Actual source code: fnrational.c
slepc-main 2024-11-22
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: Rational function r(x) = p(x)/q(x), where p(x) and q(x) are polynomials
12: */
14: #include <slepc/private/fnimpl.h>
16: typedef struct {
17: PetscScalar *pcoeff; /* numerator coefficients */
18: PetscInt np; /* length of array pcoeff, p(x) has degree np-1 */
19: PetscScalar *qcoeff; /* denominator coefficients */
20: PetscInt nq; /* length of array qcoeff, q(x) has degree nq-1 */
21: } FN_RATIONAL;
23: static PetscErrorCode FNEvaluateFunction_Rational(FN fn,PetscScalar x,PetscScalar *y)
24: {
25: FN_RATIONAL *ctx = (FN_RATIONAL*)fn->data;
26: PetscInt i;
27: PetscScalar p,q;
29: PetscFunctionBegin;
30: if (!ctx->np) p = 1.0;
31: else {
32: p = ctx->pcoeff[0];
33: for (i=1;i<ctx->np;i++)
34: p = ctx->pcoeff[i]+x*p;
35: }
36: if (!ctx->nq) *y = p;
37: else {
38: q = ctx->qcoeff[0];
39: for (i=1;i<ctx->nq;i++)
40: q = ctx->qcoeff[i]+x*q;
41: PetscCheck(q!=0.0,PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Function not defined in the requested value");
42: *y = p/q;
43: }
44: PetscFunctionReturn(PETSC_SUCCESS);
45: }
47: /*
48: Horner evaluation of P=p(A)
49: d = degree of polynomial; coeff = coefficients of polynomial; W = workspace
50: */
51: static PetscErrorCode EvaluatePoly(Mat A,Mat P,Mat W,PetscInt d,PetscScalar *coeff)
52: {
53: PetscInt j;
55: PetscFunctionBegin;
56: PetscCall(MatZeroEntries(P));
57: if (!d) PetscCall(MatShift(P,1.0));
58: else {
59: PetscCall(MatShift(P,coeff[0]));
60: for (j=1;j<d;j++) {
61: PetscCall(MatMatMult(P,A,MAT_REUSE_MATRIX,PETSC_DEFAULT,&W));
62: PetscCall(MatCopy(W,P,SAME_NONZERO_PATTERN));
63: PetscCall(MatShift(P,coeff[j]));
64: }
65: }
66: PetscFunctionReturn(PETSC_SUCCESS);
67: }
69: static PetscErrorCode FNEvaluateFunctionMat_Rational(FN fn,Mat A,Mat B)
70: {
71: FN_RATIONAL *ctx = (FN_RATIONAL*)fn->data;
72: Mat P,Q,W,F;
73: PetscBool iscuda;
75: PetscFunctionBegin;
76: if (A==B) PetscCall(MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&P));
77: else P = B;
78: PetscCall(MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&W));
80: PetscCall(EvaluatePoly(A,P,W,ctx->np,ctx->pcoeff));
81: if (ctx->nq) {
82: PetscCall(MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&Q));
83: PetscCall(EvaluatePoly(A,Q,W,ctx->nq,ctx->qcoeff));
84: PetscCall(PetscObjectTypeCompare((PetscObject)A,MATSEQDENSECUDA,&iscuda));
85: PetscCall(MatGetFactor(Q,iscuda?MATSOLVERCUDA:MATSOLVERPETSC,MAT_FACTOR_LU,&F));
86: PetscCall(MatLUFactorSymbolic(F,Q,NULL,NULL,NULL));
87: PetscCall(MatLUFactorNumeric(F,Q,NULL));
88: PetscCall(MatMatSolve(F,P,P));
89: PetscCall(MatDestroy(&F));
90: PetscCall(MatDestroy(&Q));
91: }
93: if (A==B) {
94: PetscCall(MatCopy(P,B,SAME_NONZERO_PATTERN));
95: PetscCall(MatDestroy(&P));
96: }
97: PetscCall(MatDestroy(&W));
98: PetscFunctionReturn(PETSC_SUCCESS);
99: }
101: static PetscErrorCode FNEvaluateFunctionMatVec_Rational(FN fn,Mat A,Vec v)
102: {
103: FN_RATIONAL *ctx = (FN_RATIONAL*)fn->data;
104: Mat P,Q,W,F;
105: Vec b;
106: PetscBool iscuda;
108: PetscFunctionBegin;
109: PetscCall(MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&P));
110: PetscCall(MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&W));
112: PetscCall(EvaluatePoly(A,P,W,ctx->np,ctx->pcoeff));
113: if (ctx->nq) {
114: PetscCall(MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&Q));
115: PetscCall(EvaluatePoly(A,Q,W,ctx->nq,ctx->qcoeff));
116: PetscCall(PetscObjectTypeCompare((PetscObject)A,MATSEQDENSECUDA,&iscuda));
117: PetscCall(MatGetFactor(Q,iscuda?MATSOLVERCUDA:MATSOLVERPETSC,MAT_FACTOR_LU,&F));
118: PetscCall(MatLUFactorSymbolic(F,Q,NULL,NULL,NULL));
119: PetscCall(MatLUFactorNumeric(F,Q,NULL));
120: PetscCall(MatCreateVecs(P,&b,NULL));
121: PetscCall(MatGetColumnVector(P,b,0));
122: PetscCall(MatSolve(F,b,v));
123: PetscCall(VecDestroy(&b));
124: PetscCall(MatDestroy(&F));
125: PetscCall(MatDestroy(&Q));
126: } else PetscCall(MatGetColumnVector(P,v,0));
128: PetscCall(MatDestroy(&P));
129: PetscCall(MatDestroy(&W));
130: PetscFunctionReturn(PETSC_SUCCESS);
131: }
133: static PetscErrorCode FNEvaluateDerivative_Rational(FN fn,PetscScalar x,PetscScalar *yp)
134: {
135: FN_RATIONAL *ctx = (FN_RATIONAL*)fn->data;
136: PetscInt i;
137: PetscScalar p,q,pp,qp;
139: PetscFunctionBegin;
140: if (!ctx->np) {
141: p = 1.0;
142: pp = 0.0;
143: } else {
144: p = ctx->pcoeff[0];
145: pp = 0.0;
146: for (i=1;i<ctx->np;i++) {
147: pp = p+x*pp;
148: p = ctx->pcoeff[i]+x*p;
149: }
150: }
151: if (!ctx->nq) *yp = pp;
152: else {
153: q = ctx->qcoeff[0];
154: qp = 0.0;
155: for (i=1;i<ctx->nq;i++) {
156: qp = q+x*qp;
157: q = ctx->qcoeff[i]+x*q;
158: }
159: PetscCheck(q!=0.0,PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Derivative not defined in the requested value");
160: *yp = (pp*q-p*qp)/(q*q);
161: }
162: PetscFunctionReturn(PETSC_SUCCESS);
163: }
165: static PetscErrorCode FNView_Rational(FN fn,PetscViewer viewer)
166: {
167: FN_RATIONAL *ctx = (FN_RATIONAL*)fn->data;
168: PetscBool isascii;
169: PetscInt i;
170: char str[50];
172: PetscFunctionBegin;
173: PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
174: if (isascii) {
175: if (fn->alpha!=(PetscScalar)1.0 || fn->beta!=(PetscScalar)1.0) {
176: PetscCall(SlepcSNPrintfScalar(str,sizeof(str),fn->alpha,PETSC_FALSE));
177: PetscCall(PetscViewerASCIIPrintf(viewer," scale factors: alpha=%s,",str));
178: PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_FALSE));
179: PetscCall(SlepcSNPrintfScalar(str,sizeof(str),fn->beta,PETSC_FALSE));
180: PetscCall(PetscViewerASCIIPrintf(viewer," beta=%s\n",str));
181: PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_TRUE));
182: }
183: if (!ctx->nq) {
184: if (!ctx->np) PetscCall(PetscViewerASCIIPrintf(viewer," constant: 1.0\n"));
185: else if (ctx->np==1) {
186: PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->pcoeff[0],PETSC_FALSE));
187: PetscCall(PetscViewerASCIIPrintf(viewer," constant: %s\n",str));
188: } else {
189: PetscCall(PetscViewerASCIIPrintf(viewer," polynomial: "));
190: PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_FALSE));
191: for (i=0;i<ctx->np-1;i++) {
192: PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->pcoeff[i],PETSC_TRUE));
193: PetscCall(PetscViewerASCIIPrintf(viewer,"%s*x^%1" PetscInt_FMT,str,ctx->np-i-1));
194: }
195: PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->pcoeff[ctx->np-1],PETSC_TRUE));
196: PetscCall(PetscViewerASCIIPrintf(viewer,"%s\n",str));
197: PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_TRUE));
198: }
199: } else if (!ctx->np) {
200: PetscCall(PetscViewerASCIIPrintf(viewer," inverse polynomial: 1 / ("));
201: PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_FALSE));
202: for (i=0;i<ctx->nq-1;i++) {
203: PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->qcoeff[i],PETSC_TRUE));
204: PetscCall(PetscViewerASCIIPrintf(viewer,"%s*x^%1" PetscInt_FMT,str,ctx->nq-i-1));
205: }
206: PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->qcoeff[ctx->nq-1],PETSC_TRUE));
207: PetscCall(PetscViewerASCIIPrintf(viewer,"%s)\n",str));
208: PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_TRUE));
209: } else {
210: PetscCall(PetscViewerASCIIPrintf(viewer," rational function: ("));
211: PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_FALSE));
212: for (i=0;i<ctx->np-1;i++) {
213: PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->pcoeff[i],PETSC_TRUE));
214: PetscCall(PetscViewerASCIIPrintf(viewer,"%s*x^%1" PetscInt_FMT,str,ctx->np-i-1));
215: }
216: PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->pcoeff[ctx->np-1],PETSC_TRUE));
217: PetscCall(PetscViewerASCIIPrintf(viewer,"%s) / (",str));
218: for (i=0;i<ctx->nq-1;i++) {
219: PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->qcoeff[i],PETSC_TRUE));
220: PetscCall(PetscViewerASCIIPrintf(viewer,"%s*x^%1" PetscInt_FMT,str,ctx->nq-i-1));
221: }
222: PetscCall(SlepcSNPrintfScalar(str,sizeof(str),ctx->qcoeff[ctx->nq-1],PETSC_TRUE));
223: PetscCall(PetscViewerASCIIPrintf(viewer,"%s)\n",str));
224: PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_TRUE));
225: }
226: }
227: PetscFunctionReturn(PETSC_SUCCESS);
228: }
230: static PetscErrorCode FNRationalSetNumerator_Rational(FN fn,PetscInt np,PetscScalar *pcoeff)
231: {
232: FN_RATIONAL *ctx = (FN_RATIONAL*)fn->data;
233: PetscInt i;
235: PetscFunctionBegin;
236: PetscCheck(np>=0,PetscObjectComm((PetscObject)fn),PETSC_ERR_ARG_OUTOFRANGE,"Argument np cannot be negative");
237: ctx->np = np;
238: PetscCall(PetscFree(ctx->pcoeff));
239: if (np) {
240: PetscCall(PetscMalloc1(np,&ctx->pcoeff));
241: for (i=0;i<np;i++) ctx->pcoeff[i] = pcoeff[i];
242: }
243: PetscFunctionReturn(PETSC_SUCCESS);
244: }
246: /*@
247: FNRationalSetNumerator - Sets the parameters defining the numerator of the
248: rational function.
250: Logically Collective
252: Input Parameters:
253: + fn - the math function context
254: . np - number of coefficients
255: - pcoeff - coefficients (array of scalar values)
257: Notes:
258: Let the rational function r(x) = p(x)/q(x), where p(x) and q(x) are polynomials.
259: This function provides the coefficients of the numerator p(x).
260: Hence, p(x) is of degree np-1.
261: If np is zero, then the numerator is assumed to be p(x)=1.
263: In polynomials, high order coefficients are stored in the first positions
264: of the array, e.g. to represent x^2-3 use {1,0,-3}.
266: Level: intermediate
268: .seealso: FNRationalSetDenominator(), FNRationalGetNumerator()
269: @*/
270: PetscErrorCode FNRationalSetNumerator(FN fn,PetscInt np,PetscScalar pcoeff[])
271: {
272: PetscFunctionBegin;
275: if (np) PetscAssertPointer(pcoeff,3);
276: PetscTryMethod(fn,"FNRationalSetNumerator_C",(FN,PetscInt,PetscScalar*),(fn,np,pcoeff));
277: PetscFunctionReturn(PETSC_SUCCESS);
278: }
280: static PetscErrorCode FNRationalGetNumerator_Rational(FN fn,PetscInt *np,PetscScalar *pcoeff[])
281: {
282: FN_RATIONAL *ctx = (FN_RATIONAL*)fn->data;
283: PetscInt i;
285: PetscFunctionBegin;
286: if (np) *np = ctx->np;
287: if (pcoeff) {
288: if (!ctx->np) *pcoeff = NULL;
289: else {
290: PetscCall(PetscMalloc1(ctx->np,pcoeff));
291: for (i=0;i<ctx->np;i++) (*pcoeff)[i] = ctx->pcoeff[i];
292: }
293: }
294: PetscFunctionReturn(PETSC_SUCCESS);
295: }
297: /*@C
298: FNRationalGetNumerator - Gets the parameters that define the numerator of the
299: rational function.
301: Not Collective
303: Input Parameter:
304: . fn - the math function context
306: Output Parameters:
307: + np - number of coefficients
308: - pcoeff - coefficients (array of scalar values, length nq)
310: Notes:
311: The values passed by user with FNRationalSetNumerator() are returned (or null
312: pointers otherwise).
313: The pcoeff array should be freed by the user when no longer needed.
315: Level: intermediate
317: .seealso: FNRationalSetNumerator()
318: @*/
319: PetscErrorCode FNRationalGetNumerator(FN fn,PetscInt *np,PetscScalar *pcoeff[])
320: {
321: PetscFunctionBegin;
323: PetscUseMethod(fn,"FNRationalGetNumerator_C",(FN,PetscInt*,PetscScalar**),(fn,np,pcoeff));
324: PetscFunctionReturn(PETSC_SUCCESS);
325: }
327: static PetscErrorCode FNRationalSetDenominator_Rational(FN fn,PetscInt nq,PetscScalar *qcoeff)
328: {
329: FN_RATIONAL *ctx = (FN_RATIONAL*)fn->data;
330: PetscInt i;
332: PetscFunctionBegin;
333: PetscCheck(nq>=0,PetscObjectComm((PetscObject)fn),PETSC_ERR_ARG_OUTOFRANGE,"Argument nq cannot be negative");
334: ctx->nq = nq;
335: PetscCall(PetscFree(ctx->qcoeff));
336: if (nq) {
337: PetscCall(PetscMalloc1(nq,&ctx->qcoeff));
338: for (i=0;i<nq;i++) ctx->qcoeff[i] = qcoeff[i];
339: }
340: PetscFunctionReturn(PETSC_SUCCESS);
341: }
343: /*@
344: FNRationalSetDenominator - Sets the parameters defining the denominator of the
345: rational function.
347: Logically Collective
349: Input Parameters:
350: + fn - the math function context
351: . nq - number of coefficients
352: - qcoeff - coefficients (array of scalar values)
354: Notes:
355: Let the rational function r(x) = p(x)/q(x), where p(x) and q(x) are polynomials.
356: This function provides the coefficients of the denominator q(x).
357: Hence, q(x) is of degree nq-1.
358: If nq is zero, then the function is assumed to be polynomial, r(x) = p(x).
360: In polynomials, high order coefficients are stored in the first positions
361: of the array, e.g. to represent x^2-3 use {1,0,-3}.
363: Level: intermediate
365: .seealso: FNRationalSetNumerator(), FNRationalGetDenominator()
366: @*/
367: PetscErrorCode FNRationalSetDenominator(FN fn,PetscInt nq,PetscScalar qcoeff[])
368: {
369: PetscFunctionBegin;
372: if (nq) PetscAssertPointer(qcoeff,3);
373: PetscTryMethod(fn,"FNRationalSetDenominator_C",(FN,PetscInt,PetscScalar*),(fn,nq,qcoeff));
374: PetscFunctionReturn(PETSC_SUCCESS);
375: }
377: static PetscErrorCode FNRationalGetDenominator_Rational(FN fn,PetscInt *nq,PetscScalar *qcoeff[])
378: {
379: FN_RATIONAL *ctx = (FN_RATIONAL*)fn->data;
380: PetscInt i;
382: PetscFunctionBegin;
383: if (nq) *nq = ctx->nq;
384: if (qcoeff) {
385: if (!ctx->nq) *qcoeff = NULL;
386: else {
387: PetscCall(PetscMalloc1(ctx->nq,qcoeff));
388: for (i=0;i<ctx->nq;i++) (*qcoeff)[i] = ctx->qcoeff[i];
389: }
390: }
391: PetscFunctionReturn(PETSC_SUCCESS);
392: }
394: /*@C
395: FNRationalGetDenominator - Gets the parameters that define the denominator of the
396: rational function.
398: Not Collective
400: Input Parameter:
401: . fn - the math function context
403: Output Parameters:
404: + nq - number of coefficients
405: - qcoeff - coefficients (array of scalar values, length nq)
407: Notes:
408: The values passed by user with FNRationalSetDenominator() are returned (or a null
409: pointer otherwise).
410: The qcoeff array should be freed by the user when no longer needed.
412: Level: intermediate
414: .seealso: FNRationalSetDenominator()
415: @*/
416: PetscErrorCode FNRationalGetDenominator(FN fn,PetscInt *nq,PetscScalar *qcoeff[])
417: {
418: PetscFunctionBegin;
420: PetscUseMethod(fn,"FNRationalGetDenominator_C",(FN,PetscInt*,PetscScalar**),(fn,nq,qcoeff));
421: PetscFunctionReturn(PETSC_SUCCESS);
422: }
424: static PetscErrorCode FNSetFromOptions_Rational(FN fn,PetscOptionItems *PetscOptionsObject)
425: {
426: #define PARMAX 10
427: PetscScalar array[PARMAX];
428: PetscInt i,k;
429: PetscBool flg;
431: PetscFunctionBegin;
432: PetscOptionsHeadBegin(PetscOptionsObject,"FN Rational Options");
434: k = PARMAX;
435: for (i=0;i<k;i++) array[i] = 0;
436: PetscCall(PetscOptionsScalarArray("-fn_rational_numerator","Numerator coefficients (one or more scalar values separated with a comma without spaces)","FNRationalSetNumerator",array,&k,&flg));
437: if (flg) PetscCall(FNRationalSetNumerator(fn,k,array));
439: k = PARMAX;
440: for (i=0;i<k;i++) array[i] = 0;
441: PetscCall(PetscOptionsScalarArray("-fn_rational_denominator","Denominator coefficients (one or more scalar values separated with a comma without spaces)","FNRationalSetDenominator",array,&k,&flg));
442: if (flg) PetscCall(FNRationalSetDenominator(fn,k,array));
444: PetscOptionsHeadEnd();
445: PetscFunctionReturn(PETSC_SUCCESS);
446: }
448: static PetscErrorCode FNDuplicate_Rational(FN fn,MPI_Comm comm,FN *newfn)
449: {
450: FN_RATIONAL *ctx = (FN_RATIONAL*)fn->data,*ctx2 = (FN_RATIONAL*)(*newfn)->data;
451: PetscInt i;
453: PetscFunctionBegin;
454: ctx2->np = ctx->np;
455: if (ctx->np) {
456: PetscCall(PetscMalloc1(ctx->np,&ctx2->pcoeff));
457: for (i=0;i<ctx->np;i++) ctx2->pcoeff[i] = ctx->pcoeff[i];
458: }
459: ctx2->nq = ctx->nq;
460: if (ctx->nq) {
461: PetscCall(PetscMalloc1(ctx->nq,&ctx2->qcoeff));
462: for (i=0;i<ctx->nq;i++) ctx2->qcoeff[i] = ctx->qcoeff[i];
463: }
464: PetscFunctionReturn(PETSC_SUCCESS);
465: }
467: static PetscErrorCode FNDestroy_Rational(FN fn)
468: {
469: FN_RATIONAL *ctx = (FN_RATIONAL*)fn->data;
471: PetscFunctionBegin;
472: PetscCall(PetscFree(ctx->pcoeff));
473: PetscCall(PetscFree(ctx->qcoeff));
474: PetscCall(PetscFree(fn->data));
475: PetscCall(PetscObjectComposeFunction((PetscObject)fn,"FNRationalSetNumerator_C",NULL));
476: PetscCall(PetscObjectComposeFunction((PetscObject)fn,"FNRationalGetNumerator_C",NULL));
477: PetscCall(PetscObjectComposeFunction((PetscObject)fn,"FNRationalSetDenominator_C",NULL));
478: PetscCall(PetscObjectComposeFunction((PetscObject)fn,"FNRationalGetDenominator_C",NULL));
479: PetscFunctionReturn(PETSC_SUCCESS);
480: }
482: SLEPC_EXTERN PetscErrorCode FNCreate_Rational(FN fn)
483: {
484: FN_RATIONAL *ctx;
486: PetscFunctionBegin;
487: PetscCall(PetscNew(&ctx));
488: fn->data = (void*)ctx;
490: fn->ops->evaluatefunction = FNEvaluateFunction_Rational;
491: fn->ops->evaluatederivative = FNEvaluateDerivative_Rational;
492: fn->ops->evaluatefunctionmat[0] = FNEvaluateFunctionMat_Rational;
493: fn->ops->evaluatefunctionmatvec[0] = FNEvaluateFunctionMatVec_Rational;
494: #if defined(PETSC_HAVE_CUDA)
495: fn->ops->evaluatefunctionmatcuda[0] = FNEvaluateFunctionMat_Rational;
496: fn->ops->evaluatefunctionmatveccuda[0] = FNEvaluateFunctionMatVec_Rational;
497: #endif
498: fn->ops->setfromoptions = FNSetFromOptions_Rational;
499: fn->ops->view = FNView_Rational;
500: fn->ops->duplicate = FNDuplicate_Rational;
501: fn->ops->destroy = FNDestroy_Rational;
502: PetscCall(PetscObjectComposeFunction((PetscObject)fn,"FNRationalSetNumerator_C",FNRationalSetNumerator_Rational));
503: PetscCall(PetscObjectComposeFunction((PetscObject)fn,"FNRationalGetNumerator_C",FNRationalGetNumerator_Rational));
504: PetscCall(PetscObjectComposeFunction((PetscObject)fn,"FNRationalSetDenominator_C",FNRationalSetDenominator_Rational));
505: PetscCall(PetscObjectComposeFunction((PetscObject)fn,"FNRationalGetDenominator_C",FNRationalGetDenominator_Rational));
506: PetscFunctionReturn(PETSC_SUCCESS);
507: }