Actual source code: qeplin.c

slepc-3.22.1 2024-10-28
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    Various types of linearization for quadratic eigenvalue problem
 12: */

 14: #include <slepc/private/pepimpl.h>
 15: #include "linear.h"

 17: /*
 18:     Given the quadratic problem (l^2*M + l*C + K)*x = 0 the linearization is
 19:     A*z = l*B*z for z = [  x  ] and A,B defined as follows:
 20:                         [ l*x ]

 22:             N:
 23:                      A = [-bK      aI    ]     B = [ aI+bC   bM    ]
 24:                          [-aK     -aC+bI ]         [ bI      aM    ]

 26:             S:
 27:                      A = [ bK      aK    ]     B = [ aK-bC  -bM    ]
 28:                          [ aK      aC-bM ]         [-bM     -aM    ]

 30:             H:
 31:                      A = [ aK     -bK    ]     B = [ bM      aK+bC ]
 32:                          [ aC+bM   aK    ]         [-aM      bM    ]
 33:  */

 35: /* - - - N - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 37: PetscErrorCode MatCreateExplicit_Linear_NA(MPI_Comm comm,PEP_LINEAR *ctx,Mat *A)
 38: {
 39:   PetscInt       M,N,m,n;
 40:   Mat            Id,T=NULL;
 41:   PetscReal      a=ctx->alpha,b=ctx->beta;
 42:   PetscScalar    scalt=1.0;

 44:   PetscFunctionBegin;
 45:   PetscCall(MatGetSize(ctx->M,&M,&N));
 46:   PetscCall(MatGetLocalSize(ctx->M,&m,&n));
 47:   PetscCall(MatCreateConstantDiagonal(PetscObjectComm((PetscObject)ctx->M),m,n,M,N,1.0,&Id));
 48:   if (a!=0.0 && b!=0.0) {
 49:     PetscCall(MatDuplicate(ctx->C,MAT_COPY_VALUES,&T));
 50:     PetscCall(MatScale(T,-a*ctx->dsfactor*ctx->sfactor));
 51:     PetscCall(MatShift(T,b));
 52:   } else {
 53:     if (a==0.0) { T = Id; scalt = b; }
 54:     else { T = ctx->C; scalt = -a*ctx->dsfactor*ctx->sfactor; }
 55:   }
 56:   PetscCall(MatCreateTile(-b*ctx->dsfactor,ctx->K,a,Id,-ctx->dsfactor*a,ctx->K,scalt,T,A));
 57:   PetscCall(MatDestroy(&Id));
 58:   if (a!=0.0 && b!=0.0) PetscCall(MatDestroy(&T));
 59:   PetscFunctionReturn(PETSC_SUCCESS);
 60: }

 62: PetscErrorCode MatCreateExplicit_Linear_NB(MPI_Comm comm,PEP_LINEAR *ctx,Mat *B)
 63: {
 64:   PetscInt       M,N,m,n;
 65:   Mat            Id,T=NULL;
 66:   PetscReal      a=ctx->alpha,b=ctx->beta;
 67:   PetscScalar    scalt=1.0;

 69:   PetscFunctionBegin;
 70:   PetscCall(MatGetSize(ctx->M,&M,&N));
 71:   PetscCall(MatGetLocalSize(ctx->M,&m,&n));
 72:   PetscCall(MatCreateConstantDiagonal(PetscObjectComm((PetscObject)ctx->M),m,n,M,N,1.0,&Id));
 73:   if (a!=0.0 && b!=0.0) {
 74:     PetscCall(MatDuplicate(ctx->C,MAT_COPY_VALUES,&T));
 75:     PetscCall(MatScale(T,b*ctx->dsfactor*ctx->sfactor));
 76:     PetscCall(MatShift(T,a));
 77:   } else {
 78:     if (b==0.0) { T = Id; scalt = a; }
 79:     else { T = ctx->C; scalt = b*ctx->dsfactor*ctx->sfactor; }
 80:   }
 81:   PetscCall(MatCreateTile(scalt,T,b*ctx->dsfactor*ctx->sfactor*ctx->sfactor,ctx->M,b,Id,a*ctx->sfactor*ctx->sfactor*ctx->dsfactor,ctx->M,B));
 82:   PetscCall(MatDestroy(&Id));
 83:   if (a!=0.0 && b!=0.0) PetscCall(MatDestroy(&T));
 84:   PetscFunctionReturn(PETSC_SUCCESS);
 85: }

 87: /* - - - S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 89: PetscErrorCode MatCreateExplicit_Linear_SA(MPI_Comm comm,PEP_LINEAR *ctx,Mat *A)
 90: {
 91:   Mat            T=NULL;
 92:   PetscScalar    scalt=1.0;
 93:   PetscReal      a=ctx->alpha,b=ctx->beta;

 95:   PetscFunctionBegin;
 96:   if (a!=0.0 && b!=0.0) {
 97:     PetscCall(MatDuplicate(ctx->C,MAT_COPY_VALUES,&T));
 98:     PetscCall(MatScale(T,a*ctx->dsfactor*ctx->sfactor));
 99:     PetscCall(MatAXPY(T,-b*ctx->dsfactor*ctx->sfactor*ctx->sfactor,ctx->M,UNKNOWN_NONZERO_PATTERN));
100:   } else {
101:     if (a==0.0) { T = ctx->M; scalt = -b*ctx->dsfactor*ctx->sfactor*ctx->sfactor; }
102:     else { T = ctx->C; scalt = a*ctx->dsfactor*ctx->sfactor; }
103:   }
104:   PetscCall(MatCreateTile(b*ctx->dsfactor,ctx->K,a*ctx->dsfactor,ctx->K,a*ctx->dsfactor,ctx->K,scalt,T,A));
105:   if (a!=0.0 && b!=0.0) PetscCall(MatDestroy(&T));
106:   PetscFunctionReturn(PETSC_SUCCESS);
107: }

109: PetscErrorCode MatCreateExplicit_Linear_SB(MPI_Comm comm,PEP_LINEAR *ctx,Mat *B)
110: {
111:   Mat            T=NULL;
112:   PetscScalar    scalt=1.0;
113:   PetscReal      a=ctx->alpha,b=ctx->beta;

115:   PetscFunctionBegin;
116:   if (a!=0.0 && b!=0.0) {
117:     PetscCall(MatDuplicate(ctx->C,MAT_COPY_VALUES,&T));
118:     PetscCall(MatScale(T,-b*ctx->dsfactor*ctx->sfactor));
119:     PetscCall(MatAXPY(T,a*ctx->dsfactor,ctx->K,UNKNOWN_NONZERO_PATTERN));
120:   } else {
121:     if (b==0.0) { T = ctx->K; scalt = a*ctx->dsfactor; }
122:     else { T = ctx->C; scalt = -b*ctx->dsfactor*ctx->sfactor; }
123:   }
124:   PetscCall(MatCreateTile(scalt,T,-b*ctx->dsfactor*ctx->sfactor*ctx->sfactor,ctx->M,-b*ctx->dsfactor*ctx->sfactor*ctx->sfactor,ctx->M,-a*ctx->dsfactor*ctx->sfactor*ctx->sfactor,ctx->M,B));
125:   if (a!=0.0 && b!=0.0) PetscCall(MatDestroy(&T));
126:   PetscFunctionReturn(PETSC_SUCCESS);
127: }

129: /* - - - H - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

131: PetscErrorCode MatCreateExplicit_Linear_HA(MPI_Comm comm,PEP_LINEAR *ctx,Mat *A)
132: {
133:   Mat            T=NULL;
134:   PetscScalar    scalt=1.0;
135:   PetscReal      a=ctx->alpha,b=ctx->beta;

137:   PetscFunctionBegin;
138:   if (a!=0.0 && b!=0.0) {
139:     PetscCall(MatDuplicate(ctx->C,MAT_COPY_VALUES,&T));
140:     PetscCall(MatScale(T,a*ctx->dsfactor*ctx->sfactor));
141:     PetscCall(MatAXPY(T,b*ctx->dsfactor*ctx->sfactor*ctx->sfactor,ctx->M,UNKNOWN_NONZERO_PATTERN));
142:   } else {
143:     if (a==0.0) { T = ctx->M; scalt = b*ctx->dsfactor*ctx->sfactor*ctx->sfactor; }
144:     else { T = ctx->C; scalt = a*ctx->dsfactor*ctx->sfactor; }
145:   }
146:   PetscCall(MatCreateTile(a*ctx->dsfactor,ctx->K,-b*ctx->dsfactor,ctx->K,scalt,T,a*ctx->dsfactor,ctx->K,A));
147:   if (a!=0.0 && b!=0.0) PetscCall(MatDestroy(&T));
148:   PetscFunctionReturn(PETSC_SUCCESS);
149: }

151: PetscErrorCode MatCreateExplicit_Linear_HB(MPI_Comm comm,PEP_LINEAR *ctx,Mat *B)
152: {
153:   Mat            T=NULL;
154:   PetscScalar    scalt=1.0;
155:   PetscReal      a=ctx->alpha,b=ctx->beta;

157:   PetscFunctionBegin;
158:   if (a!=0.0 && b!=0.0) {
159:     PetscCall(MatDuplicate(ctx->C,MAT_COPY_VALUES,&T));
160:     PetscCall(MatScale(T,b*ctx->dsfactor*ctx->sfactor));
161:     PetscCall(MatAXPY(T,a*ctx->dsfactor,ctx->K,UNKNOWN_NONZERO_PATTERN));
162:   } else {
163:     if (b==0.0) { T = ctx->K; scalt = a*ctx->dsfactor; }
164:     else { T = ctx->C; scalt = b*ctx->dsfactor*ctx->sfactor; }
165:   }
166:   PetscCall(MatCreateTile(b*ctx->dsfactor*ctx->sfactor*ctx->sfactor,ctx->M,scalt,T,-a*ctx->dsfactor*ctx->sfactor*ctx->sfactor,ctx->M,b*ctx->dsfactor*ctx->sfactor*ctx->sfactor,ctx->M,B));
167:   if (a!=0.0 && b!=0.0) PetscCall(MatDestroy(&T));
168:   PetscFunctionReturn(PETSC_SUCCESS);
169: }