Actual source code: dspriv.c

slepc-main 2025-01-19
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    Private DS routines
 12: */

 14: #include <slepc/private/dsimpl.h>
 15: #include <slepcblaslapack.h>

 17: PetscErrorCode DSAllocateMat_Private(DS ds,DSMatType m)
 18: {
 19:   PetscInt       n,d,rows=0,cols;
 20:   PetscBool      ispep,isnep;

 22:   PetscFunctionBegin;
 23:   n = ds->ld;
 24:   PetscCall(PetscObjectTypeCompare((PetscObject)ds,DSPEP,&ispep));
 25:   if (ispep) {
 26:     if (m==DS_MAT_A || m==DS_MAT_B || m==DS_MAT_W || m==DS_MAT_U || m==DS_MAT_X || m==DS_MAT_Y) {
 27:       PetscCall(DSPEPGetDegree(ds,&d));
 28:       n = d*ds->ld;
 29:     }
 30:   } else {
 31:     PetscCall(PetscObjectTypeCompare((PetscObject)ds,DSNEP,&isnep));
 32:     if (isnep) {
 33:       if (m==DS_MAT_Q || m==DS_MAT_Z || m==DS_MAT_U || m==DS_MAT_V || m==DS_MAT_X || m==DS_MAT_Y) {
 34:         PetscCall(DSNEPGetMinimality(ds,&d));
 35:         n = d*ds->ld;
 36:       }
 37:     }
 38:   }
 39:   cols = n;

 41:   switch (m) {
 42:     case DS_MAT_T:
 43:       cols = PetscDefined(USE_COMPLEX)? 2: 3;
 44:       rows = n;
 45:       break;
 46:     case DS_MAT_D:
 47:       cols = 1;
 48:       rows = n;
 49:       break;
 50:     case DS_MAT_X:
 51:       rows = ds->ld;
 52:       break;
 53:     case DS_MAT_Y:
 54:       rows = ds->ld;
 55:       break;
 56:     default:
 57:       rows = n;
 58:   }
 59:   if (ds->omat[m]) PetscCall(MatZeroEntries(ds->omat[m]));
 60:   else {
 61:     PetscCall(MatCreateSeqDense(PETSC_COMM_SELF,rows,cols,NULL,&ds->omat[m]));
 62:   }
 63:   PetscFunctionReturn(PETSC_SUCCESS);
 64: }

 66: PetscErrorCode DSReallocateMat_Private(DS ds,DSMatType mat,PetscInt ld)
 67: {
 68:   Mat               M;
 69:   PetscInt          i,m,n,rows,cols;
 70:   PetscScalar       *dst;
 71:   PetscReal         *rdst;
 72:   const PetscScalar *src;
 73:   const PetscReal   *rsrc;

 75:   PetscFunctionBegin;
 76:   PetscCall(MatGetSize(ds->omat[mat],&m,&n));
 77:   rows = ld;
 78:   cols = m==n? ld: n;
 79:   PetscCall(MatCreateSeqDense(PETSC_COMM_SELF,rows,cols,NULL,&M));
 80:   PetscCall(MatDenseGetArrayRead(ds->omat[mat],&src));
 81:   PetscCall(MatDenseGetArray(M,&dst));
 82:   if (mat==DS_MAT_T && PetscDefined(USE_COMPLEX)) {
 83:     rsrc = (const PetscReal*)src;
 84:     rdst = (PetscReal*)dst;
 85:     for (i=0;i<3;i++) PetscCall(PetscArraycpy(rdst+i*ld,rsrc+i*ds->ld,ds->ld));
 86:   } else {
 87:     for (i=0;i<n;i++) PetscCall(PetscArraycpy(dst+i*ld,src+i*ds->ld,ds->ld));
 88:   }
 89:   PetscCall(MatDenseRestoreArrayRead(ds->omat[mat],&src));
 90:   PetscCall(MatDenseRestoreArray(M,&dst));
 91:   PetscCall(MatDestroy(&ds->omat[mat]));
 92:   ds->omat[mat] = M;
 93:   PetscFunctionReturn(PETSC_SUCCESS);
 94: }

 96: PetscErrorCode DSAllocateWork_Private(DS ds,PetscInt s,PetscInt r,PetscInt i)
 97: {
 98:   PetscFunctionBegin;
 99:   if (s>ds->lwork) {
100:     PetscCall(PetscFree(ds->work));
101:     PetscCall(PetscMalloc1(s,&ds->work));
102:     ds->lwork = s;
103:   }
104:   if (r>ds->lrwork) {
105:     PetscCall(PetscFree(ds->rwork));
106:     PetscCall(PetscMalloc1(r,&ds->rwork));
107:     ds->lrwork = r;
108:   }
109:   if (i>ds->liwork) {
110:     PetscCall(PetscFree(ds->iwork));
111:     PetscCall(PetscMalloc1(i,&ds->iwork));
112:     ds->liwork = i;
113:   }
114:   PetscFunctionReturn(PETSC_SUCCESS);
115: }

117: /*@
118:    DSViewMat - Prints one of the internal DS matrices.

120:    Collective

122:    Input Parameters:
123: +  ds     - the direct solver context
124: .  viewer - visualization context
125: -  m      - matrix to display

127:    Note:
128:    Works only for ascii viewers. Set the viewer in Matlab format if
129:    want to paste into Matlab.

131:    Level: developer

133: .seealso: DSView()
134: @*/
135: PetscErrorCode DSViewMat(DS ds,PetscViewer viewer,DSMatType m)
136: {
137:   PetscInt          i,j,rows,cols;
138:   const PetscScalar *M=NULL,*v;
139:   PetscViewerFormat format;
140: #if defined(PETSC_USE_COMPLEX)
141:   PetscBool         allreal = PETSC_TRUE;
142:   const PetscReal   *vr;
143: #endif

145:   PetscFunctionBegin;
148:   DSCheckValidMat(ds,m,3);
149:   if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ds),&viewer));
151:   PetscCheckSameComm(ds,1,viewer,2);
152:   PetscCall(PetscViewerGetFormat(viewer,&format));
153:   if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) PetscFunctionReturn(PETSC_SUCCESS);
154:   PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_FALSE));
155:   PetscCall(DSMatGetSize(ds,m,&rows,&cols));
156:   PetscCall(MatDenseGetArrayRead(ds->omat[m],&M));
157: #if defined(PETSC_USE_COMPLEX)
158:   /* determine if matrix has all real values */
159:   if (m!=DS_MAT_T && m!=DS_MAT_D) {
160:     /* determine if matrix has all real values */
161:     v = M;
162:     for (i=0;i<rows;i++)
163:       for (j=0;j<cols;j++)
164:         if (PetscImaginaryPart(v[i+j*ds->ld])) { allreal = PETSC_FALSE; break; }
165:   }
166:   if (m==DS_MAT_T) cols=3;
167: #endif
168:   if (format == PETSC_VIEWER_ASCII_MATLAB) {
169:     PetscCall(PetscViewerASCIIPrintf(viewer,"%% Size = %" PetscInt_FMT " %" PetscInt_FMT "\n",rows,cols));
170:     PetscCall(PetscViewerASCIIPrintf(viewer,"%s = [\n",DSMatName[m]));
171:   } else PetscCall(PetscViewerASCIIPrintf(viewer,"Matrix %s =\n",DSMatName[m]));

173:   for (i=0;i<rows;i++) {
174:     v = M+i;
175: #if defined(PETSC_USE_COMPLEX)
176:     vr = (const PetscReal*)M+i;   /* handle compact storage, 2nd column is in imaginary part of 1st column */
177: #endif
178:     for (j=0;j<cols;j++) {
179: #if defined(PETSC_USE_COMPLEX)
180:       if (m!=DS_MAT_T && m!=DS_MAT_D) {
181:         if (allreal) PetscCall(PetscViewerASCIIPrintf(viewer,"%18.16e ",(double)PetscRealPart(*v)));
182:         else PetscCall(PetscViewerASCIIPrintf(viewer,"%18.16e%+18.16ei ",(double)PetscRealPart(*v),(double)PetscImaginaryPart(*v)));
183:       } else PetscCall(PetscViewerASCIIPrintf(viewer,"%18.16e ",(double)*vr));
184: #else
185:       PetscCall(PetscViewerASCIIPrintf(viewer,"%18.16e ",(double)*v));
186: #endif
187:       v += ds->ld;
188: #if defined(PETSC_USE_COMPLEX)
189:       if (m==DS_MAT_T) vr += ds->ld;
190: #endif
191:     }
192:     PetscCall(PetscViewerASCIIPrintf(viewer,"\n"));
193:   }
194:   PetscCall(MatDenseRestoreArrayRead(ds->omat[m],&M));

196:   if (format == PETSC_VIEWER_ASCII_MATLAB) PetscCall(PetscViewerASCIIPrintf(viewer,"];\n"));
197:   PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_TRUE));
198:   PetscCall(PetscViewerFlush(viewer));
199:   PetscFunctionReturn(PETSC_SUCCESS);
200: }

202: PetscErrorCode DSSortEigenvalues_Private(DS ds,PetscScalar *wr,PetscScalar *wi,PetscInt *perm,PetscBool isghiep)
203: {
204:   PetscScalar    re,im,wi0;
205:   PetscInt       n,i,j,result,tmp1,tmp2=0,d=1;

207:   PetscFunctionBegin;
208:   n = ds->t;   /* sort only first t pairs if truncated */
209:   /* insertion sort */
210:   i=ds->l+1;
211: #if !defined(PETSC_USE_COMPLEX)
212:   if (wi && wi[perm[i-1]]!=0.0) i++; /* initial value is complex */
213: #else
214:   if (isghiep && PetscImaginaryPart(wr[perm[i-1]])!=0.0) i++;
215: #endif
216:   for (;i<n;i+=d) {
217:     re = wr[perm[i]];
218:     if (wi) im = wi[perm[i]];
219:     else im = 0.0;
220:     tmp1 = perm[i];
221: #if !defined(PETSC_USE_COMPLEX)
222:     if (im!=0.0) { d = 2; tmp2 = perm[i+1]; }
223:     else d = 1;
224: #else
225:     if (isghiep && PetscImaginaryPart(re)!=0.0) { d = 2; tmp2 = perm[i+1]; }
226:     else d = 1;
227: #endif
228:     j = i-1;
229:     if (wi) wi0 = wi[perm[j]];
230:     else wi0 = 0.0;
231:     PetscCall(SlepcSCCompare(ds->sc,re,im,wr[perm[j]],wi0,&result));
232:     while (result<0 && j>=ds->l) {
233:       perm[j+d] = perm[j];
234:       j--;
235: #if !defined(PETSC_USE_COMPLEX)
236:       if (wi && wi[perm[j+1]]!=0)
237: #else
238:       if (isghiep && PetscImaginaryPart(wr[perm[j+1]])!=0)
239: #endif
240:         { perm[j+d] = perm[j]; j--; }

242:       if (j>=ds->l) {
243:         if (wi) wi0 = wi[perm[j]];
244:         else wi0 = 0.0;
245:         PetscCall(SlepcSCCompare(ds->sc,re,im,wr[perm[j]],wi0,&result));
246:       }
247:     }
248:     perm[j+1] = tmp1;
249:     if (d==2) perm[j+2] = tmp2;
250:   }
251:   PetscFunctionReturn(PETSC_SUCCESS);
252: }

254: PetscErrorCode DSSortEigenvaluesReal_Private(DS ds,PetscReal *eig,PetscInt *perm)
255: {
256:   PetscScalar    re;
257:   PetscInt       i,j,result,tmp,l,n;

259:   PetscFunctionBegin;
260:   n = ds->t;   /* sort only first t pairs if truncated */
261:   l = ds->l;
262:   /* insertion sort */
263:   for (i=l+1;i<n;i++) {
264:     re = eig[perm[i]];
265:     j = i-1;
266:     PetscCall(SlepcSCCompare(ds->sc,re,0.0,eig[perm[j]],0.0,&result));
267:     while (result<0 && j>=l) {
268:       tmp = perm[j]; perm[j] = perm[j+1]; perm[j+1] = tmp; j--;
269:       if (j>=l) PetscCall(SlepcSCCompare(ds->sc,re,0.0,eig[perm[j]],0.0,&result));
270:     }
271:   }
272:   PetscFunctionReturn(PETSC_SUCCESS);
273: }

275: /*
276:   Permute comumns [istart..iend-1] of [mat] according to perm. Columns have length n
277:  */
278: PetscErrorCode DSPermuteColumns_Private(DS ds,PetscInt istart,PetscInt iend,PetscInt n,DSMatType mat,PetscInt *perm)
279: {
280:   PetscInt    i,j,k,p,ld;
281:   PetscScalar *Q,rtmp;

283:   PetscFunctionBegin;
284:   ld = ds->ld;
285:   PetscCall(MatDenseGetArray(ds->omat[mat],&Q));
286:   for (i=istart;i<iend;i++) {
287:     p = perm[i];
288:     if (p != i) {
289:       j = i + 1;
290:       while (perm[j] != i) j++;
291:       perm[j] = p; perm[i] = i;
292:       /* swap columns i and j */
293:       for (k=0;k<n;k++) {
294:         rtmp = Q[k+p*ld]; Q[k+p*ld] = Q[k+i*ld]; Q[k+i*ld] = rtmp;
295:       }
296:     }
297:   }
298:   PetscCall(MatDenseRestoreArray(ds->omat[mat],&Q));
299:   PetscFunctionReturn(PETSC_SUCCESS);
300: }

302: /*
303:   The same as DSPermuteColumns_Private but for two matrices [mat1] and [mat2]
304:  */
305: PetscErrorCode DSPermuteColumnsTwo_Private(DS ds,PetscInt istart,PetscInt iend,PetscInt n,DSMatType mat1,DSMatType mat2,PetscInt *perm)
306: {
307:   PetscInt    i,j,k,p,ld;
308:   PetscScalar *Q,*Z,rtmp,rtmp2;

310:   PetscFunctionBegin;
311:   ld = ds->ld;
312:   PetscCall(MatDenseGetArray(ds->omat[mat1],&Q));
313:   PetscCall(MatDenseGetArray(ds->omat[mat2],&Z));
314:   for (i=istart;i<iend;i++) {
315:     p = perm[i];
316:     if (p != i) {
317:       j = i + 1;
318:       while (perm[j] != i) j++;
319:       perm[j] = p; perm[i] = i;
320:       /* swap columns i and j */
321:       for (k=0;k<n;k++) {
322:         rtmp  = Q[k+p*ld]; Q[k+p*ld] = Q[k+i*ld]; Q[k+i*ld] = rtmp;
323:         rtmp2 = Z[k+p*ld]; Z[k+p*ld] = Z[k+i*ld]; Z[k+i*ld] = rtmp2;
324:       }
325:     }
326:   }
327:   PetscCall(MatDenseRestoreArray(ds->omat[mat1],&Q));
328:   PetscCall(MatDenseRestoreArray(ds->omat[mat2],&Z));
329:   PetscFunctionReturn(PETSC_SUCCESS);
330: }

332: /*
333:   Permute rows [istart..iend-1] of [mat] according to perm. Rows have length m
334:  */
335: PetscErrorCode DSPermuteRows_Private(DS ds,PetscInt istart,PetscInt iend,PetscInt m,DSMatType mat,PetscInt *perm)
336: {
337:   PetscInt    i,j,k,p,ld;
338:   PetscScalar *Q,rtmp;

340:   PetscFunctionBegin;
341:   ld = ds->ld;
342:   PetscCall(MatDenseGetArray(ds->omat[mat],&Q));
343:   for (i=istart;i<iend;i++) {
344:     p = perm[i];
345:     if (p != i) {
346:       j = i + 1;
347:       while (perm[j] != i) j++;
348:       perm[j] = p; perm[i] = i;
349:       /* swap rows i and j */
350:       for (k=0;k<m;k++) {
351:         rtmp = Q[p+k*ld]; Q[p+k*ld] = Q[i+k*ld]; Q[i+k*ld] = rtmp;
352:       }
353:     }
354:   }
355:   PetscCall(MatDenseRestoreArray(ds->omat[mat],&Q));
356:   PetscFunctionReturn(PETSC_SUCCESS);
357: }

359: /*
360:   Permute columns [istart..iend-1] of [mat1] and [mat2] according to perm.
361:   Columns of [mat1] have length n, columns of [mat2] have length m
362:  */
363: PetscErrorCode DSPermuteBoth_Private(DS ds,PetscInt istart,PetscInt iend,PetscInt n,PetscInt m,DSMatType mat1,DSMatType mat2,PetscInt *perm)
364: {
365:   PetscInt    i,j,k,p,ld;
366:   PetscScalar *U,*V,rtmp;

368:   PetscFunctionBegin;
369:   ld = ds->ld;
370:   PetscCall(MatDenseGetArray(ds->omat[mat1],&U));
371:   PetscCall(MatDenseGetArray(ds->omat[mat2],&V));
372:   for (i=istart;i<iend;i++) {
373:     p = perm[i];
374:     if (p != i) {
375:       j = i + 1;
376:       while (perm[j] != i) j++;
377:       perm[j] = p; perm[i] = i;
378:       /* swap columns i and j of U */
379:       for (k=0;k<n;k++) {
380:         rtmp = U[k+p*ld]; U[k+p*ld] = U[k+i*ld]; U[k+i*ld] = rtmp;
381:       }
382:       /* swap columns i and j of V */
383:       for (k=0;k<m;k++) {
384:         rtmp = V[k+p*ld]; V[k+p*ld] = V[k+i*ld]; V[k+i*ld] = rtmp;
385:       }
386:     }
387:   }
388:   PetscCall(MatDenseRestoreArray(ds->omat[mat1],&U));
389:   PetscCall(MatDenseRestoreArray(ds->omat[mat2],&V));
390:   PetscFunctionReturn(PETSC_SUCCESS);
391: }

393: /*@
394:    DSSetIdentity - Copy the identity (a diagonal matrix with ones) on the
395:    active part of a matrix.

397:    Logically Collective

399:    Input Parameters:
400: +  ds  - the direct solver context
401: -  mat - the matrix to modify

403:    Level: intermediate

405: .seealso: DSGetMat()
406: @*/
407: PetscErrorCode DSSetIdentity(DS ds,DSMatType mat)
408: {
409:   PetscScalar    *A;
410:   PetscInt       i,ld,n,l;

412:   PetscFunctionBegin;
415:   DSCheckValidMat(ds,mat,2);

417:   PetscCall(DSGetDimensions(ds,&n,&l,NULL,NULL));
418:   PetscCall(DSGetLeadingDimension(ds,&ld));
419:   PetscCall(PetscLogEventBegin(DS_Other,ds,0,0,0));
420:   PetscCall(MatDenseGetArray(ds->omat[mat],&A));
421:   PetscCall(PetscArrayzero(A+l*ld,ld*(n-l)));
422:   for (i=l;i<n;i++) A[i+i*ld] = 1.0;
423:   PetscCall(MatDenseRestoreArray(ds->omat[mat],&A));
424:   PetscCall(PetscLogEventEnd(DS_Other,ds,0,0,0));
425:   PetscFunctionReturn(PETSC_SUCCESS);
426: }

428: /*@
429:    DSOrthogonalize - Orthogonalize the columns of a matrix.

431:    Logically Collective

433:    Input Parameters:
434: +  ds   - the direct solver context
435: .  mat  - a matrix
436: -  cols - number of columns to orthogonalize (starting from column zero)

438:    Output Parameter:
439: .  lindcols - (optional) number of linearly independent columns of the matrix

441:    Level: developer

443: .seealso: DSPseudoOrthogonalize()
444: @*/
445: PetscErrorCode DSOrthogonalize(DS ds,DSMatType mat,PetscInt cols,PetscInt *lindcols)
446: {
447:   PetscInt       n,l,ld;
448:   PetscBLASInt   ld_,rA,cA,info,ltau,lw;
449:   PetscScalar    *A,*tau,*w,saux,dummy;

451:   PetscFunctionBegin;
453:   DSCheckAlloc(ds,1);
455:   DSCheckValidMat(ds,mat,2);

458:   PetscCall(DSGetDimensions(ds,&n,&l,NULL,NULL));
459:   PetscCall(DSGetLeadingDimension(ds,&ld));
460:   n = n - l;
461:   PetscCheck(cols<=n,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_WRONG,"Invalid number of columns");
462:   if (n == 0 || cols == 0) PetscFunctionReturn(PETSC_SUCCESS);

464:   PetscCall(PetscLogEventBegin(DS_Other,ds,0,0,0));
465:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
466:   PetscCall(MatDenseGetArray(ds->omat[mat],&A));
467:   PetscCall(PetscBLASIntCast(PetscMin(cols,n),&ltau));
468:   PetscCall(PetscBLASIntCast(ld,&ld_));
469:   PetscCall(PetscBLASIntCast(n,&rA));
470:   PetscCall(PetscBLASIntCast(cols,&cA));
471:   lw = -1;
472:   PetscCallBLAS("LAPACKgeqrf",LAPACKgeqrf_(&rA,&cA,A,&ld_,&dummy,&saux,&lw,&info));
473:   SlepcCheckLapackInfo("geqrf",info);
474:   lw = (PetscBLASInt)PetscRealPart(saux);
475:   PetscCall(DSAllocateWork_Private(ds,lw+ltau,0,0));
476:   tau = ds->work;
477:   w = &tau[ltau];
478:   PetscCallBLAS("LAPACKgeqrf",LAPACKgeqrf_(&rA,&cA,&A[ld*l+l],&ld_,tau,w,&lw,&info));
479:   SlepcCheckLapackInfo("geqrf",info);
480:   PetscCallBLAS("LAPACKorgqr",LAPACKorgqr_(&rA,&ltau,&ltau,&A[ld*l+l],&ld_,tau,w,&lw,&info));
481:   SlepcCheckLapackInfo("orgqr",info);
482:   if (lindcols) *lindcols = ltau;
483:   PetscCall(PetscFPTrapPop());
484:   PetscCall(MatDenseRestoreArray(ds->omat[mat],&A));
485:   PetscCall(PetscLogEventEnd(DS_Other,ds,0,0,0));
486:   PetscCall(PetscObjectStateIncrease((PetscObject)ds));
487:   PetscFunctionReturn(PETSC_SUCCESS);
488: }

490: /*
491:   Compute C <- a*A*B + b*C, where
492:     ldC, the leading dimension of C,
493:     ldA, the leading dimension of A,
494:     rA, cA, rows and columns of A,
495:     At, if true use the transpose of A instead,
496:     ldB, the leading dimension of B,
497:     rB, cB, rows and columns of B,
498:     Bt, if true use the transpose of B instead
499: */
500: static PetscErrorCode SlepcMatDenseMult(PetscScalar *C,PetscInt _ldC,PetscScalar b,PetscScalar a,const PetscScalar *A,PetscInt _ldA,PetscInt rA,PetscInt cA,PetscBool At,const PetscScalar *B,PetscInt _ldB,PetscInt rB,PetscInt cB,PetscBool Bt)
501: {
502:   PetscInt       tmp;
503:   PetscBLASInt   m, n, k, ldA, ldB, ldC;
504:   const char     *N = "N", *T = "C", *qA = N, *qB = N;

506:   PetscFunctionBegin;
507:   if ((rA == 0) || (cB == 0)) PetscFunctionReturn(PETSC_SUCCESS);
508:   PetscAssertPointer(C,1);
509:   PetscAssertPointer(A,5);
510:   PetscAssertPointer(B,10);
511:   PetscCall(PetscBLASIntCast(_ldA,&ldA));
512:   PetscCall(PetscBLASIntCast(_ldB,&ldB));
513:   PetscCall(PetscBLASIntCast(_ldC,&ldC));

515:   /* Transpose if needed */
516:   if (At) tmp = rA, rA = cA, cA = tmp, qA = T;
517:   if (Bt) tmp = rB, rB = cB, cB = tmp, qB = T;

519:   /* Check size */
520:   PetscCheck(cA==rB,PETSC_COMM_SELF,PETSC_ERR_PLIB,"Matrix dimensions do not match");

522:   /* Do stub */
523:   if ((rA == 1) && (cA == 1) && (cB == 1)) {
524:     if (!At && !Bt) *C = *A * *B;
525:     else if (At && !Bt) *C = PetscConj(*A) * *B;
526:     else if (!At && Bt) *C = *A * PetscConj(*B);
527:     else *C = PetscConj(*A) * PetscConj(*B);
528:     m = n = k = 1;
529:   } else {
530:     PetscCall(PetscBLASIntCast(rA,&m));
531:     PetscCall(PetscBLASIntCast(cB,&n));
532:     PetscCall(PetscBLASIntCast(cA,&k));
533:     PetscCallBLAS("BLASgemm",BLASgemm_(qA,qB,&m,&n,&k,&a,(PetscScalar*)A,&ldA,(PetscScalar*)B,&ldB,&b,C,&ldC));
534:   }

536:   PetscCall(PetscLogFlops(2.0*m*n*k));
537:   PetscFunctionReturn(PETSC_SUCCESS);
538: }

540: /*@
541:    DSPseudoOrthogonalize - Orthogonalize the columns of a matrix with Modified
542:    Gram-Schmidt in an indefinite inner product space defined by a signature.

544:    Logically Collective

546:    Input Parameters:
547: +  ds   - the direct solver context
548: .  mat  - the matrix
549: .  cols - number of columns to orthogonalize (starting from column zero)
550: -  s    - the signature that defines the inner product

552:    Output Parameters:
553: +  lindcols - (optional) linearly independent columns of the matrix
554: -  ns   - (optional) the new signature of the vectors

556:    Note:
557:    After the call the matrix satisfies A'*s*A = ns.

559:    Level: developer

561: .seealso: DSOrthogonalize()
562: @*/
563: PetscErrorCode DSPseudoOrthogonalize(DS ds,DSMatType mat,PetscInt cols,PetscReal s[],PetscInt *lindcols,PetscReal ns[])
564: {
565:   PetscInt       i,j,k,l,n,ld;
566:   PetscBLASInt   info,one=1,zero=0,rA_,ld_;
567:   PetscScalar    *A,*A_,*m,*h,nr0;
568:   PetscReal      nr_o,nr,nr_abs,*ns_,done=1.0;

570:   PetscFunctionBegin;
572:   DSCheckAlloc(ds,1);
574:   DSCheckValidMat(ds,mat,2);
576:   PetscAssertPointer(s,4);
577:   PetscCall(DSGetDimensions(ds,&n,&l,NULL,NULL));
578:   PetscCall(DSGetLeadingDimension(ds,&ld));
579:   n = n - l;
580:   PetscCheck(cols<=n,PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_WRONG,"Invalid number of columns");
581:   if (n == 0 || cols == 0) PetscFunctionReturn(PETSC_SUCCESS);
582:   PetscCall(PetscLogEventBegin(DS_Other,ds,0,0,0));
583:   PetscCall(PetscBLASIntCast(n,&rA_));
584:   PetscCall(PetscBLASIntCast(ld,&ld_));
585:   PetscCall(MatDenseGetArray(ds->omat[mat],&A_));
586:   A = &A_[ld*l+l];
587:   PetscCall(DSAllocateWork_Private(ds,n+cols,ns?0:cols,0));
588:   m = ds->work;
589:   h = &m[n];
590:   ns_ = ns ? ns : ds->rwork;
591:   for (i=0; i<cols; i++) {
592:     /* m <- diag(s)*A[i] */
593:     for (k=0; k<n; k++) m[k] = s[k]*A[k+i*ld];
594:     /* nr_o <- mynorm(A[i]'*m), mynorm(x) = sign(x)*sqrt(|x|) */
595:     PetscCall(SlepcMatDenseMult(&nr0,1,0.0,1.0,&A[ld*i],ld,n,1,PETSC_TRUE,m,n,n,1,PETSC_FALSE));
596:     nr = nr_o = PetscSign(PetscRealPart(nr0))*PetscSqrtReal(PetscAbsScalar(nr0));
597:     for (j=0; j<3 && i>0; j++) {
598:       /* h <- A[0:i-1]'*m */
599:       PetscCall(SlepcMatDenseMult(h,i,0.0,1.0,A,ld,n,i,PETSC_TRUE,m,n,n,1,PETSC_FALSE));
600:       /* h <- diag(ns)*h */
601:       for (k=0; k<i; k++) h[k] *= ns_[k];
602:       /* A[i] <- A[i] - A[0:i-1]*h */
603:       PetscCall(SlepcMatDenseMult(&A[ld*i],ld,1.0,-1.0,A,ld,n,i,PETSC_FALSE,h,i,i,1,PETSC_FALSE));
604:       /* m <- diag(s)*A[i] */
605:       for (k=0; k<n; k++) m[k] = s[k]*A[k+i*ld];
606:       /* nr_o <- mynorm(A[i]'*m) */
607:       PetscCall(SlepcMatDenseMult(&nr0,1,0.0,1.0,&A[ld*i],ld,n,1,PETSC_TRUE,m,n,n,1,PETSC_FALSE));
608:       nr = PetscSign(PetscRealPart(nr0))*PetscSqrtReal(PetscAbsScalar(nr0));
609:       PetscCheck(PetscAbs(nr)>PETSC_MACHINE_EPSILON,PETSC_COMM_SELF,PETSC_ERR_CONV_FAILED,"Linear dependency detected");
610:       if (PetscAbs(nr) > 0.7*PetscAbs(nr_o)) break;
611:       nr_o = nr;
612:     }
613:     ns_[i] = PetscSign(nr);
614:     /* A[i] <- A[i]/|nr| */
615:     nr_abs = PetscAbs(nr);
616:     PetscCallBLAS("LAPACKlascl",LAPACKlascl_("G",&zero,&zero,&nr_abs,&done,&rA_,&one,A+i*ld,&ld_,&info));
617:     SlepcCheckLapackInfo("lascl",info);
618:   }
619:   PetscCall(MatDenseRestoreArray(ds->omat[mat],&A_));
620:   PetscCall(PetscLogEventEnd(DS_Other,ds,0,0,0));
621:   PetscCall(PetscObjectStateIncrease((PetscObject)ds));
622:   if (lindcols) *lindcols = cols;
623:   PetscFunctionReturn(PETSC_SUCCESS);
624: }