Actual source code: test7.c
slepc-3.22.1 2024-10-28
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Test DSSVD.\n\n";
13: #include <slepcds.h>
15: int main(int argc,char **argv)
16: {
17: DS ds;
18: SlepcSC sc;
19: PetscReal sigma,rnorm,aux;
20: PetscScalar *A,*U,*w,d;
21: PetscInt i,j,k,n=15,m=10,m1,ld;
22: PetscViewer viewer;
23: PetscBool verbose,extrarow;
25: PetscFunctionBeginUser;
26: PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
27: PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
28: PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,NULL));
29: k = PetscMin(n,m);
30: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Solve a Dense System of type SVD - dimension %" PetscInt_FMT "x%" PetscInt_FMT ".\n",n,m));
31: PetscCall(PetscOptionsHasName(NULL,NULL,"-verbose",&verbose));
32: PetscCall(PetscOptionsHasName(NULL,NULL,"-extrarow",&extrarow));
34: /* Create DS object */
35: PetscCall(DSCreate(PETSC_COMM_WORLD,&ds));
36: PetscCall(DSSetType(ds,DSSVD));
37: PetscCall(DSSetFromOptions(ds));
38: ld = PetscMax(n,m)+2; /* test leading dimension larger than n */
39: PetscCall(DSAllocate(ds,ld));
40: PetscCall(DSSetDimensions(ds,n,0,0));
41: PetscCall(DSSVDSetDimensions(ds,m));
42: PetscCall(DSSVDGetDimensions(ds,&m1));
43: PetscCheck(m1==m,PETSC_COMM_WORLD,PETSC_ERR_PLIB,"Inconsistent dimension value");
44: PetscCall(DSSetExtraRow(ds,extrarow));
46: /* Set up viewer */
47: PetscCall(PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&viewer));
48: PetscCall(PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_INFO_DETAIL));
49: PetscCall(DSView(ds,viewer));
50: PetscCall(PetscViewerPopFormat(viewer));
52: /* Fill with a rectangular Toeplitz matrix */
53: PetscCall(DSGetArray(ds,DS_MAT_A,&A));
54: for (i=0;i<k;i++) A[i+i*ld]=1.0;
55: for (j=1;j<3;j++) {
56: for (i=0;i<m-j;i++) { if ((i+j)<m) A[i+(i+j)*ld]=(PetscScalar)(j+1); }
57: }
58: for (j=1;j<n/2;j++) {
59: for (i=0;i<n-j;i++) { if ((i+j)<n && i<m) A[(i+j)+i*ld]=-1.0; }
60: }
61: if (extrarow) { A[n-2+m*ld]=1.0; A[n-1+m*ld]=1.0; } /* really an extra column */
62: PetscCall(DSRestoreArray(ds,DS_MAT_A,&A));
63: PetscCall(DSSetState(ds,DS_STATE_RAW));
64: if (verbose) {
65: PetscCall(PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_MATLAB));
66: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Initial - - - - - - - - -\n"));
67: }
68: PetscCall(DSView(ds,viewer));
70: /* Solve */
71: PetscCall(PetscMalloc1(k,&w));
72: PetscCall(DSGetSlepcSC(ds,&sc));
73: sc->comparison = SlepcCompareLargestReal;
74: sc->comparisonctx = NULL;
75: sc->map = NULL;
76: sc->mapobj = NULL;
77: PetscCall(DSSolve(ds,w,NULL));
78: PetscCall(DSSort(ds,w,NULL,NULL,NULL,NULL));
79: if (extrarow) PetscCall(DSUpdateExtraRow(ds));
80: if (verbose) {
81: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"After solve - - - - - - - - -\n"));
82: PetscCall(DSView(ds,viewer));
83: }
85: /* Print singular values */
86: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Computed singular values =\n"));
87: for (i=0;i<k;i++) {
88: sigma = PetscRealPart(w[i]);
89: PetscCall(PetscViewerASCIIPrintf(viewer," %.5f\n",(double)sigma));
90: }
92: if (extrarow) {
93: /* Check that extra column is correct */
94: PetscCall(DSGetArray(ds,DS_MAT_A,&A));
95: PetscCall(DSGetArray(ds,DS_MAT_U,&U));
96: d = 0.0;
97: for (i=0;i<n;i++) d += A[i+m*ld]-U[n-2+i*ld]-U[n-1+i*ld];
98: if (PetscAbsScalar(d)>10*PETSC_MACHINE_EPSILON) PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Warning: there is a mismatch in the extra row of %g\n",(double)PetscAbsScalar(d)));
99: PetscCall(DSRestoreArray(ds,DS_MAT_A,&A));
100: PetscCall(DSRestoreArray(ds,DS_MAT_U,&U));
101: }
103: /* Singular vectors */
104: PetscCall(DSVectors(ds,DS_MAT_U,NULL,NULL)); /* all singular vectors */
105: j = 0;
106: rnorm = 0.0;
107: PetscCall(DSGetArray(ds,DS_MAT_U,&U));
108: for (i=0;i<n;i++) {
109: aux = PetscAbsScalar(U[i+j*ld]);
110: rnorm += aux*aux;
111: }
112: PetscCall(DSRestoreArray(ds,DS_MAT_U,&U));
113: rnorm = PetscSqrtReal(rnorm);
114: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Norm of 1st U vector = %.3f\n",(double)rnorm));
116: PetscCall(PetscFree(w));
117: PetscCall(DSDestroy(&ds));
118: PetscCall(SlepcFinalize());
119: return 0;
120: }
122: /*TEST
124: test:
125: args: -ds_method {{0 1}}
126: suffix: 1
127: filter: grep -v "solving the problem"
128: requires: !single
130: test:
131: suffix: 2
132: args: -extrarow -ds_method {{0 1}}
133: filter: grep -v "solving the problem"
134: requires: !single
136: TEST*/