Actual source code: pepdefault.c

slepc-3.21.1 2024-04-26
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    Simple default routines for common PEP operations
 12: */

 14: #include <slepc/private/pepimpl.h>

 16: /*@
 17:    PEPSetWorkVecs - Sets a number of work vectors into a PEP object.

 19:    Collective

 21:    Input Parameters:
 22: +  pep - polynomial eigensolver context
 23: -  nw  - number of work vectors to allocate

 25:    Developer Notes:
 26:    This is SLEPC_EXTERN because it may be required by user plugin PEP
 27:    implementations.

 29:    Level: developer

 31: .seealso: PEPSetUp()
 32: @*/
 33: PetscErrorCode PEPSetWorkVecs(PEP pep,PetscInt nw)
 34: {
 35:   Vec            t;

 37:   PetscFunctionBegin;
 40:   PetscCheck(nw>0,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"nw must be > 0: nw = %" PetscInt_FMT,nw);
 41:   if (pep->nwork < nw) {
 42:     PetscCall(VecDestroyVecs(pep->nwork,&pep->work));
 43:     pep->nwork = nw;
 44:     PetscCall(BVGetColumn(pep->V,0,&t));
 45:     PetscCall(VecDuplicateVecs(t,nw,&pep->work));
 46:     PetscCall(BVRestoreColumn(pep->V,0,&t));
 47:   }
 48:   PetscFunctionReturn(PETSC_SUCCESS);
 49: }

 51: /*
 52:   PEPConvergedRelative - Checks convergence relative to the eigenvalue.
 53: */
 54: PetscErrorCode PEPConvergedRelative(PEP pep,PetscScalar eigr,PetscScalar eigi,PetscReal res,PetscReal *errest,void *ctx)
 55: {
 56:   PetscReal w;

 58:   PetscFunctionBegin;
 59:   w = SlepcAbsEigenvalue(eigr,eigi);
 60:   *errest = res/w;
 61:   PetscFunctionReturn(PETSC_SUCCESS);
 62: }

 64: /*
 65:   PEPConvergedNorm - Checks convergence relative to the matrix norms.
 66: */
 67: PetscErrorCode PEPConvergedNorm(PEP pep,PetscScalar eigr,PetscScalar eigi,PetscReal res,PetscReal *errest,void *ctx)
 68: {
 69:   PetscReal      w=0.0,t;
 70:   PetscInt       j;
 71:   PetscBool      flg;

 73:   PetscFunctionBegin;
 74:   /* initialization of matrix norms */
 75:   if (!pep->nrma[pep->nmat-1]) {
 76:     for (j=0;j<pep->nmat;j++) {
 77:       PetscCall(MatHasOperation(pep->A[j],MATOP_NORM,&flg));
 78:       PetscCheck(flg,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_WRONG,"The convergence test related to the matrix norms requires a matrix norm operation");
 79:       PetscCall(MatNorm(pep->A[j],NORM_INFINITY,&pep->nrma[j]));
 80:     }
 81:   }
 82:   t = SlepcAbsEigenvalue(eigr,eigi);
 83:   for (j=pep->nmat-1;j>=0;j--) {
 84:     w = w*t+pep->nrma[j];
 85:   }
 86:   *errest = res/w;
 87:   PetscFunctionReturn(PETSC_SUCCESS);
 88: }

 90: /*
 91:   PEPSetWhichEigenpairs_Default - Sets the default value for which,
 92:   depending on the ST.
 93:  */
 94: PetscErrorCode PEPSetWhichEigenpairs_Default(PEP pep)
 95: {
 96:   PetscBool      target;

 98:   PetscFunctionBegin;
 99:   PetscCall(PetscObjectTypeCompare((PetscObject)pep->st,STSINVERT,&target));
100:   if (target) pep->which = PEP_TARGET_MAGNITUDE;
101:   else pep->which = PEP_LARGEST_MAGNITUDE;
102:   PetscFunctionReturn(PETSC_SUCCESS);
103: }

105: /*
106:   PEPConvergedAbsolute - Checks convergence absolutely.
107: */
108: PetscErrorCode PEPConvergedAbsolute(PEP pep,PetscScalar eigr,PetscScalar eigi,PetscReal res,PetscReal *errest,void *ctx)
109: {
110:   PetscFunctionBegin;
111:   *errest = res;
112:   PetscFunctionReturn(PETSC_SUCCESS);
113: }

115: /*@C
116:    PEPStoppingBasic - Default routine to determine whether the outer eigensolver
117:    iteration must be stopped.

119:    Collective

121:    Input Parameters:
122: +  pep    - eigensolver context obtained from PEPCreate()
123: .  its    - current number of iterations
124: .  max_it - maximum number of iterations
125: .  nconv  - number of currently converged eigenpairs
126: .  nev    - number of requested eigenpairs
127: -  ctx    - context (not used here)

129:    Output Parameter:
130: .  reason - result of the stopping test

132:    Notes:
133:    A positive value of reason indicates that the iteration has finished successfully
134:    (converged), and a negative value indicates an error condition (diverged). If
135:    the iteration needs to be continued, reason must be set to PEP_CONVERGED_ITERATING
136:    (zero).

138:    PEPStoppingBasic() will stop if all requested eigenvalues are converged, or if
139:    the maximum number of iterations has been reached.

141:    Use PEPSetStoppingTest() to provide your own test instead of using this one.

143:    Level: advanced

145: .seealso: PEPSetStoppingTest(), PEPConvergedReason, PEPGetConvergedReason()
146: @*/
147: PetscErrorCode PEPStoppingBasic(PEP pep,PetscInt its,PetscInt max_it,PetscInt nconv,PetscInt nev,PEPConvergedReason *reason,void *ctx)
148: {
149:   PetscFunctionBegin;
150:   *reason = PEP_CONVERGED_ITERATING;
151:   if (nconv >= nev) {
152:     PetscCall(PetscInfo(pep,"Polynomial eigensolver finished successfully: %" PetscInt_FMT " eigenpairs converged at iteration %" PetscInt_FMT "\n",nconv,its));
153:     *reason = PEP_CONVERGED_TOL;
154:   } else if (its >= max_it) {
155:     *reason = PEP_DIVERGED_ITS;
156:     PetscCall(PetscInfo(pep,"Polynomial eigensolver iteration reached maximum number of iterations (%" PetscInt_FMT ")\n",its));
157:   }
158:   PetscFunctionReturn(PETSC_SUCCESS);
159: }

161: PetscErrorCode PEPBackTransform_Default(PEP pep)
162: {
163:   PetscFunctionBegin;
164:   PetscCall(STBackTransform(pep->st,pep->nconv,pep->eigr,pep->eigi));
165:   PetscFunctionReturn(PETSC_SUCCESS);
166: }

168: PetscErrorCode PEPComputeVectors_Default(PEP pep)
169: {
170:   PetscInt       i;
171:   Vec            v;

173:   PetscFunctionBegin;
174:   PetscCall(PEPExtractVectors(pep));

176:   /* Fix eigenvectors if balancing was used */
177:   if ((pep->scale==PEP_SCALE_DIAGONAL || pep->scale==PEP_SCALE_BOTH) && pep->Dr && (pep->refine!=PEP_REFINE_MULTIPLE)) {
178:     for (i=0;i<pep->nconv;i++) {
179:       PetscCall(BVGetColumn(pep->V,i,&v));
180:       PetscCall(VecPointwiseMult(v,v,pep->Dr));
181:       PetscCall(BVRestoreColumn(pep->V,i,&v));
182:     }
183:   }

185:   /* normalization */
186:   PetscCall(BVNormalize(pep->V,pep->eigi));
187:   PetscFunctionReturn(PETSC_SUCCESS);
188: }

190: /*
191:   PEPBuildDiagonalScaling - compute two diagonal matrices to be applied for balancing
192:   in polynomial eigenproblems.
193: */
194: PetscErrorCode PEPBuildDiagonalScaling(PEP pep)
195: {
196:   PetscInt       it,i,j,k,nmat,nr,e,nz,lst,lend,nc=0,*cols,emax,emin,emaxl,eminl;
197:   const PetscInt *cidx,*ridx;
198:   Mat            M,*T,A;
199:   PetscMPIInt    n;
200:   PetscBool      cont=PETSC_TRUE,flg=PETSC_FALSE;
201:   PetscScalar    *array,*Dr,*Dl,t;
202:   PetscReal      l2,d,*rsum,*aux,*csum,w=1.0;
203:   MatStructure   str;
204:   MatInfo        info;

206:   PetscFunctionBegin;
207:   l2 = 2*PetscLogReal(2.0);
208:   nmat = pep->nmat;
209:   PetscCall(PetscMPIIntCast(pep->n,&n));
210:   PetscCall(STGetMatStructure(pep->st,&str));
211:   PetscCall(PetscMalloc1(nmat,&T));
212:   for (k=0;k<nmat;k++) PetscCall(STGetMatrixTransformed(pep->st,k,&T[k]));
213:   /* Form local auxiliary matrix M */
214:   PetscCall(PetscObjectBaseTypeCompareAny((PetscObject)T[0],&cont,MATMPIAIJ,MATSEQAIJ,""));
215:   PetscCheck(cont,PetscObjectComm((PetscObject)T[0]),PETSC_ERR_SUP,"Only for MPIAIJ or SEQAIJ matrix types");
216:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)T[0],MATMPIAIJ,&cont));
217:   if (cont) {
218:     PetscCall(MatMPIAIJGetLocalMat(T[0],MAT_INITIAL_MATRIX,&M));
219:     flg = PETSC_TRUE;
220:   } else PetscCall(MatDuplicate(T[0],MAT_COPY_VALUES,&M));
221:   PetscCall(MatGetInfo(M,MAT_LOCAL,&info));
222:   nz = (PetscInt)info.nz_used;
223:   PetscCall(MatSeqAIJGetArray(M,&array));
224:   for (i=0;i<nz;i++) {
225:     t = PetscAbsScalar(array[i]);
226:     array[i] = t*t;
227:   }
228:   PetscCall(MatSeqAIJRestoreArray(M,&array));
229:   for (k=1;k<nmat;k++) {
230:     if (flg) PetscCall(MatMPIAIJGetLocalMat(T[k],MAT_INITIAL_MATRIX,&A));
231:     else {
232:       if (str==SAME_NONZERO_PATTERN) PetscCall(MatCopy(T[k],A,SAME_NONZERO_PATTERN));
233:       else PetscCall(MatDuplicate(T[k],MAT_COPY_VALUES,&A));
234:     }
235:     PetscCall(MatGetInfo(A,MAT_LOCAL,&info));
236:     nz = (PetscInt)info.nz_used;
237:     PetscCall(MatSeqAIJGetArray(A,&array));
238:     for (i=0;i<nz;i++) {
239:       t = PetscAbsScalar(array[i]);
240:       array[i] = t*t;
241:     }
242:     PetscCall(MatSeqAIJRestoreArray(A,&array));
243:     w *= pep->slambda*pep->slambda*pep->sfactor;
244:     PetscCall(MatAXPY(M,w,A,str));
245:     if (flg || str!=SAME_NONZERO_PATTERN || k==nmat-2) PetscCall(MatDestroy(&A));
246:   }
247:   PetscCall(MatGetRowIJ(M,0,PETSC_FALSE,PETSC_FALSE,&nr,&ridx,&cidx,&cont));
248:   PetscCheck(cont,PetscObjectComm((PetscObject)T[0]),PETSC_ERR_SUP,"It is not possible to compute scaling diagonals for these PEP matrices");
249:   PetscCall(MatGetInfo(M,MAT_LOCAL,&info));
250:   nz = (PetscInt)info.nz_used;
251:   PetscCall(VecGetOwnershipRange(pep->Dl,&lst,&lend));
252:   PetscCall(PetscMalloc4(nr,&rsum,pep->n,&csum,pep->n,&aux,PetscMin(pep->n-lend+lst,nz),&cols));
253:   PetscCall(VecSet(pep->Dr,1.0));
254:   PetscCall(VecSet(pep->Dl,1.0));
255:   PetscCall(VecGetArray(pep->Dl,&Dl));
256:   PetscCall(VecGetArray(pep->Dr,&Dr));
257:   PetscCall(MatSeqAIJGetArray(M,&array));
258:   PetscCall(PetscArrayzero(aux,pep->n));
259:   for (j=0;j<nz;j++) {
260:     /* Search non-zero columns outsize lst-lend */
261:     if (aux[cidx[j]]==0 && (cidx[j]<lst || lend<=cidx[j])) cols[nc++] = cidx[j];
262:     /* Local column sums */
263:     aux[cidx[j]] += PetscAbsScalar(array[j]);
264:   }
265:   for (it=0;it<pep->sits && cont;it++) {
266:     emaxl = 0; eminl = 0;
267:     /* Column sum  */
268:     if (it>0) { /* it=0 has been already done*/
269:       PetscCall(MatSeqAIJGetArray(M,&array));
270:       PetscCall(PetscArrayzero(aux,pep->n));
271:       for (j=0;j<nz;j++) aux[cidx[j]] += PetscAbsScalar(array[j]);
272:       PetscCall(MatSeqAIJRestoreArray(M,&array));
273:     }
274:     PetscCall(MPIU_Allreduce(aux,csum,n,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)pep->Dr)));
275:     /* Update Dr */
276:     for (j=lst;j<lend;j++) {
277:       d = PetscLogReal(csum[j])/l2;
278:       e = -(PetscInt)((d < 0)?(d-0.5):(d+0.5));
279:       d = PetscPowReal(2.0,e);
280:       Dr[j-lst] *= d;
281:       aux[j] = d*d;
282:       emaxl = PetscMax(emaxl,e);
283:       eminl = PetscMin(eminl,e);
284:     }
285:     for (j=0;j<nc;j++) {
286:       d = PetscLogReal(csum[cols[j]])/l2;
287:       e = -(PetscInt)((d < 0)?(d-0.5):(d+0.5));
288:       d = PetscPowReal(2.0,e);
289:       aux[cols[j]] = d*d;
290:       emaxl = PetscMax(emaxl,e);
291:       eminl = PetscMin(eminl,e);
292:     }
293:     /* Scale M */
294:     PetscCall(MatSeqAIJGetArray(M,&array));
295:     for (j=0;j<nz;j++) {
296:       array[j] *= aux[cidx[j]];
297:     }
298:     PetscCall(MatSeqAIJRestoreArray(M,&array));
299:     /* Row sum */
300:     PetscCall(PetscArrayzero(rsum,nr));
301:     PetscCall(MatSeqAIJGetArray(M,&array));
302:     for (i=0;i<nr;i++) {
303:       for (j=ridx[i];j<ridx[i+1];j++) rsum[i] += PetscAbsScalar(array[j]);
304:       /* Update Dl */
305:       d = PetscLogReal(rsum[i])/l2;
306:       e = -(PetscInt)((d < 0)?(d-0.5):(d+0.5));
307:       d = PetscPowReal(2.0,e);
308:       Dl[i] *= d;
309:       /* Scale M */
310:       for (j=ridx[i];j<ridx[i+1];j++) array[j] *= d*d;
311:       emaxl = PetscMax(emaxl,e);
312:       eminl = PetscMin(eminl,e);
313:     }
314:     PetscCall(MatSeqAIJRestoreArray(M,&array));
315:     /* Compute global max and min */
316:     PetscCall(MPIU_Allreduce(&emaxl,&emax,1,MPIU_INT,MPI_MAX,PetscObjectComm((PetscObject)pep->Dl)));
317:     PetscCall(MPIU_Allreduce(&eminl,&emin,1,MPIU_INT,MPI_MIN,PetscObjectComm((PetscObject)pep->Dl)));
318:     if (emax<=emin+2) cont = PETSC_FALSE;
319:   }
320:   PetscCall(VecRestoreArray(pep->Dr,&Dr));
321:   PetscCall(VecRestoreArray(pep->Dl,&Dl));
322:   /* Free memory*/
323:   PetscCall(MatDestroy(&M));
324:   PetscCall(PetscFree4(rsum,csum,aux,cols));
325:   PetscCall(PetscFree(T));
326:   PetscFunctionReturn(PETSC_SUCCESS);
327: }

329: /*
330:    PEPComputeScaleFactor - compute sfactor as described in [Betcke 2008].
331: */
332: PetscErrorCode PEPComputeScaleFactor(PEP pep)
333: {
334:   PetscBool      has0,has1,flg;
335:   PetscReal      norm0,norm1;
336:   Mat            T[2];
337:   PEPBasis       basis;
338:   PetscInt       i;

340:   PetscFunctionBegin;
341:   if (pep->scale==PEP_SCALE_NONE || pep->scale==PEP_SCALE_DIAGONAL) {  /* no scalar scaling */
342:     pep->sfactor = 1.0;
343:     pep->dsfactor = 1.0;
344:     PetscFunctionReturn(PETSC_SUCCESS);
345:   }
346:   if (pep->sfactor_set) PetscFunctionReturn(PETSC_SUCCESS);  /* user provided value */
347:   pep->sfactor = 1.0;
348:   pep->dsfactor = 1.0;
349:   PetscCall(PEPGetBasis(pep,&basis));
350:   if (basis==PEP_BASIS_MONOMIAL) {
351:     PetscCall(STGetTransform(pep->st,&flg));
352:     if (flg) {
353:       PetscCall(STGetMatrixTransformed(pep->st,0,&T[0]));
354:       PetscCall(STGetMatrixTransformed(pep->st,pep->nmat-1,&T[1]));
355:     } else {
356:       T[0] = pep->A[0];
357:       T[1] = pep->A[pep->nmat-1];
358:     }
359:     if (pep->nmat>2) {
360:       PetscCall(MatHasOperation(T[0],MATOP_NORM,&has0));
361:       PetscCall(MatHasOperation(T[1],MATOP_NORM,&has1));
362:       if (has0 && has1) {
363:         PetscCall(MatNorm(T[0],NORM_INFINITY,&norm0));
364:         PetscCall(MatNorm(T[1],NORM_INFINITY,&norm1));
365:         pep->sfactor = PetscPowReal(norm0/norm1,1.0/(pep->nmat-1));
366:         pep->dsfactor = norm1;
367:         for (i=pep->nmat-2;i>0;i--) {
368:           PetscCall(STGetMatrixTransformed(pep->st,i,&T[1]));
369:           PetscCall(MatHasOperation(T[1],MATOP_NORM,&has1));
370:           if (has1) {
371:             PetscCall(MatNorm(T[1],NORM_INFINITY,&norm1));
372:             pep->dsfactor = pep->dsfactor*pep->sfactor+norm1;
373:           } else break;
374:         }
375:         if (has1) {
376:           pep->dsfactor = pep->dsfactor*pep->sfactor+norm0;
377:           pep->dsfactor = pep->nmat/pep->dsfactor;
378:         } else pep->dsfactor = 1.0;
379:       }
380:     }
381:   }
382:   PetscFunctionReturn(PETSC_SUCCESS);
383: }

385: /*
386:    PEPBasisCoefficients - compute polynomial basis coefficients
387: */
388: PetscErrorCode PEPBasisCoefficients(PEP pep,PetscReal *pbc)
389: {
390:   PetscReal *ca,*cb,*cg;
391:   PetscInt  k,nmat=pep->nmat;

393:   PetscFunctionBegin;
394:   ca = pbc;
395:   cb = pbc+nmat;
396:   cg = pbc+2*nmat;
397:   switch (pep->basis) {
398:   case PEP_BASIS_MONOMIAL:
399:     for (k=0;k<nmat;k++) {
400:       ca[k] = 1.0; cb[k] = 0.0; cg[k] = 0.0;
401:     }
402:     break;
403:   case PEP_BASIS_CHEBYSHEV1:
404:     ca[0] = 1.0; cb[0] = 0.0; cg[0] = 0.0;
405:     for (k=1;k<nmat;k++) {
406:       ca[k] = .5; cb[k] = 0.0; cg[k] = .5;
407:     }
408:     break;
409:   case PEP_BASIS_CHEBYSHEV2:
410:     ca[0] = .5; cb[0] = 0.0; cg[0] = 0.0;
411:     for (k=1;k<nmat;k++) {
412:       ca[k] = .5; cb[k] = 0.0; cg[k] = .5;
413:     }
414:     break;
415:   case PEP_BASIS_LEGENDRE:
416:     ca[0] = 1.0; cb[0] = 0.0; cg[0] = 0.0;
417:     for (k=1;k<nmat;k++) {
418:       ca[k] = k+1; cb[k] = -2*k; cg[k] = k;
419:     }
420:     break;
421:   case PEP_BASIS_LAGUERRE:
422:     ca[0] = -1.0; cb[0] = 0.0; cg[0] = 0.0;
423:     for (k=1;k<nmat;k++) {
424:       ca[k] = -(k+1); cb[k] = 2*k+1; cg[k] = -k;
425:     }
426:     break;
427:   case PEP_BASIS_HERMITE:
428:     ca[0] = .5; cb[0] = 0.0; cg[0] = 0.0;
429:     for (k=1;k<nmat;k++) {
430:       ca[k] = .5; cb[k] = 0.0; cg[k] = -k;
431:     }
432:     break;
433:   }
434:   PetscFunctionReturn(PETSC_SUCCESS);
435: }