Actual source code: test1.c

slepc-3.21.1 2024-04-26
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: static char help[] = "Test the solution of a SVD without calling SVDSetFromOptions (based on ex8.c).\n\n"
 12:   "The command line options are:\n"
 13:   "  -n <n>, where <n> = matrix dimension.\n"
 14:   "  -type <svd_type> = svd type to test.\n\n";

 16: #include <slepcsvd.h>

 18: /*
 19:    This example computes the singular values of an nxn Grcar matrix,
 20:    which is a nonsymmetric Toeplitz matrix:

 22:               |  1  1  1  1               |
 23:               | -1  1  1  1  1            |
 24:               |    -1  1  1  1  1         |
 25:               |       .  .  .  .  .       |
 26:           A = |          .  .  .  .  .    |
 27:               |            -1  1  1  1  1 |
 28:               |               -1  1  1  1 |
 29:               |                  -1  1  1 |
 30:               |                     -1  1 |

 32:  */

 34: int main(int argc,char **argv)
 35: {
 36:   Mat            A;               /* Grcar matrix */
 37:   SVD            svd;             /* singular value solver context */
 38:   PetscInt       N=30,Istart,Iend,i,col[5],nconv1,nconv2;
 39:   PetscScalar    value[] = { -1, 1, 1, 1, 1 };
 40:   PetscReal      sigma_1,sigma_n;
 41:   char           svdtype[30] = "cross",epstype[30] = "";
 42:   PetscBool      flg;
 43:   EPS            eps;

 45:   PetscFunctionBeginUser;
 46:   PetscCall(SlepcInitialize(&argc,&argv,(char*)0,help));

 48:   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&N,NULL));
 49:   PetscCall(PetscOptionsGetString(NULL,NULL,"-type",svdtype,sizeof(svdtype),NULL));
 50:   PetscCall(PetscOptionsGetString(NULL,NULL,"-epstype",epstype,sizeof(epstype),&flg));
 51:   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nEstimate the condition number of a Grcar matrix, n=%" PetscInt_FMT,N));
 52:   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n\n"));

 54:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 55:         Generate the matrix
 56:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 58:   PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
 59:   PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N));
 60:   PetscCall(MatSetFromOptions(A));

 62:   PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
 63:   for (i=Istart;i<Iend;i++) {
 64:     col[0]=i-1; col[1]=i; col[2]=i+1; col[3]=i+2; col[4]=i+3;
 65:     if (i==0) PetscCall(MatSetValues(A,1,&i,4,col+1,value+1,INSERT_VALUES));
 66:     else PetscCall(MatSetValues(A,1,&i,PetscMin(5,N-i+1),col,value,INSERT_VALUES));
 67:   }

 69:   PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
 70:   PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));

 72:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 73:          Create the singular value solver and set the solution method
 74:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 76:   /*
 77:      Create singular value context
 78:   */
 79:   PetscCall(SVDCreate(PETSC_COMM_WORLD,&svd));

 81:   /*
 82:      Set operator
 83:   */
 84:   PetscCall(SVDSetOperators(svd,A,NULL));

 86:   /*
 87:      Set solver parameters at runtime
 88:   */
 89:   PetscCall(SVDSetType(svd,svdtype));
 90:   if (flg) {
 91:     PetscCall(PetscObjectTypeCompare((PetscObject)svd,SVDCROSS,&flg));
 92:     if (flg) {
 93:       PetscCall(SVDCrossGetEPS(svd,&eps));
 94:       PetscCall(EPSSetType(eps,epstype));
 95:     }
 96:     PetscCall(PetscObjectTypeCompare((PetscObject)svd,SVDCYCLIC,&flg));
 97:     if (flg) {
 98:       PetscCall(SVDCyclicGetEPS(svd,&eps));
 99:       PetscCall(EPSSetType(eps,epstype));
100:     }
101:   }
102:   PetscCall(SVDSetDimensions(svd,1,PETSC_DEFAULT,PETSC_DEFAULT));
103:   PetscCall(SVDSetTolerances(svd,1e-6,1000));

105:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
106:                       Compute the singular values
107:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

109:   /*
110:      First request the largest singular value
111:   */
112:   PetscCall(SVDSetWhichSingularTriplets(svd,SVD_LARGEST));
113:   PetscCall(SVDSolve(svd));
114:   /*
115:      Get number of converged singular values
116:   */
117:   PetscCall(SVDGetConverged(svd,&nconv1));
118:   /*
119:      Get converged singular values: largest singular value is stored in sigma_1.
120:      In this example, we are not interested in the singular vectors
121:   */
122:   if (nconv1 > 0) PetscCall(SVDGetSingularTriplet(svd,0,&sigma_1,NULL,NULL));
123:   else PetscCall(PetscPrintf(PETSC_COMM_WORLD," Unable to compute large singular value!\n\n"));

125:   /*
126:      Request the smallest singular value
127:   */
128:   PetscCall(SVDSetWhichSingularTriplets(svd,SVD_SMALLEST));
129:   PetscCall(SVDSolve(svd));
130:   /*
131:      Get number of converged triplets
132:   */
133:   PetscCall(SVDGetConverged(svd,&nconv2));
134:   /*
135:      Get converged singular values: smallest singular value is stored in sigma_n.
136:      As before, we are not interested in the singular vectors
137:   */
138:   if (nconv2 > 0) PetscCall(SVDGetSingularTriplet(svd,0,&sigma_n,NULL,NULL));
139:   else PetscCall(PetscPrintf(PETSC_COMM_WORLD," Unable to compute small singular value!\n\n"));

141:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
142:                     Display solution and clean up
143:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
144:   if (nconv1 > 0 && nconv2 > 0) {
145:     PetscCall(PetscPrintf(PETSC_COMM_WORLD," Computed singular values: sigma_1=%.4f, sigma_n=%.4f\n",(double)sigma_1,(double)sigma_n));
146:     PetscCall(PetscPrintf(PETSC_COMM_WORLD," Estimated condition number: sigma_1/sigma_n=%.4f\n\n",(double)(sigma_1/sigma_n)));
147:   }

149:   /*
150:      Free work space
151:   */
152:   PetscCall(SVDDestroy(&svd));
153:   PetscCall(MatDestroy(&A));
154:   PetscCall(SlepcFinalize());
155:   return 0;
156: }

158: /*TEST

160:    test:
161:       suffix: 1
162:       args: -type {{lanczos trlanczos cross cyclic lapack}}

164:    test:
165:       suffix: 1_cross_gd
166:       args: -type cross -epstype gd
167:       output_file: output/test1_1.out

169:    test:
170:       suffix: 1_cyclic_gd
171:       args: -type cyclic -epstype gd
172:       output_file: output/test1_1.out
173:       requires: !single

175:    test:
176:       suffix: 1_primme
177:       args: -type primme
178:       requires: primme
179:       output_file: output/test1_1.out

181: TEST*/