Actual source code: test23.c

slepc-3.22.1 2024-10-28
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: static char help[] = "Test interface functions of DSNEP.\n\n";

 13: #include <slepcds.h>

 15: int main(int argc,char **argv)
 16: {
 17:   DS             ds;
 18:   FN             f1,f2,f3,funs[3];
 19:   SlepcSC        sc;
 20:   PetscScalar    *Id,*A,*B,*wr,*wi,*X,*W,coeffs[2],auxr,alpha;
 21:   PetscReal      tau=0.001,h,a=20,xi,re,im,nrm,aux;
 22:   PetscInt       i,j,ii,jj,k,n=10,ld,nev,nfun,midx,ip,rits,meth,spls;
 23:   PetscViewer    viewer;
 24:   PetscBool      verbose;
 25:   RG             rg;
 26:   DSMatType      mat[3]={DS_MAT_E0,DS_MAT_E1,DS_MAT_E2};
 27: #if defined(PETSC_USE_COMPLEX)
 28:   PetscBool      flg;
 29: #else
 30:   PetscScalar    auxi;
 31: #endif

 33:   PetscFunctionBeginUser;
 34:   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
 35:   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
 36:   PetscCall(PetscOptionsGetReal(NULL,NULL,"-tau",&tau,NULL));
 37:   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Solve a Dense System of type NEP - dimension %" PetscInt_FMT ", tau=%g.\n",n,(double)tau));
 38:   PetscCall(PetscOptionsHasName(NULL,NULL,"-verbose",&verbose));

 40:   /* Create DS object and set options */
 41:   PetscCall(DSCreate(PETSC_COMM_WORLD,&ds));
 42:   PetscCall(DSSetType(ds,DSNEP));
 43: #if defined(PETSC_USE_COMPLEX)
 44:   PetscCall(DSSetMethod(ds,1));  /* contour integral */
 45: #endif
 46:   PetscCall(DSNEPGetRG(ds,&rg));
 47:   PetscCall(RGSetType(rg,RGELLIPSE));
 48:   PetscCall(DSNEPSetMinimality(ds,1));
 49:   PetscCall(DSNEPSetIntegrationPoints(ds,16));
 50:   PetscCall(DSNEPSetRefine(ds,PETSC_CURRENT,2));
 51:   PetscCall(DSNEPSetSamplingSize(ds,25));
 52:   PetscCall(DSSetFromOptions(ds));

 54:   /* Print current options */
 55:   PetscCall(DSGetMethod(ds,&meth));
 56: #if defined(PETSC_USE_COMPLEX)
 57:   PetscCheck(meth==1,PETSC_COMM_WORLD,PETSC_ERR_USER_INPUT,"This example requires ds_method=1");
 58:   PetscCall(RGIsTrivial(rg,&flg));
 59:   PetscCheck(!flg,PETSC_COMM_WORLD,PETSC_ERR_USER_INPUT,"Must at least set the radius of the ellipse");
 60: #endif

 62:   PetscCall(DSNEPGetMinimality(ds,&midx));
 63:   PetscCall(DSNEPGetIntegrationPoints(ds,&ip));
 64:   PetscCall(DSNEPGetRefine(ds,NULL,&rits));
 65:   PetscCall(DSNEPGetSamplingSize(ds,&spls));
 66:   if (meth==1) {
 67:     PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Contour integral method with %" PetscInt_FMT " integration points, minimality index %" PetscInt_FMT ", and sampling size %" PetscInt_FMT "\n",ip,midx,spls));
 68:     if (rits) PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Doing %" PetscInt_FMT " iterations of Newton refinement\n",rits));
 69:   }

 71:   /* Set functions (prior to DSAllocate) */
 72:   PetscCall(FNCreate(PETSC_COMM_WORLD,&f1));
 73:   PetscCall(FNSetType(f1,FNRATIONAL));
 74:   coeffs[0] = -1.0; coeffs[1] = 0.0;
 75:   PetscCall(FNRationalSetNumerator(f1,2,coeffs));

 77:   PetscCall(FNCreate(PETSC_COMM_WORLD,&f2));
 78:   PetscCall(FNSetType(f2,FNRATIONAL));
 79:   coeffs[0] = 1.0;
 80:   PetscCall(FNRationalSetNumerator(f2,1,coeffs));

 82:   PetscCall(FNCreate(PETSC_COMM_WORLD,&f3));
 83:   PetscCall(FNSetType(f3,FNEXP));
 84:   PetscCall(FNSetScale(f3,-tau,1.0));

 86:   funs[0] = f1;
 87:   funs[1] = f2;
 88:   funs[2] = f3;
 89:   PetscCall(DSNEPSetFN(ds,3,funs));

 91:   /* Set dimensions */
 92:   ld = n;
 93:   PetscCall(DSAllocate(ds,ld));
 94:   PetscCall(DSSetDimensions(ds,n,0,0));

 96:   /* Set up viewer */
 97:   PetscCall(PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&viewer));
 98:   PetscCall(PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_INFO_DETAIL));
 99:   PetscCall(PetscViewerPopFormat(viewer));
100:   if (verbose) PetscCall(PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_MATLAB));

102:   /* Fill matrices */
103:   PetscCall(DSGetArray(ds,DS_MAT_E0,&Id));
104:   for (i=0;i<n;i++) Id[i+i*ld]=1.0;
105:   PetscCall(DSRestoreArray(ds,DS_MAT_E0,&Id));
106:   h = PETSC_PI/(PetscReal)(n+1);
107:   PetscCall(DSGetArray(ds,DS_MAT_E1,&A));
108:   for (i=0;i<n;i++) A[i+i*ld]=-2.0/(h*h)+a;
109:   for (i=1;i<n;i++) {
110:     A[i+(i-1)*ld]=1.0/(h*h);
111:     A[(i-1)+i*ld]=1.0/(h*h);
112:   }
113:   PetscCall(DSRestoreArray(ds,DS_MAT_E1,&A));
114:   PetscCall(DSGetArray(ds,DS_MAT_E2,&B));
115:   for (i=0;i<n;i++) {
116:     xi = (i+1)*h;
117:     B[i+i*ld] = -4.1+xi*(1.0-PetscExpReal(xi-PETSC_PI));
118:   }
119:   PetscCall(DSRestoreArray(ds,DS_MAT_E2,&B));

121:   if (verbose) {
122:     PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Initial - - - - - - - - -\n"));
123:     PetscCall(DSView(ds,viewer));
124:   }

126:   /* Solve */
127:   PetscCall(PetscCalloc2(n,&wr,n,&wi));
128:   PetscCall(DSGetSlepcSC(ds,&sc));
129:   sc->comparison    = SlepcCompareLargestMagnitude;
130:   sc->comparisonctx = NULL;
131:   sc->map           = NULL;
132:   sc->mapobj        = NULL;
133:   PetscCall(DSSolve(ds,wr,wi));
134:   PetscCall(DSSort(ds,wr,wi,NULL,NULL,NULL));

136:   if (verbose) {
137:     PetscCall(PetscPrintf(PETSC_COMM_WORLD,"After solve - - - - - - - - -\n"));
138:     PetscCall(DSView(ds,viewer));
139:   }
140:   PetscCall(DSGetDimensions(ds,NULL,NULL,NULL,&nev));

142:   /* Print computed eigenvalues */
143:   PetscCall(DSNEPGetNumFN(ds,&nfun));
144:   PetscCall(PetscMalloc1(ld*ld,&W));
145:   PetscCall(DSVectors(ds,DS_MAT_X,NULL,NULL));
146:   PetscCall(DSGetArray(ds,DS_MAT_X,&X));
147:   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Computed eigenvalues =\n"));
148:   for (i=0;i<nev;i++) {
149: #if defined(PETSC_USE_COMPLEX)
150:     re = PetscRealPart(wr[i]);
151:     im = PetscImaginaryPart(wr[i]);
152: #else
153:     re = wr[i];
154:     im = wi[i];
155: #endif
156:     /* Residual */
157:     PetscCall(PetscArrayzero(W,ld*ld));
158:     for (k=0;k<nfun;k++) {
159:       PetscCall(FNEvaluateFunction(funs[k],wr[i],&alpha));
160:       PetscCall(DSGetArray(ds,mat[k],&A));
161:       for (jj=0;jj<n;jj++) for (ii=0;ii<n;ii++) W[jj*ld+ii] += alpha*A[jj*ld+ii];
162:       PetscCall(DSRestoreArray(ds,mat[k],&A));
163:     }
164:     nrm = 0.0;
165:     for (k=0;k<n;k++) {
166:       auxr = 0.0;
167: #if !defined(PETSC_USE_COMPLEX)
168:       auxi = 0.0;
169: #endif
170:       for (j=0;j<n;j++) {
171:         auxr += W[k+j*ld]*X[i*ld+j];
172: #if !defined(PETSC_USE_COMPLEX)
173:         if (PetscAbs(wi[j])!=0.0) auxi += W[k+j*ld]*X[(i+1)*ld+j];
174: #endif
175:       }
176:       aux = SlepcAbsEigenvalue(auxr,auxi);
177:       nrm += aux*aux;
178:     }
179:     nrm = PetscSqrtReal(nrm);
180:     if (nrm>1000*n*PETSC_MACHINE_EPSILON) PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Warning: the residual norm of the %" PetscInt_FMT "-th computed eigenpair %g\n",i,(double)nrm));
181:     if (PetscAbs(im)<1e-10) PetscCall(PetscViewerASCIIPrintf(viewer,"  %.5f\n",(double)re));
182:     else PetscCall(PetscViewerASCIIPrintf(viewer,"  %.5f%+.5fi\n",(double)re,(double)im));
183:   }
184:   PetscCall(PetscFree(W));
185:   PetscCall(DSRestoreArray(ds,DS_MAT_X,&X));
186:   PetscCall(DSRestoreArray(ds,DS_MAT_W,&W));
187:   PetscCall(PetscFree2(wr,wi));
188:   PetscCall(FNDestroy(&f1));
189:   PetscCall(FNDestroy(&f2));
190:   PetscCall(FNDestroy(&f3));
191:   PetscCall(DSDestroy(&ds));
192:   PetscCall(SlepcFinalize());
193:   return 0;
194: }

196: /*TEST

198:    testset:
199:       test:
200:          suffix: 1
201:          requires: !complex
202:       test:
203:          suffix: 2
204:          args: -ds_nep_rg_ellipse_radius 10
205:          filter: sed -e "s/[+-]0\.0*i//g" | sed -e "s/37411/37410/"
206:          requires: complex

208: TEST*/