Actual source code: dshep.c

slepc-3.22.1 2024-10-28
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: #include <slepc/private/dsimpl.h>
 12: #include <slepcblaslapack.h>

 14: static PetscErrorCode DSAllocate_HEP(DS ds,PetscInt ld)
 15: {
 16:   PetscFunctionBegin;
 17:   if (!ds->compact) PetscCall(DSAllocateMat_Private(ds,DS_MAT_A));
 18:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_Q));
 19:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_T));
 20:   PetscCall(PetscFree(ds->perm));
 21:   PetscCall(PetscMalloc1(ld,&ds->perm));
 22:   PetscFunctionReturn(PETSC_SUCCESS);
 23: }

 25: /*   0       l           k                 n-1
 26:     -----------------------------------------
 27:     |*       .           .                  |
 28:     |  *     .           .                  |
 29:     |    *   .           .                  |
 30:     |      * .           .                  |
 31:     |. . . . o           o                  |
 32:     |          o         o                  |
 33:     |            o       o                  |
 34:     |              o     o                  |
 35:     |                o   o                  |
 36:     |                  o o                  |
 37:     |. . . . o o o o o o o x                |
 38:     |                    x x x              |
 39:     |                      x x x            |
 40:     |                        x x x          |
 41:     |                          x x x        |
 42:     |                            x x x      |
 43:     |                              x x x    |
 44:     |                                x x x  |
 45:     |                                  x x x|
 46:     |                                    x x|
 47:     -----------------------------------------
 48: */

 50: static PetscErrorCode DSSwitchFormat_HEP(DS ds)
 51: {
 52:   PetscReal      *T;
 53:   PetscScalar    *A;
 54:   PetscInt       i,n=ds->n,k=ds->k,ld=ds->ld;

 56:   PetscFunctionBegin;
 57:   /* switch from compact (arrow) to dense storage */
 58:   PetscCall(MatDenseGetArrayWrite(ds->omat[DS_MAT_A],&A));
 59:   PetscCall(DSGetArrayReal(ds,DS_MAT_T,&T));
 60:   PetscCall(PetscArrayzero(A,ld*ld));
 61:   for (i=0;i<k;i++) {
 62:     A[i+i*ld] = T[i];
 63:     A[k+i*ld] = T[i+ld];
 64:     A[i+k*ld] = T[i+ld];
 65:   }
 66:   A[k+k*ld] = T[k];
 67:   for (i=k+1;i<n;i++) {
 68:     A[i+i*ld]     = T[i];
 69:     A[i-1+i*ld]   = T[i-1+ld];
 70:     A[i+(i-1)*ld] = T[i-1+ld];
 71:   }
 72:   if (ds->extrarow) A[n+(n-1)*ld] = T[n-1+ld];
 73:   PetscCall(MatDenseRestoreArrayWrite(ds->omat[DS_MAT_A],&A));
 74:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&T));
 75:   PetscFunctionReturn(PETSC_SUCCESS);
 76: }

 78: static PetscErrorCode DSView_HEP(DS ds,PetscViewer viewer)
 79: {
 80:   PetscViewerFormat format;
 81:   PetscInt          i,j,r,c,rows;
 82:   PetscReal         *T,value;
 83:   const char        *methodname[] = {
 84:                      "Implicit QR method (_steqr)",
 85:                      "Relatively Robust Representations (_stevr)",
 86:                      "Divide and Conquer method (_stedc)",
 87:                      "Block Divide and Conquer method (dsbtdc)"
 88:   };
 89:   const int         nmeth=PETSC_STATIC_ARRAY_LENGTH(methodname);

 91:   PetscFunctionBegin;
 92:   PetscCall(PetscViewerGetFormat(viewer,&format));
 93:   if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
 94:     if (ds->bs>1) PetscCall(PetscViewerASCIIPrintf(viewer,"block size: %" PetscInt_FMT "\n",ds->bs));
 95:     if (ds->method<nmeth) PetscCall(PetscViewerASCIIPrintf(viewer,"solving the problem with: %s\n",methodname[ds->method]));
 96:     PetscFunctionReturn(PETSC_SUCCESS);
 97:   }
 98:   if (ds->compact) {
 99:     PetscCall(DSGetArrayReal(ds,DS_MAT_T,&T));
100:     PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_FALSE));
101:     rows = ds->extrarow? ds->n+1: ds->n;
102:     if (format == PETSC_VIEWER_ASCII_MATLAB) {
103:       PetscCall(PetscViewerASCIIPrintf(viewer,"%% Size = %" PetscInt_FMT " %" PetscInt_FMT "\n",rows,ds->n));
104:       PetscCall(PetscViewerASCIIPrintf(viewer,"zzz = zeros(%" PetscInt_FMT ",3);\n",3*ds->n));
105:       PetscCall(PetscViewerASCIIPrintf(viewer,"zzz = [\n"));
106:       for (i=0;i<ds->n;i++) PetscCall(PetscViewerASCIIPrintf(viewer,"%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n",i+1,i+1,(double)T[i]));
107:       for (i=0;i<rows-1;i++) {
108:         r = PetscMax(i+2,ds->k+1);
109:         c = i+1;
110:         PetscCall(PetscViewerASCIIPrintf(viewer,"%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n",r,c,(double)T[i+ds->ld]));
111:         if (i<ds->n-1 && ds->k<ds->n) { /* do not print vertical arrow when k=n */
112:           PetscCall(PetscViewerASCIIPrintf(viewer,"%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n",c,r,(double)T[i+ds->ld]));
113:         }
114:       }
115:       PetscCall(PetscViewerASCIIPrintf(viewer,"];\n%s = spconvert(zzz);\n",DSMatName[DS_MAT_T]));
116:     } else {
117:       for (i=0;i<rows;i++) {
118:         for (j=0;j<ds->n;j++) {
119:           if (i==j) value = T[i];
120:           else if ((i<ds->k && j==ds->k) || (i==ds->k && j<ds->k)) value = T[PetscMin(i,j)+ds->ld];
121:           else if (i==j+1 && i>ds->k) value = T[i-1+ds->ld];
122:           else if (i+1==j && j>ds->k) value = T[j-1+ds->ld];
123:           else value = 0.0;
124:           PetscCall(PetscViewerASCIIPrintf(viewer," %18.16e ",(double)value));
125:         }
126:         PetscCall(PetscViewerASCIIPrintf(viewer,"\n"));
127:       }
128:     }
129:     PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_TRUE));
130:     PetscCall(PetscViewerFlush(viewer));
131:     PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&T));
132:   } else PetscCall(DSViewMat(ds,viewer,DS_MAT_A));
133:   if (ds->state>DS_STATE_INTERMEDIATE) PetscCall(DSViewMat(ds,viewer,DS_MAT_Q));
134:   PetscFunctionReturn(PETSC_SUCCESS);
135: }

137: static PetscErrorCode DSVectors_HEP(DS ds,DSMatType mat,PetscInt *j,PetscReal *rnorm)
138: {
139:   PetscScalar       *Z;
140:   const PetscScalar *Q;
141:   PetscInt          ld = ds->ld;

143:   PetscFunctionBegin;
144:   switch (mat) {
145:     case DS_MAT_X:
146:     case DS_MAT_Y:
147:       if (j) {
148:         PetscCall(MatDenseGetArray(ds->omat[mat],&Z));
149:         if (ds->state>=DS_STATE_CONDENSED) {
150:           PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_Q],&Q));
151:           PetscCall(PetscArraycpy(Z+(*j)*ld,Q+(*j)*ld,ld));
152:           if (rnorm) *rnorm = PetscAbsScalar(Q[ds->n-1+(*j)*ld]);
153:           PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_Q],&Q));
154:         } else {
155:           PetscCall(PetscArrayzero(Z+(*j)*ld,ld));
156:           Z[(*j)+(*j)*ld] = 1.0;
157:           if (rnorm) *rnorm = 0.0;
158:         }
159:         PetscCall(MatDenseRestoreArray(ds->omat[mat],&Z));
160:       } else {
161:         if (ds->state>=DS_STATE_CONDENSED) PetscCall(MatCopy(ds->omat[DS_MAT_Q],ds->omat[mat],SAME_NONZERO_PATTERN));
162:         else PetscCall(DSSetIdentity(ds,mat));
163:       }
164:       break;
165:     case DS_MAT_U:
166:     case DS_MAT_V:
167:       SETERRQ(PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"Not implemented yet");
168:     default:
169:       SETERRQ(PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"Invalid mat parameter");
170:   }
171:   PetscFunctionReturn(PETSC_SUCCESS);
172: }

174: /*
175:   ARROWTRIDIAG reduces a symmetric arrowhead matrix of the form

177:                 [ d 0 0 0 e ]
178:                 [ 0 d 0 0 e ]
179:             A = [ 0 0 d 0 e ]
180:                 [ 0 0 0 d e ]
181:                 [ e e e e d ]

183:   to tridiagonal form

185:                 [ d e 0 0 0 ]
186:                 [ e d e 0 0 ]
187:    T = Q'*A*Q = [ 0 e d e 0 ],
188:                 [ 0 0 e d e ]
189:                 [ 0 0 0 e d ]

191:   where Q is an orthogonal matrix. Rutishauser's algorithm is used to
192:   perform the reduction, which requires O(n**2) flops. The accumulation
193:   of the orthogonal factor Q, however, requires O(n**3) flops.

195:   Arguments
196:   =========

198:   N       (input) INTEGER
199:           The order of the matrix A.  N >= 0.

201:   D       (input/output) DOUBLE PRECISION array, dimension (N)
202:           On entry, the diagonal entries of the matrix A to be
203:           reduced.
204:           On exit, the diagonal entries of the reduced matrix T.

206:   E       (input/output) DOUBLE PRECISION array, dimension (N-1)
207:           On entry, the off-diagonal entries of the matrix A to be
208:           reduced.
209:           On exit, the subdiagonal entries of the reduced matrix T.

211:   Q       (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
212:           On exit, the orthogonal matrix Q.

214:   LDQ     (input) INTEGER
215:           The leading dimension of the array Q.

217:   Note
218:   ====
219:   Based on Fortran code contributed by Daniel Kressner
220: */
221: PetscErrorCode DSArrowTridiag(PetscBLASInt n,PetscReal *d,PetscReal *e,PetscScalar *Q,PetscBLASInt ld)
222: {
223:   PetscBLASInt i,j,j2,one=1;
224:   PetscReal    c,s,p,off,temp;

226:   PetscFunctionBegin;
227:   if (n<=2) PetscFunctionReturn(PETSC_SUCCESS);

229:   for (j=0;j<n-2;j++) {

231:     /* Eliminate entry e(j) by a rotation in the planes (j,j+1) */
232:     temp = e[j+1];
233:     PetscCallBLAS("LAPACKlartg",LAPACKREALlartg_(&temp,&e[j],&c,&s,&e[j+1]));
234:     s = -s;

236:     /* Apply rotation to diagonal elements */
237:     temp   = d[j+1];
238:     e[j]   = c*s*(temp-d[j]);
239:     d[j+1] = s*s*d[j] + c*c*temp;
240:     d[j]   = c*c*d[j] + s*s*temp;

242:     /* Apply rotation to Q */
243:     j2 = j+2;
244:     PetscCallBLAS("BLASrot",BLASMIXEDrot_(&j2,Q+j*ld,&one,Q+(j+1)*ld,&one,&c,&s));

246:     /* Chase newly introduced off-diagonal entry to the top left corner */
247:     for (i=j-1;i>=0;i--) {
248:       off  = -s*e[i];
249:       e[i] = c*e[i];
250:       temp = e[i+1];
251:       PetscCallBLAS("LAPACKlartg",LAPACKREALlartg_(&temp,&off,&c,&s,&e[i+1]));
252:       s = -s;
253:       temp = (d[i]-d[i+1])*s - 2.0*c*e[i];
254:       p = s*temp;
255:       d[i+1] += p;
256:       d[i] -= p;
257:       e[i] = -e[i] - c*temp;
258:       PetscCallBLAS("BLASrot",BLASMIXEDrot_(&j2,Q+i*ld,&one,Q+(i+1)*ld,&one,&c,&s));
259:     }
260:   }
261:   PetscFunctionReturn(PETSC_SUCCESS);
262: }

264: /*
265:    Reduce to tridiagonal form by means of DSArrowTridiag.
266: */
267: static PetscErrorCode DSIntermediate_HEP(DS ds)
268: {
269:   PetscInt          i;
270:   PetscBLASInt      n1 = 0,n2,lwork,info,l = 0,n = 0,ld,off;
271:   PetscScalar       *Q,*work,*tau;
272:   const PetscScalar *A;
273:   PetscReal         *d,*e;
274:   Mat               At,Qt;  /* trailing submatrices */

276:   PetscFunctionBegin;
277:   PetscCall(PetscBLASIntCast(ds->n,&n));
278:   PetscCall(PetscBLASIntCast(ds->l,&l));
279:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
280:   PetscCall(PetscBLASIntCast(PetscMax(0,ds->k-l+1),&n1)); /* size of leading block, excl. locked */
281:   n2 = n-l;     /* n2 = n1 + size of trailing block */
282:   off = l+l*ld;
283:   PetscCall(DSGetArrayReal(ds,DS_MAT_T,&d));
284:   e = d+ld;
285:   PetscCall(DSSetIdentity(ds,DS_MAT_Q));
286:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Q],&Q));

288:   if (ds->compact) {

290:     if (ds->state<DS_STATE_INTERMEDIATE) PetscCall(DSArrowTridiag(n1,d+l,e+l,Q+off,ld));

292:   } else {

294:     PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_A],&A));
295:     for (i=0;i<l;i++) { d[i] = PetscRealPart(A[i+i*ld]); e[i] = 0.0; }

297:     if (ds->state<DS_STATE_INTERMEDIATE) {
298:       PetscCall(MatDenseGetSubMatrix(ds->omat[DS_MAT_A],ds->l,ds->n,ds->l,ds->n,&At));
299:       PetscCall(MatDenseGetSubMatrix(ds->omat[DS_MAT_Q],ds->l,ds->n,ds->l,ds->n,&Qt));
300:       PetscCall(MatCopy(At,Qt,SAME_NONZERO_PATTERN));
301:       PetscCall(MatDenseRestoreSubMatrix(ds->omat[DS_MAT_A],&At));
302:       PetscCall(MatDenseRestoreSubMatrix(ds->omat[DS_MAT_Q],&Qt));
303:       PetscCall(DSAllocateWork_Private(ds,ld+ld*ld,0,0));
304:       tau  = ds->work;
305:       work = ds->work+ld;
306:       lwork = ld*ld;
307:       PetscCallBLAS("LAPACKsytrd",LAPACKsytrd_("L",&n2,Q+off,&ld,d+l,e+l,tau,work,&lwork,&info));
308:       SlepcCheckLapackInfo("sytrd",info);
309:       PetscCallBLAS("LAPACKorgtr",LAPACKorgtr_("L",&n2,Q+off,&ld,tau,work,&lwork,&info));
310:       SlepcCheckLapackInfo("orgtr",info);
311:     } else {
312:       /* copy tridiagonal to d,e */
313:       for (i=l;i<n;i++)   d[i] = PetscRealPart(A[i+i*ld]);
314:       for (i=l;i<n-1;i++) e[i] = PetscRealPart(A[(i+1)+i*ld]);
315:     }
316:     PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_A],&A));
317:   }
318:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Q],&Q));
319:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&d));
320:   PetscFunctionReturn(PETSC_SUCCESS);
321: }

323: static PetscErrorCode DSSort_HEP(DS ds,PetscScalar *wr,PetscScalar *wi,PetscScalar *rr,PetscScalar *ri,PetscInt *k)
324: {
325:   PetscInt       n,l,i,*perm,ld=ds->ld;
326:   PetscScalar    *A;
327:   PetscReal      *d;

329:   PetscFunctionBegin;
330:   if (!ds->sc) PetscFunctionReturn(PETSC_SUCCESS);
331:   n = ds->n;
332:   l = ds->l;
333:   PetscCall(DSGetArrayReal(ds,DS_MAT_T,&d));
334:   perm = ds->perm;
335:   if (!rr) PetscCall(DSSortEigenvaluesReal_Private(ds,d,perm));
336:   else PetscCall(DSSortEigenvalues_Private(ds,rr,ri,perm,PETSC_FALSE));
337:   for (i=l;i<n;i++) wr[i] = d[perm[i]];
338:   PetscCall(DSPermuteColumns_Private(ds,l,n,n,DS_MAT_Q,perm));
339:   for (i=l;i<n;i++) d[i] = PetscRealPart(wr[i]);
340:   if (!ds->compact) {
341:     PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
342:     for (i=l;i<n;i++) A[i+i*ld] = wr[i];
343:     PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
344:   }
345:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&d));
346:   PetscFunctionReturn(PETSC_SUCCESS);
347: }

349: static PetscErrorCode DSUpdateExtraRow_HEP(DS ds)
350: {
351:   PetscInt          i;
352:   PetscBLASInt      n,ld,incx=1;
353:   PetscScalar       *A,*x,*y,one=1.0,zero=0.0;
354:   PetscReal         *T,*e,beta;
355:   const PetscScalar *Q;

357:   PetscFunctionBegin;
358:   PetscCall(PetscBLASIntCast(ds->n,&n));
359:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
360:   PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_Q],&Q));
361:   if (ds->compact) {
362:     PetscCall(DSGetArrayReal(ds,DS_MAT_T,&T));
363:     e = T+ld;
364:     beta = e[n-1];   /* in compact, we assume all entries are zero except the last one */
365:     for (i=0;i<n;i++) e[i] = PetscRealPart(beta*Q[n-1+i*ld]);
366:     PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&T));
367:     ds->k = n;
368:   } else {
369:     PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
370:     PetscCall(DSAllocateWork_Private(ds,2*ld,0,0));
371:     x = ds->work;
372:     y = ds->work+ld;
373:     for (i=0;i<n;i++) x[i] = PetscConj(A[n+i*ld]);
374:     PetscCallBLAS("BLASgemv",BLASgemv_("C",&n,&n,&one,Q,&ld,x,&incx,&zero,y,&incx));
375:     for (i=0;i<n;i++) A[n+i*ld] = PetscConj(y[i]);
376:     ds->k = n;
377:     PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
378:   }
379:   PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_Q],&Q));
380:   PetscFunctionReturn(PETSC_SUCCESS);
381: }

383: static PetscErrorCode DSSolve_HEP_QR(DS ds,PetscScalar *wr,PetscScalar *wi)
384: {
385:   PetscInt       i;
386:   PetscBLASInt   n1,info,l = 0,n = 0,ld,off;
387:   PetscScalar    *Q,*A;
388:   PetscReal      *d,*e;

390:   PetscFunctionBegin;
391:   PetscCheck(ds->bs==1,PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"This method is not prepared for bs>1");
392:   PetscCall(PetscBLASIntCast(ds->n,&n));
393:   PetscCall(PetscBLASIntCast(ds->l,&l));
394:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
395:   n1 = n-l;     /* n1 = size of leading block, excl. locked + size of trailing block */
396:   off = l+l*ld;
397:   PetscCall(DSGetArrayReal(ds,DS_MAT_T,&d));
398:   e = d+ld;

400:   /* Reduce to tridiagonal form */
401:   PetscCall(DSIntermediate_HEP(ds));

403:   /* Solve the tridiagonal eigenproblem */
404:   for (i=0;i<l;i++) wr[i] = d[i];

406:   PetscCall(DSAllocateWork_Private(ds,0,2*ld,0));
407:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Q],&Q));
408:   PetscCallBLAS("LAPACKsteqr",LAPACKsteqr_("V",&n1,d+l,e+l,Q+off,&ld,ds->rwork,&info));
409:   SlepcCheckLapackInfo("steqr",info);
410:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Q],&Q));
411:   for (i=l;i<n;i++) wr[i] = d[i];

413:   /* Create diagonal matrix as a result */
414:   if (ds->compact) PetscCall(PetscArrayzero(e,n-1));
415:   else {
416:     PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
417:     for (i=l;i<n;i++) PetscCall(PetscArrayzero(A+l+i*ld,n-l));
418:     for (i=l;i<n;i++) A[i+i*ld] = d[i];
419:     PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
420:   }
421:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&d));

423:   /* Set zero wi */
424:   if (wi) for (i=l;i<n;i++) wi[i] = 0.0;
425:   PetscFunctionReturn(PETSC_SUCCESS);
426: }

428: static PetscErrorCode DSSolve_HEP_MRRR(DS ds,PetscScalar *wr,PetscScalar *wi)
429: {
430:   Mat            At,Qt;  /* trailing submatrices */
431:   PetscInt       i;
432:   PetscBLASInt   n1 = 0,n2 = 0,n3,lrwork,liwork,info,l = 0,n = 0,m = 0,ld,off,il,iu,*isuppz;
433:   PetscScalar    *A,*Q,*W=NULL,one=1.0,zero=0.0;
434:   PetscReal      *d,*e,abstol=0.0,vl,vu;
435: #if defined(PETSC_USE_COMPLEX)
436:   PetscInt       j;
437:   PetscReal      *Qr,*ritz;
438: #endif

440:   PetscFunctionBegin;
441:   PetscCheck(ds->bs==1,PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"This method is not prepared for bs>1");
442:   PetscCall(PetscBLASIntCast(ds->n,&n));
443:   PetscCall(PetscBLASIntCast(ds->l,&l));
444:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
445:   PetscCall(PetscBLASIntCast(ds->k-l+1,&n1)); /* size of leading block, excl. locked */
446:   PetscCall(PetscBLASIntCast(n-ds->k-1,&n2)); /* size of trailing block */
447:   n3 = n1+n2;
448:   off = l+l*ld;
449:   PetscCall(DSGetArrayReal(ds,DS_MAT_T,&d));
450:   e = d+ld;

452:   /* Reduce to tridiagonal form */
453:   PetscCall(DSIntermediate_HEP(ds));

455:   /* Solve the tridiagonal eigenproblem */
456:   for (i=0;i<l;i++) wr[i] = d[i];

458:   if (ds->state<DS_STATE_INTERMEDIATE) {  /* Q contains useful info */
459:     PetscCall(DSAllocateMat_Private(ds,DS_MAT_W));
460:     PetscCall(MatCopy(ds->omat[DS_MAT_Q],ds->omat[DS_MAT_W],SAME_NONZERO_PATTERN));
461:   }
462:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Q],&Q));
463:   lrwork = 20*ld;
464:   liwork = 10*ld;
465: #if defined(PETSC_USE_COMPLEX)
466:   PetscCall(DSAllocateWork_Private(ds,0,lrwork+ld+ld*ld,liwork+2*ld));
467: #else
468:   PetscCall(DSAllocateWork_Private(ds,0,lrwork+ld,liwork+2*ld));
469: #endif
470:   isuppz = ds->iwork+liwork;
471: #if defined(PETSC_USE_COMPLEX)
472:   ritz = ds->rwork+lrwork;
473:   Qr   = ds->rwork+lrwork+ld;
474:   PetscCallBLAS("LAPACKstevr",LAPACKstevr_("V","A",&n3,d+l,e+l,&vl,&vu,&il,&iu,&abstol,&m,ritz+l,Qr+off,&ld,isuppz,ds->rwork,&lrwork,ds->iwork,&liwork,&info));
475:   for (i=l;i<n;i++) wr[i] = ritz[i];
476: #else
477:   PetscCallBLAS("LAPACKstevr",LAPACKstevr_("V","A",&n3,d+l,e+l,&vl,&vu,&il,&iu,&abstol,&m,wr+l,Q+off,&ld,isuppz,ds->rwork,&lrwork,ds->iwork,&liwork,&info));
478: #endif
479:   SlepcCheckLapackInfo("stevr",info);
480: #if defined(PETSC_USE_COMPLEX)
481:   for (i=l;i<n;i++)
482:     for (j=l;j<n;j++)
483:       Q[i+j*ld] = Qr[i+j*ld];
484: #endif
485:   if (ds->state<DS_STATE_INTERMEDIATE) {  /* accumulate previous Q */
486:     if (ds->compact) PetscCall(DSAllocateMat_Private(ds,DS_MAT_A));
487:     PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
488:     PetscCall(MatDenseGetArray(ds->omat[DS_MAT_W],&W));
489:     PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n3,&n3,&n3,&one,W+off,&ld,Q+off,&ld,&zero,A+off,&ld));
490:     PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
491:     PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_W],&W));
492:     PetscCall(MatDenseGetSubMatrix(ds->omat[DS_MAT_A],ds->l,ds->n,ds->l,ds->n,&At));
493:     PetscCall(MatDenseGetSubMatrix(ds->omat[DS_MAT_Q],ds->l,ds->n,ds->l,ds->n,&Qt));
494:     PetscCall(MatCopy(At,Qt,SAME_NONZERO_PATTERN));
495:     PetscCall(MatDenseRestoreSubMatrix(ds->omat[DS_MAT_A],&At));
496:     PetscCall(MatDenseRestoreSubMatrix(ds->omat[DS_MAT_Q],&Qt));
497:   }
498:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Q],&Q));
499:   for (i=l;i<n;i++) d[i] = PetscRealPart(wr[i]);

501:   /* Create diagonal matrix as a result */
502:   if (ds->compact) PetscCall(PetscArrayzero(e,n-1));
503:   else {
504:     PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
505:     for (i=l;i<n;i++) PetscCall(PetscArrayzero(A+l+i*ld,n-l));
506:     for (i=l;i<n;i++) A[i+i*ld] = d[i];
507:     PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
508:   }
509:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&d));

511:   /* Set zero wi */
512:   if (wi) for (i=l;i<n;i++) wi[i] = 0.0;
513:   PetscFunctionReturn(PETSC_SUCCESS);
514: }

516: static PetscErrorCode DSSolve_HEP_DC(DS ds,PetscScalar *wr,PetscScalar *wi)
517: {
518:   PetscInt       i;
519:   PetscBLASInt   n1,info,l = 0,ld,off,lrwork,liwork;
520:   PetscScalar    *Q,*A;
521:   PetscReal      *d,*e;
522: #if defined(PETSC_USE_COMPLEX)
523:   PetscBLASInt   lwork;
524:   PetscInt       j;
525: #endif

527:   PetscFunctionBegin;
528:   PetscCheck(ds->bs==1,PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"This method is not prepared for bs>1");
529:   PetscCall(PetscBLASIntCast(ds->l,&l));
530:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
531:   PetscCall(PetscBLASIntCast(ds->n-ds->l,&n1));
532:   off = l+l*ld;
533:   PetscCall(DSGetArrayReal(ds,DS_MAT_T,&d));
534:   e = d+ld;

536:   /* Reduce to tridiagonal form */
537:   PetscCall(DSIntermediate_HEP(ds));

539:   /* Solve the tridiagonal eigenproblem */
540:   for (i=0;i<l;i++) wr[i] = d[i];

542:   lrwork = 5*n1*n1+3*n1+1;
543:   liwork = 5*n1*n1+6*n1+6;
544:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Q],&Q));
545: #if !defined(PETSC_USE_COMPLEX)
546:   PetscCall(DSAllocateWork_Private(ds,0,lrwork,liwork));
547:   PetscCallBLAS("LAPACKstedc",LAPACKstedc_("V",&n1,d+l,e+l,Q+off,&ld,ds->rwork,&lrwork,ds->iwork,&liwork,&info));
548: #else
549:   lwork = ld*ld;
550:   PetscCall(DSAllocateWork_Private(ds,lwork,lrwork,liwork));
551:   PetscCallBLAS("LAPACKstedc",LAPACKstedc_("V",&n1,d+l,e+l,Q+off,&ld,ds->work,&lwork,ds->rwork,&lrwork,ds->iwork,&liwork,&info));
552:   /* Fixing Lapack bug*/
553:   for (j=ds->l;j<ds->n;j++)
554:     for (i=0;i<ds->l;i++) Q[i+j*ld] = 0.0;
555: #endif
556:   SlepcCheckLapackInfo("stedc",info);
557:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Q],&Q));
558:   for (i=l;i<ds->n;i++) wr[i] = d[i];

560:   /* Create diagonal matrix as a result */
561:   if (ds->compact) PetscCall(PetscArrayzero(e,ds->n-1));
562:   else {
563:     PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
564:     for (i=l;i<ds->n;i++) PetscCall(PetscArrayzero(A+l+i*ld,ds->n-l));
565:     for (i=l;i<ds->n;i++) A[i+i*ld] = d[i];
566:     PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
567:   }
568:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&d));

570:   /* Set zero wi */
571:   if (wi) for (i=l;i<ds->n;i++) wi[i] = 0.0;
572:   PetscFunctionReturn(PETSC_SUCCESS);
573: }

575: #if !defined(PETSC_USE_COMPLEX)
576: static PetscErrorCode DSSolve_HEP_BDC(DS ds,PetscScalar *wr,PetscScalar *wi)
577: {
578:   PetscBLASInt   i,j,k,m,n = 0,info,nblks,bs = 0,ld = 0,lde,lrwork,liwork,*ksizes,*iwork,mingapi;
579:   PetscScalar    *Q,*A;
580:   PetscReal      *D,*E,*d,*e,tol=PETSC_MACHINE_EPSILON/2,tau1=1e-16,tau2=1e-18,*rwork,mingap;

582:   PetscFunctionBegin;
583:   PetscCheck(ds->l==0,PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"This method is not prepared for l>1");
584:   PetscCheck(!ds->compact,PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"Not implemented for compact storage");
585:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
586:   PetscCall(PetscBLASIntCast(ds->bs,&bs));
587:   PetscCall(PetscBLASIntCast(ds->n,&n));
588:   nblks = n/bs;
589:   PetscCall(DSGetArrayReal(ds,DS_MAT_T,&d));
590:   e = d+ld;
591:   lrwork = 4*n*n+60*n+1;
592:   liwork = 5*n+5*nblks-1;
593:   lde = 2*bs+1;
594:   PetscCall(DSAllocateWork_Private(ds,bs*n+lde*lde*(nblks-1),lrwork,nblks+liwork));
595:   D      = ds->work;
596:   E      = ds->work+bs*n;
597:   rwork  = ds->rwork;
598:   ksizes = ds->iwork;
599:   iwork  = ds->iwork+nblks;
600:   PetscCall(PetscArrayzero(iwork,liwork));

602:   /* Copy matrix to block tridiagonal format */
603:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
604:   j=0;
605:   for (i=0;i<nblks;i++) {
606:     ksizes[i]=bs;
607:     for (k=0;k<bs;k++)
608:       for (m=0;m<bs;m++)
609:         D[k+m*bs+i*bs*bs] = PetscRealPart(A[j+k+(j+m)*n]);
610:     j = j + bs;
611:   }
612:   j=0;
613:   for (i=0;i<nblks-1;i++) {
614:     for (k=0;k<bs;k++)
615:       for (m=0;m<bs;m++)
616:         E[k+m*lde+i*lde*lde] = PetscRealPart(A[j+bs+k+(j+m)*n]);
617:     j = j + bs;
618:   }
619:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));

621:   /* Solve the block tridiagonal eigenproblem */
622:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Q],&Q));
623:   PetscCall(BDC_dsbtdc_("D","A",n,nblks,ksizes,D,bs,bs,E,lde,lde,tol,tau1,tau2,d,Q,n,rwork,lrwork,iwork,liwork,&mingap,&mingapi,&info,1,1));
624:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Q],&Q));
625:   for (i=0;i<ds->n;i++) wr[i] = d[i];

627:   /* Create diagonal matrix as a result */
628:   if (ds->compact) PetscCall(PetscArrayzero(e,ds->n-1));
629:   else {
630:     PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
631:     for (i=0;i<ds->n;i++) PetscCall(PetscArrayzero(A+i*ld,ds->n));
632:     for (i=0;i<ds->n;i++) A[i+i*ld] = wr[i];
633:     PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
634:   }
635:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&d));

637:   /* Set zero wi */
638:   if (wi) for (i=0;i<ds->n;i++) wi[i] = 0.0;
639:   PetscFunctionReturn(PETSC_SUCCESS);
640: }
641: #endif

643: static PetscErrorCode DSTruncate_HEP(DS ds,PetscInt n,PetscBool trim)
644: {
645:   PetscInt    i,ld=ds->ld,l=ds->l;
646:   PetscScalar *A;

648:   PetscFunctionBegin;
649:   if (!ds->compact && ds->extrarow) PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
650:   if (trim) {
651:     if (!ds->compact && ds->extrarow) {   /* clean extra row */
652:       for (i=l;i<ds->n;i++) A[ds->n+i*ld] = 0.0;
653:     }
654:     ds->l = 0;
655:     ds->k = 0;
656:     ds->n = n;
657:     ds->t = ds->n;   /* truncated length equal to the new dimension */
658:   } else {
659:     if (!ds->compact && ds->extrarow && ds->k==ds->n) {
660:       /* copy entries of extra row to the new position, then clean last row */
661:       for (i=l;i<n;i++) A[n+i*ld] = A[ds->n+i*ld];
662:       for (i=l;i<ds->n;i++) A[ds->n+i*ld] = 0.0;
663:     }
664:     ds->k = (ds->extrarow)? n: 0;
665:     ds->t = ds->n;   /* truncated length equal to previous dimension */
666:     ds->n = n;
667:   }
668:   if (!ds->compact && ds->extrarow) PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
669:   PetscFunctionReturn(PETSC_SUCCESS);
670: }

672: #if !defined(PETSC_HAVE_MPIUNI)
673: static PetscErrorCode DSSynchronize_HEP(DS ds,PetscScalar eigr[],PetscScalar eigi[])
674: {
675:   PetscInt       ld=ds->ld,l=ds->l,k=0,kr=0;
676:   PetscMPIInt    n,rank,off=0,size,ldn,ld3;
677:   PetscScalar    *A,*Q;
678:   PetscReal      *T;

680:   PetscFunctionBegin;
681:   if (ds->compact) kr = 3*ld;
682:   else k = (ds->n-l)*ld;
683:   if (ds->state>DS_STATE_RAW) k += (ds->n-l)*ld;
684:   if (eigr) k += (ds->n-l);
685:   PetscCall(DSAllocateWork_Private(ds,k+kr,0,0));
686:   PetscCall(PetscMPIIntCast(k*sizeof(PetscScalar)+kr*sizeof(PetscReal),&size));
687:   PetscCall(PetscMPIIntCast(ds->n-l,&n));
688:   PetscCall(PetscMPIIntCast(ld*(ds->n-l),&ldn));
689:   PetscCall(PetscMPIIntCast(ld*3,&ld3));
690:   if (ds->compact) PetscCall(DSGetArrayReal(ds,DS_MAT_T,&T));
691:   else PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
692:   if (ds->state>DS_STATE_RAW) PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Q],&Q));
693:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)ds),&rank));
694:   if (!rank) {
695:     if (ds->compact) PetscCallMPI(MPI_Pack(T,ld3,MPIU_REAL,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
696:     else PetscCallMPI(MPI_Pack(A+l*ld,ldn,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
697:     if (ds->state>DS_STATE_RAW) PetscCallMPI(MPI_Pack(Q+l*ld,ldn,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
698:     if (eigr) PetscCallMPI(MPI_Pack(eigr+l,n,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
699:   }
700:   PetscCallMPI(MPI_Bcast(ds->work,size,MPI_BYTE,0,PetscObjectComm((PetscObject)ds)));
701:   if (rank) {
702:     if (ds->compact) PetscCallMPI(MPI_Unpack(ds->work,size,&off,T,ld3,MPIU_REAL,PetscObjectComm((PetscObject)ds)));
703:     else PetscCallMPI(MPI_Unpack(ds->work,size,&off,A+l*ld,ldn,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
704:     if (ds->state>DS_STATE_RAW) PetscCallMPI(MPI_Unpack(ds->work,size,&off,Q+l*ld,ldn,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
705:     if (eigr) PetscCallMPI(MPI_Unpack(ds->work,size,&off,eigr+l,n,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
706:   }
707:   if (ds->compact) PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&T));
708:   else PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
709:   if (ds->state>DS_STATE_RAW) PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Q],&Q));
710:   PetscFunctionReturn(PETSC_SUCCESS);
711: }
712: #endif

714: static PetscErrorCode DSCond_HEP(DS ds,PetscReal *cond)
715: {
716:   PetscScalar    *work;
717:   PetscReal      *rwork;
718:   PetscBLASInt   *ipiv;
719:   PetscBLASInt   lwork,info,n,ld;
720:   PetscReal      hn,hin;
721:   PetscScalar    *A;

723:   PetscFunctionBegin;
724:   PetscCall(PetscBLASIntCast(ds->n,&n));
725:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
726:   lwork = 8*ld;
727:   PetscCall(DSAllocateWork_Private(ds,lwork,ld,ld));
728:   work  = ds->work;
729:   rwork = ds->rwork;
730:   ipiv  = ds->iwork;
731:   if (ds->compact) PetscCall(DSAllocateMat_Private(ds,DS_MAT_A));
732:   PetscCall(DSSwitchFormat_HEP(ds));

734:   /* use workspace matrix W to avoid overwriting A */
735:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_W));
736:   PetscCall(MatCopy(ds->omat[DS_MAT_A],ds->omat[DS_MAT_W],SAME_NONZERO_PATTERN));
737:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_W],&A));

739:   /* norm of A */
740:   hn = LAPACKlange_("I",&n,&n,A,&ld,rwork);

742:   /* norm of inv(A) */
743:   PetscCallBLAS("LAPACKgetrf",LAPACKgetrf_(&n,&n,A,&ld,ipiv,&info));
744:   SlepcCheckLapackInfo("getrf",info);
745:   PetscCallBLAS("LAPACKgetri",LAPACKgetri_(&n,A,&ld,ipiv,work,&lwork,&info));
746:   SlepcCheckLapackInfo("getri",info);
747:   hin = LAPACKlange_("I",&n,&n,A,&ld,rwork);
748:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_W],&A));

750:   *cond = hn*hin;
751:   PetscFunctionReturn(PETSC_SUCCESS);
752: }

754: static PetscErrorCode DSTranslateRKS_HEP(DS ds,PetscScalar alpha)
755: {
756:   PetscInt       i,j,k=ds->k;
757:   PetscScalar    *Q,*A,*R,*tau,*work;
758:   PetscBLASInt   ld,n1,n0,lwork,info;

760:   PetscFunctionBegin;
761:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
762:   PetscCall(DSAllocateWork_Private(ds,ld*ld,0,0));
763:   tau = ds->work;
764:   work = ds->work+ld;
765:   PetscCall(PetscBLASIntCast(ld*(ld-1),&lwork));
766:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_W));
767:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
768:   PetscCall(MatDenseGetArrayWrite(ds->omat[DS_MAT_Q],&Q));
769:   PetscCall(MatDenseGetArrayWrite(ds->omat[DS_MAT_W],&R));

771:   /* copy I+alpha*A */
772:   PetscCall(PetscArrayzero(Q,ld*ld));
773:   PetscCall(PetscArrayzero(R,ld*ld));
774:   for (i=0;i<k;i++) {
775:     Q[i+i*ld] = 1.0 + alpha*A[i+i*ld];
776:     Q[k+i*ld] = alpha*A[k+i*ld];
777:   }

779:   /* compute qr */
780:   PetscCall(PetscBLASIntCast(k+1,&n1));
781:   PetscCall(PetscBLASIntCast(k,&n0));
782:   PetscCallBLAS("LAPACKgeqrf",LAPACKgeqrf_(&n1,&n0,Q,&ld,tau,work,&lwork,&info));
783:   SlepcCheckLapackInfo("geqrf",info);

785:   /* copy R from Q */
786:   for (j=0;j<k;j++)
787:     for (i=0;i<=j;i++)
788:       R[i+j*ld] = Q[i+j*ld];

790:   /* compute orthogonal matrix in Q */
791:   PetscCallBLAS("LAPACKorgqr",LAPACKorgqr_(&n1,&n1,&n0,Q,&ld,tau,work,&lwork,&info));
792:   SlepcCheckLapackInfo("orgqr",info);

794:   /* compute the updated matrix of projected problem */
795:   for (j=0;j<k;j++)
796:     for (i=0;i<k+1;i++)
797:       A[j*ld+i] = Q[i*ld+j];
798:   alpha = -1.0/alpha;
799:   PetscCallBLAS("BLAStrsm",BLAStrsm_("R","U","N","N",&n1,&n0,&alpha,R,&ld,A,&ld));
800:   for (i=0;i<k;i++)
801:     A[ld*i+i] -= alpha;

803:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
804:   PetscCall(MatDenseRestoreArrayWrite(ds->omat[DS_MAT_Q],&Q));
805:   PetscCall(MatDenseRestoreArrayWrite(ds->omat[DS_MAT_W],&R));
806:   PetscFunctionReturn(PETSC_SUCCESS);
807: }

809: static PetscErrorCode DSHermitian_HEP(DS ds,DSMatType m,PetscBool *flg)
810: {
811:   PetscFunctionBegin;
812:   if (m==DS_MAT_A && !ds->extrarow) *flg = PETSC_TRUE;
813:   else *flg = PETSC_FALSE;
814:   PetscFunctionReturn(PETSC_SUCCESS);
815: }

817: static PetscErrorCode DSSetCompact_HEP(DS ds,PetscBool comp)
818: {
819:   PetscFunctionBegin;
820:   if (!comp) PetscCall(DSAllocateMat_Private(ds,DS_MAT_A));
821:   PetscFunctionReturn(PETSC_SUCCESS);
822: }

824: /*MC
825:    DSHEP - Dense Hermitian Eigenvalue Problem.

827:    Level: beginner

829:    Notes:
830:    The problem is expressed as A*X = X*Lambda, where A is real symmetric
831:    (or complex Hermitian). Lambda is a diagonal matrix whose diagonal
832:    elements are the arguments of DSSolve(). After solve, A is overwritten
833:    with Lambda.

835:    In the intermediate state A is reduced to tridiagonal form. In compact
836:    storage format, the symmetric tridiagonal matrix is stored in T.

838:    Used DS matrices:
839: +  DS_MAT_A - problem matrix (used only if compact=false)
840: .  DS_MAT_T - symmetric tridiagonal matrix
841: -  DS_MAT_Q - orthogonal/unitary transformation that reduces to tridiagonal form
842:    (intermediate step) or matrix of orthogonal eigenvectors, which is equal to X

844:    Implemented methods:
845: +  0 - Implicit QR (_steqr)
846: .  1 - Multiple Relatively Robust Representations (_stevr)
847: .  2 - Divide and Conquer (_stedc)
848: -  3 - Block Divide and Conquer (real scalars only)

850: .seealso: DSCreate(), DSSetType(), DSType
851: M*/
852: SLEPC_EXTERN PetscErrorCode DSCreate_HEP(DS ds)
853: {
854:   PetscFunctionBegin;
855:   ds->ops->allocate      = DSAllocate_HEP;
856:   ds->ops->view          = DSView_HEP;
857:   ds->ops->vectors       = DSVectors_HEP;
858:   ds->ops->solve[0]      = DSSolve_HEP_QR;
859:   ds->ops->solve[1]      = DSSolve_HEP_MRRR;
860:   ds->ops->solve[2]      = DSSolve_HEP_DC;
861: #if !defined(PETSC_USE_COMPLEX)
862:   ds->ops->solve[3]      = DSSolve_HEP_BDC;
863: #endif
864:   ds->ops->sort          = DSSort_HEP;
865:   ds->ops->truncate      = DSTruncate_HEP;
866:   ds->ops->update        = DSUpdateExtraRow_HEP;
867:   ds->ops->cond          = DSCond_HEP;
868:   ds->ops->transrks      = DSTranslateRKS_HEP;
869:   ds->ops->hermitian     = DSHermitian_HEP;
870: #if !defined(PETSC_HAVE_MPIUNI)
871:   ds->ops->synchronize   = DSSynchronize_HEP;
872: #endif
873:   ds->ops->setcompact    = DSSetCompact_HEP;
874:   PetscFunctionReturn(PETSC_SUCCESS);
875: }