Actual source code: ex30.c

slepc-3.22.2 2024-12-02
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: static char help[] = "Illustrates the use of a region for filtering; the number of wanted eigenvalues is not known a priori.\n\n"
 12:   "The problem is the Brusselator wave model as in ex9.c.\n"
 13:   "The command line options are:\n"
 14:   "  -n <n>, where <n> = block dimension of the 2x2 block matrix.\n"
 15:   "  -L <L>, where <L> = bifurcation parameter.\n"
 16:   "  -alpha <alpha>, -beta <beta>, -delta1 <delta1>,  -delta2 <delta2>,\n"
 17:   "       where <alpha> <beta> <delta1> <delta2> = model parameters.\n\n";

 19: #include <slepceps.h>

 21: /*
 22:    This example tries to compute all eigenvalues lying outside the real axis.
 23:    This could be achieved by computing LARGEST_IMAGINARY eigenvalues, but
 24:    here we take a different route: define a region of the complex plane where
 25:    eigenvalues must be emphasized (eigenvalues outside the region are filtered
 26:    out). In this case, we select the region as the complement of a thin stripe
 27:    around the real axis.
 28:  */

 30: PetscErrorCode MatMult_Brussel(Mat,Vec,Vec);
 31: PetscErrorCode MatGetDiagonal_Brussel(Mat,Vec);
 32: PetscErrorCode MyStoppingTest(EPS,PetscInt,PetscInt,PetscInt,PetscInt,EPSConvergedReason*,void*);

 34: typedef struct {
 35:   Mat         T;
 36:   Vec         x1,x2,y1,y2;
 37:   PetscScalar alpha,beta,tau1,tau2,sigma;
 38:   PetscInt    lastnconv;      /* last value of nconv; used in stopping test */
 39:   PetscInt    nreps;          /* number of repetitions of nconv; used in stopping test */
 40: } CTX_BRUSSEL;

 42: int main(int argc,char **argv)
 43: {
 44:   Mat            A;               /* eigenvalue problem matrix */
 45:   EPS            eps;             /* eigenproblem solver context */
 46:   RG             rg;              /* region object */
 47:   PetscScalar    delta1,delta2,L,h;
 48:   PetscInt       N=30,n,i,Istart,Iend,mpd;
 49:   CTX_BRUSSEL    *ctx;
 50:   PetscBool      terse;
 51:   PetscViewer    viewer;

 53:   PetscFunctionBeginUser;
 54:   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));

 56:   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&N,NULL));
 57:   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nBrusselator wave model, n=%" PetscInt_FMT "\n\n",N));

 59:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 60:         Generate the matrix
 61:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 63:   /*
 64:      Create shell matrix context and set default parameters
 65:   */
 66:   PetscCall(PetscNew(&ctx));
 67:   ctx->alpha = 2.0;
 68:   ctx->beta  = 5.45;
 69:   delta1     = 0.008;
 70:   delta2     = 0.004;
 71:   L          = 0.51302;

 73:   /*
 74:      Look the command line for user-provided parameters
 75:   */
 76:   PetscCall(PetscOptionsGetScalar(NULL,NULL,"-L",&L,NULL));
 77:   PetscCall(PetscOptionsGetScalar(NULL,NULL,"-alpha",&ctx->alpha,NULL));
 78:   PetscCall(PetscOptionsGetScalar(NULL,NULL,"-beta",&ctx->beta,NULL));
 79:   PetscCall(PetscOptionsGetScalar(NULL,NULL,"-delta1",&delta1,NULL));
 80:   PetscCall(PetscOptionsGetScalar(NULL,NULL,"-delta2",&delta2,NULL));

 82:   /*
 83:      Create matrix T
 84:   */
 85:   PetscCall(MatCreate(PETSC_COMM_WORLD,&ctx->T));
 86:   PetscCall(MatSetSizes(ctx->T,PETSC_DECIDE,PETSC_DECIDE,N,N));
 87:   PetscCall(MatSetFromOptions(ctx->T));

 89:   PetscCall(MatGetOwnershipRange(ctx->T,&Istart,&Iend));
 90:   for (i=Istart;i<Iend;i++) {
 91:     if (i>0) PetscCall(MatSetValue(ctx->T,i,i-1,1.0,INSERT_VALUES));
 92:     if (i<N-1) PetscCall(MatSetValue(ctx->T,i,i+1,1.0,INSERT_VALUES));
 93:     PetscCall(MatSetValue(ctx->T,i,i,-2.0,INSERT_VALUES));
 94:   }
 95:   PetscCall(MatAssemblyBegin(ctx->T,MAT_FINAL_ASSEMBLY));
 96:   PetscCall(MatAssemblyEnd(ctx->T,MAT_FINAL_ASSEMBLY));
 97:   PetscCall(MatGetLocalSize(ctx->T,&n,NULL));

 99:   /*
100:      Fill the remaining information in the shell matrix context
101:      and create auxiliary vectors
102:   */
103:   h = 1.0 / (PetscReal)(N+1);
104:   ctx->tau1 = delta1 / ((h*L)*(h*L));
105:   ctx->tau2 = delta2 / ((h*L)*(h*L));
106:   ctx->sigma = 0.0;
107:   PetscCall(VecCreateMPIWithArray(PETSC_COMM_WORLD,1,n,PETSC_DECIDE,NULL,&ctx->x1));
108:   PetscCall(VecCreateMPIWithArray(PETSC_COMM_WORLD,1,n,PETSC_DECIDE,NULL,&ctx->x2));
109:   PetscCall(VecCreateMPIWithArray(PETSC_COMM_WORLD,1,n,PETSC_DECIDE,NULL,&ctx->y1));
110:   PetscCall(VecCreateMPIWithArray(PETSC_COMM_WORLD,1,n,PETSC_DECIDE,NULL,&ctx->y2));

112:   /*
113:      Create the shell matrix
114:   */
115:   PetscCall(MatCreateShell(PETSC_COMM_WORLD,2*n,2*n,2*N,2*N,(void*)ctx,&A));
116:   PetscCall(MatShellSetOperation(A,MATOP_MULT,(void(*)(void))MatMult_Brussel));
117:   PetscCall(MatShellSetOperation(A,MATOP_GET_DIAGONAL,(void(*)(void))MatGetDiagonal_Brussel));

119:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
120:                 Create the eigensolver and configure the region
121:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

123:   PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
124:   PetscCall(EPSSetOperators(eps,A,NULL));
125:   PetscCall(EPSSetProblemType(eps,EPS_NHEP));

127:   /*
128:      Define the region containing the eigenvalues of interest
129:   */
130:   PetscCall(EPSGetRG(eps,&rg));
131:   PetscCall(RGSetType(rg,RGINTERVAL));
132:   PetscCall(RGIntervalSetEndpoints(rg,-PETSC_INFINITY,PETSC_INFINITY,-0.01,0.01));
133:   PetscCall(RGSetComplement(rg,PETSC_TRUE));
134:   /* sort eigenvalue approximations wrt a target, otherwise convergence will be erratic */
135:   PetscCall(EPSSetTarget(eps,0.0));
136:   PetscCall(EPSSetWhichEigenpairs(eps,EPS_TARGET_MAGNITUDE));

138:   /*
139:      Set solver options. In particular, we must allocate sufficient
140:      storage for all eigenpairs that may converge (ncv). This is
141:      application-dependent.
142:   */
143:   mpd = 40;
144:   PetscCall(EPSSetDimensions(eps,2*mpd,3*mpd,mpd));
145:   PetscCall(EPSSetTolerances(eps,1e-7,2000));
146:   ctx->lastnconv = 0;
147:   ctx->nreps     = 0;
148:   PetscCall(EPSSetStoppingTestFunction(eps,MyStoppingTest,(void*)ctx,NULL));
149:   PetscCall(EPSSetFromOptions(eps));

151:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
152:                 Solve the eigensystem and display solution
153:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

155:   PetscCall(EPSSolve(eps));

157:   /* show detailed info unless -terse option is given by user */
158:   PetscCall(PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&viewer));
159:   PetscCall(PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_INFO_DETAIL));
160:   PetscCall(EPSConvergedReasonView(eps,viewer));
161:   PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
162:   if (!terse) PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,viewer));
163:   PetscCall(PetscViewerPopFormat(viewer));

165:   PetscCall(EPSDestroy(&eps));
166:   PetscCall(MatDestroy(&A));
167:   PetscCall(MatDestroy(&ctx->T));
168:   PetscCall(VecDestroy(&ctx->x1));
169:   PetscCall(VecDestroy(&ctx->x2));
170:   PetscCall(VecDestroy(&ctx->y1));
171:   PetscCall(VecDestroy(&ctx->y2));
172:   PetscCall(PetscFree(ctx));
173:   PetscCall(SlepcFinalize());
174:   return 0;
175: }

177: PetscErrorCode MatMult_Brussel(Mat A,Vec x,Vec y)
178: {
179:   PetscInt          n;
180:   const PetscScalar *px;
181:   PetscScalar       *py;
182:   CTX_BRUSSEL       *ctx;

184:   PetscFunctionBeginUser;
185:   PetscCall(MatShellGetContext(A,&ctx));
186:   PetscCall(MatGetLocalSize(ctx->T,&n,NULL));
187:   PetscCall(VecGetArrayRead(x,&px));
188:   PetscCall(VecGetArray(y,&py));
189:   PetscCall(VecPlaceArray(ctx->x1,px));
190:   PetscCall(VecPlaceArray(ctx->x2,px+n));
191:   PetscCall(VecPlaceArray(ctx->y1,py));
192:   PetscCall(VecPlaceArray(ctx->y2,py+n));

194:   PetscCall(MatMult(ctx->T,ctx->x1,ctx->y1));
195:   PetscCall(VecScale(ctx->y1,ctx->tau1));
196:   PetscCall(VecAXPY(ctx->y1,ctx->beta - 1.0 + ctx->sigma,ctx->x1));
197:   PetscCall(VecAXPY(ctx->y1,ctx->alpha * ctx->alpha,ctx->x2));

199:   PetscCall(MatMult(ctx->T,ctx->x2,ctx->y2));
200:   PetscCall(VecScale(ctx->y2,ctx->tau2));
201:   PetscCall(VecAXPY(ctx->y2,-ctx->beta,ctx->x1));
202:   PetscCall(VecAXPY(ctx->y2,-ctx->alpha * ctx->alpha + ctx->sigma,ctx->x2));

204:   PetscCall(VecRestoreArrayRead(x,&px));
205:   PetscCall(VecRestoreArray(y,&py));
206:   PetscCall(VecResetArray(ctx->x1));
207:   PetscCall(VecResetArray(ctx->x2));
208:   PetscCall(VecResetArray(ctx->y1));
209:   PetscCall(VecResetArray(ctx->y2));
210:   PetscFunctionReturn(PETSC_SUCCESS);
211: }

213: PetscErrorCode MatGetDiagonal_Brussel(Mat A,Vec diag)
214: {
215:   Vec            d1,d2;
216:   PetscInt       n;
217:   PetscScalar    *pd;
218:   MPI_Comm       comm;
219:   CTX_BRUSSEL    *ctx;

221:   PetscFunctionBeginUser;
222:   PetscCall(MatShellGetContext(A,&ctx));
223:   PetscCall(PetscObjectGetComm((PetscObject)A,&comm));
224:   PetscCall(MatGetLocalSize(ctx->T,&n,NULL));
225:   PetscCall(VecGetArray(diag,&pd));
226:   PetscCall(VecCreateMPIWithArray(comm,1,n,PETSC_DECIDE,pd,&d1));
227:   PetscCall(VecCreateMPIWithArray(comm,1,n,PETSC_DECIDE,pd+n,&d2));

229:   PetscCall(VecSet(d1,-2.0*ctx->tau1 + ctx->beta - 1.0 + ctx->sigma));
230:   PetscCall(VecSet(d2,-2.0*ctx->tau2 - ctx->alpha*ctx->alpha + ctx->sigma));

232:   PetscCall(VecDestroy(&d1));
233:   PetscCall(VecDestroy(&d2));
234:   PetscCall(VecRestoreArray(diag,&pd));
235:   PetscFunctionReturn(PETSC_SUCCESS);
236: }

238: /*
239:     Function for user-defined stopping test.

241:     Ignores the value of nev. It only takes into account the number of
242:     eigenpairs that have converged in recent outer iterations (restarts);
243:     if no new eigenvalues have converged in the last few restarts,
244:     we stop the iteration, assuming that no more eigenvalues are present
245:     inside the region.
246: */
247: PetscErrorCode MyStoppingTest(EPS eps,PetscInt its,PetscInt max_it,PetscInt nconv,PetscInt nev,EPSConvergedReason *reason,void *ptr)
248: {
249:   CTX_BRUSSEL    *ctx = (CTX_BRUSSEL*)ptr;

251:   PetscFunctionBeginUser;
252:   /* check usual termination conditions, but ignoring the case nconv>=nev */
253:   PetscCall(EPSStoppingBasic(eps,its,max_it,nconv,PETSC_INT_MAX,reason,NULL));
254:   if (*reason==EPS_CONVERGED_ITERATING) {
255:     /* check if nconv is the same as before */
256:     if (nconv==ctx->lastnconv) ctx->nreps++;
257:     else {
258:       ctx->lastnconv = nconv;
259:       ctx->nreps     = 0;
260:     }
261:     /* check if no eigenvalues converged in last 10 restarts */
262:     if (nconv && ctx->nreps>10) *reason = EPS_CONVERGED_USER;
263:   }
264:   PetscFunctionReturn(PETSC_SUCCESS);
265: }

267: /*TEST

269:    test:
270:       suffix: 1
271:       args: -n 100 -terse
272:       requires: !single

274: TEST*/