTwoSided()`
561: @*/
562: PetscErrorCode NEPGetLeftEigenvector(NEP nep,PetscInt i,Vec Wr,Vec Wi)
563: {
564:   PetscInt       k;

566:   PetscFunctionBegin;
571:   NEPCheckSolved(nep,1);
572:   PetscCheck(nep->twosided,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_WRONGSTATE,"Must request left vectors with NEPSetTwoSided");
573:   PetscCheck(i>=0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"The index cannot be negative");
574:   PetscCheck(i<nep->nconv,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"The index can be nconv-1 at most, see NEPGetConverged()");
575:   PetscCall(NEPComputeVectors(nep));
576:   k = nep->perm[i];
577:   PetscCall(BV_GetEigenvector(nep->W,k,nep->eigi[k],Wr,Wi));
578:   PetscFunctionReturn(PETSC_SUCCESS);
579: }

581: /*@
582:    NEPGetErrorEstimate - Returns the error estimate associated to the `i`-th
583:    computed eigenpair.

585:    Not Collective

587:    Input Parameters:
588: +  nep - the nonlinear eigensolver context
589: -  i   - index of eigenpair

591:    Output Parameter:
592: .  errest - the error estimate

594:    Note:
595:    This is the error estimate used internally by the eigensolver. The actual
596:    error bound can be computed with `NEPComputeError()`.

598:    Level: advanced

600: .seealso: [](ch:nep), `NEPComputeError()`
601: @*/
602: PetscErrorCode NEPGetErrorEstimate(NEP nep,PetscInt i,PetscReal *errest)
603: {
604:   PetscFunctionBegin;
606:   PetscAssertPointer(errest,3);
607:   NEPCheckSolved(nep,1);
608:   PetscCheck(i>=0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"The index cannot be negative");
609:   PetscCheck(i<nep->nconv,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"The index can be nconv-1 at most, see NEPGetConverged()");
610:   *errest = nep->errest[nep->perm[i]];
611:   PetscFunctionReturn(PETSC_SUCCESS);
612: }

614: /*
615:    NEPComputeResidualNorm_Private - Computes the norm of the residual vector
616:    associated with an eigenpair.

618:    Input Parameters:
619:      adj    - whether the adjoint T^* must be used instead of T
620:      lambda - eigenvalue
621:      x      - eigenvector
622:      w      - array of work vectors (two vectors in split form, one vector otherwise)
623: */
624: PetscErrorCode NEPComputeResidualNorm_Private(NEP nep,PetscBool adj,PetscScalar lambda,Vec x,Vec *w,PetscReal *norm)
625: {
626:   Vec            y,z=NULL;

628:   PetscFunctionBegin;
629:   y = w[0];
630:   if (nep->fui==NEP_USER_INTERFACE_SPLIT) z = w[1];
631:   if (adj) PetscCall(NEPApplyAdjoint(nep,lambda,x,z,y,NULL,NULL));
632:   else PetscCall(NEPApplyFunction(nep,lambda,x,z,y,NULL,NULL));
633:   PetscCall(VecNorm(y,NORM_2,norm));
634:   PetscFunctionReturn(PETSC_SUCCESS);
635: }

637: /*@
638:    NEPComputeError - Computes the error (based on the residual norm) associated
639:    with the `i`-th computed eigenpair.

641:    Collective

643:    Input Parameters:
644: +  nep  - the nonlinear eigensolver context
645: .  i    - the solution index
646: -  type - the type of error to compute, see `NEPErrorType`

648:    Output Parameter:
649: .  error - the error

651:    Notes:
652:    The error can be computed in various ways, all of them based on the residual
653:    norm computed as $\|T(\lambda)x\|_2$ where $(\lambda,x)$ is the approximate eigenpair.

655:    If the computation of left eigenvectors was enabled with `NEPSetTwoSided()`,
656:    then the error will be computed using the maximum of the value above and
657:    the left residual norm $\|y^*T(\lambda)\|_2$, where $y$ is the approximate left
658:    eigenvector.

660:    Level: beginner

662: .seealso: [](ch:nep), `NEPErrorType`, `NEPSolve()`, `NEPGetErrorEstimate()`, `NEPSetTwoSided()`
663: @*/
664: PetscErrorCode NEPComputeError(NEP nep,PetscInt i,NEPErrorType type,PetscReal *error)
665: {
666:   Vec            xr,xi=NULL;
667:   PetscInt       j,nwork,issplit=0;
668:   PetscScalar    kr,ki,s;
669:   PetscReal      er,z=0.0,errorl,nrm;
670:   PetscBool      flg;

672:   PetscFunctionBegin;
676:   PetscAssertPointer(error,4);
677:   NEPCheckSolved(nep,1);

679:   /* allocate work vectors */
680: #if defined(PETSC_USE_COMPLEX)
681:   nwork = 2;
682: #else
683:   nwork = 3;
684: #endif
685:   if (nep->fui==NEP_USER_INTERFACE_SPLIT) {
686:     issplit = 1;
687:     nwork++;  /* need an extra work vector for NEPComputeResidualNorm_Private */
688:   }
689:   PetscCall(NEPSetWorkVecs(nep,nwork));
690:   xr = nep->work[issplit+1];
691: #if !defined(PETSC_USE_COMPLEX)
692:   xi = nep->work[issplit+2];
693: #endif

695:   /* compute residual norms */
696:   PetscCall(NEPGetEigenpair(nep,i,&kr,&ki,xr,xi));
697: #if !defined(PETSC_USE_COMPLEX)
698:   PetscCheck(ki==0.0,PetscObjectComm((PetscObject)nep),PETSC_ERR_SUP,"Not implemented for complex eigenvalues with real scalars");
699: #endif
700:   PetscCall(NEPComputeResidualNorm_Private(nep,PETSC_FALSE,kr,xr,nep->work,error));
701:   PetscCall(VecNorm(xr,NORM_2,&er));

703:   /* if two-sided, compute left residual norm and take the maximum */
704:   if (nep->twosided) {
705:     PetscCall(NEPGetLeftEigenvector(nep,i,xr,xi));
706:     PetscCall(NEPComputeResidualNorm_Private(nep,PETSC_TRUE,kr,xr,nep->work,&errorl));
707:     *error = PetscMax(*error,errorl);
708:   }

710:   /* compute error */
711:   switch (type) {
712:     case NEP_ERROR_ABSOLUTE:
713:       break;
714:     case NEP_ERROR_RELATIVE:
715:       *error /= PetscAbsScalar(kr)*er;
716:       break;
717:     case NEP_ERROR_BACKWARD:
718:       if (nep->fui!=NEP_USER_INTERFACE_SPLIT) {
719:         PetscCall(NEPComputeFunction(nep,kr,nep->function,nep->function));
720:         PetscCall(MatHasOperation(nep->function,MATOP_NORM,&flg));
721:         PetscCheck(flg,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_WRONG,"The computation of backward errors requires a matrix norm operation");
722:         PetscCall(MatNorm(nep->function,NORM_INFINITY,&nrm));
723:         *error /= nrm*er;
724:         break;
725:       }
726:       /* initialization of matrix norms */
727:       if (!nep->nrma[0]) {
728:         for (j=0;j<nep->nt;j++) {
729:           PetscCall(MatHasOperation(nep->A[j],MATOP_NORM,&flg));
730:           PetscCheck(flg,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_WRONG,"The computation of backward errors requires a matrix norm operation");
731:           PetscCall(MatNorm(nep->A[j],NORM_INFINITY,&nep->nrma[j]));
732:         }
733:       }
734:       for (j=0;j<nep->nt;j++) {
735:         PetscCall(FNEvaluateFunction(nep->f[j],kr,&s));
736:         z = z + nep->nrma[j]*PetscAbsScalar(s);
737:       }
738:       *error /= z*er;
739:       break;
740:     default:
741:       SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid error type");
742:   }
743:   PetscFunctionReturn(PETSC_SUCCESS);
744: }

746: /*@
747:    NEPComputeFunction - Computes the function matrix $T(\lambda)$ that has been
748:    set with `NEPSetFunction()`.

750:    Collective

752:    Input Parameters:
753: +  nep    - the nonlinear eigensolver context
754: -  lambda - the scalar argument

756:    Output Parameters:
757: +  A   - Function matrix
758: -  B   - optional preconditioning matrix

760:    Note:
761:    `NEPComputeFunction()` is typically used within nonlinear eigensolvers
762:    implementations, so most users would not generally call this routine
763:    themselves.

765:    Level: developer

767: .seealso: [](ch:nep), `NEPSetFunction()`, `NEPGetFunction()`, `NEPComputeJacobian()`
768: @*/
769: PetscErrorCode NEPComputeFunction(NEP nep,PetscScalar lambda,Mat A,Mat B)
770: {
771:   PetscInt       i;
772:   PetscScalar    alpha;

774:   PetscFunctionBegin;
776:   NEPCheckProblem(nep,1);
777:   switch (nep->fui) {
778:   case NEP_USER_INTERFACE_CALLBACK:
779:     PetscCheck(nep->computefunction,PetscObjectComm((PetscObject)nep),PETSC_ERR_USER,"Must call NEPSetFunction() first");
780:     PetscCall(PetscLogEventBegin(NEP_FunctionEval,nep,A,B,0));
781:     PetscCallBack("NEP user Function function",(*nep->computefunction)(nep,lambda,A,B,nep->functionctx));
782:     PetscCall(PetscLogEventEnd(NEP_FunctionEval,nep,A,B,0));
783:     break;
784:   case NEP_USER_INTERFACE_SPLIT:
785:     PetscCall(MatZeroEntries(A));
786:     if (A != B) PetscCall(MatZeroEntries(B));
787:     for (i=0;i<nep->nt;i++) {
788:       PetscCall(FNEvaluateFunction(nep->f[i],lambda,&alpha));
789:       PetscCall(MatAXPY(A,alpha,nep->A[i],nep->mstr));
790:       if (A != B) PetscCall(MatAXPY(B,alpha,nep->P[i],nep->mstrp));
791:     }
792:     break;
793:   }
794:   PetscFunctionReturn(PETSC_SUCCESS);
795: }

797: /*@
798:    NEPComputeJacobian - Computes the Jacobian matrix $T'(\lambda)$ that has been
799:    set with `NEPSetJacobian()`.

801:    Collective

803:    Input Parameters:
804: +  nep    - the nonlinear eigensolver context
805: -  lambda - the scalar argument

807:    Output Parameter:
808: .  A   - Jacobian matrix

810:    Notes:
811:    Most users should not need to explicitly call this routine, as it
812:    is used internally within the nonlinear eigensolvers.

814:    Level: developer

816: .seealso: [](ch:nep), `NEPSetJacobian()`, `NEPGetJacobian()`, `NEPComputeFunction()`
817: @*/
818: PetscErrorCode NEPComputeJacobian(NEP nep,PetscScalar lambda,Mat A)
819: {
820:   PetscInt       i;
821:   PetscScalar    alpha;

823:   PetscFunctionBegin;
825:   NEPCheckProblem(nep,1);
826:   switch (nep->fui) {
827:   case NEP_USER_INTERFACE_CALLBACK:
828:     PetscCheck(nep->computejacobian,PetscObjectComm((PetscObject)nep),PETSC_ERR_USER,"Must call NEPSetJacobian() first");
829:     PetscCall(PetscLogEventBegin(NEP_JacobianEval,nep,A,0,0));
830:     PetscCallBack("NEP user Jacobian function",(*nep->computejacobian)(nep,lambda,A,nep->jacobianctx));
831:     PetscCall(PetscLogEventEnd(NEP_JacobianEval,nep,A,0,0));
832:     break;
833:   case NEP_USER_INTERFACE_SPLIT:
834:     PetscCall(MatZeroEntries(A));
835:     for (i=0;i<nep->nt;i++) {
836:       PetscCall(FNEvaluateDerivative(nep->f[i],lambda,&alpha));
837:       PetscCall(MatAXPY(A,alpha,nep->A[i],nep->mstr));
838:     }
839:     break;
840:   }
841:   PetscFunctionReturn(PETSC_SUCCESS);
842: }