Actual source code: dsghiep.c

slepc-main 2025-03-25
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: #include <slepc/private/dsimpl.h>
 12: #include <slepcblaslapack.h>

 14: static PetscErrorCode DSAllocate_GHIEP(DS ds,PetscInt ld)
 15: {
 16:   PetscFunctionBegin;
 17:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_A));
 18:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_B));
 19:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_Q));
 20:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_T));
 21:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_D));
 22:   PetscCall(PetscFree(ds->perm));
 23:   PetscCall(PetscMalloc1(ld,&ds->perm));
 24:   PetscFunctionReturn(PETSC_SUCCESS);
 25: }

 27: PetscErrorCode DSSwitchFormat_GHIEP(DS ds,PetscBool tocompact)
 28: {
 29:   PetscReal      *T,*S;
 30:   PetscScalar    *A,*B;
 31:   PetscInt       i,n,ld;

 33:   PetscFunctionBegin;
 34:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
 35:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_B],&B));
 36:   PetscCall(DSGetArrayReal(ds,DS_MAT_T,&T));
 37:   PetscCall(DSGetArrayReal(ds,DS_MAT_D,&S));
 38:   n = ds->n;
 39:   ld = ds->ld;
 40:   if (tocompact) { /* switch from dense (arrow) to compact storage */
 41:     PetscCall(PetscArrayzero(T,n));
 42:     PetscCall(PetscArrayzero(T+ld,n));
 43:     PetscCall(PetscArrayzero(T+2*ld,n));
 44:     PetscCall(PetscArrayzero(S,n));
 45:     for (i=0;i<n-1;i++) {
 46:       T[i]    = PetscRealPart(A[i+i*ld]);
 47:       T[ld+i] = PetscRealPart(A[i+1+i*ld]);
 48:       S[i]    = PetscRealPart(B[i+i*ld]);
 49:     }
 50:     T[n-1] = PetscRealPart(A[n-1+(n-1)*ld]);
 51:     S[n-1] = PetscRealPart(B[n-1+(n-1)*ld]);
 52:     for (i=ds->l;i<ds->k;i++) T[2*ld+i] = PetscRealPart(A[ds->k+i*ld]);
 53:   } else { /* switch from compact (arrow) to dense storage */
 54:     for (i=0;i<n;i++) {
 55:       PetscCall(PetscArrayzero(A+i*ld,n));
 56:       PetscCall(PetscArrayzero(B+i*ld,n));
 57:     }
 58:     for (i=0;i<n-1;i++) {
 59:       A[i+i*ld]     = T[i];
 60:       A[i+1+i*ld]   = T[ld+i];
 61:       A[i+(i+1)*ld] = T[ld+i];
 62:       B[i+i*ld]     = S[i];
 63:     }
 64:     A[n-1+(n-1)*ld] = T[n-1];
 65:     B[n-1+(n-1)*ld] = S[n-1];
 66:     for (i=ds->l;i<ds->k;i++) {
 67:       A[ds->k+i*ld] = T[2*ld+i];
 68:       A[i+ds->k*ld] = T[2*ld+i];
 69:     }
 70:   }
 71:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
 72:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_B],&B));
 73:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&T));
 74:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_D,&S));
 75:   PetscFunctionReturn(PETSC_SUCCESS);
 76: }

 78: static PetscErrorCode DSView_GHIEP(DS ds,PetscViewer viewer)
 79: {
 80:   PetscViewerFormat format;
 81:   PetscInt          i,j;
 82:   PetscReal         *T,*S,value;
 83:   const char        *methodname[] = {
 84:                      "QR + Inverse Iteration",
 85:                      "HZ method",
 86:                      "QR"
 87:   };
 88:   const int         nmeth=PETSC_STATIC_ARRAY_LENGTH(methodname);

 90:   PetscFunctionBegin;
 91:   PetscCall(PetscViewerGetFormat(viewer,&format));
 92:   if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
 93:     if (ds->method<nmeth) PetscCall(PetscViewerASCIIPrintf(viewer,"solving the problem with: %s\n",methodname[ds->method]));
 94:     PetscFunctionReturn(PETSC_SUCCESS);
 95:   }
 96:   if (ds->compact) {
 97:     PetscCall(DSGetArrayReal(ds,DS_MAT_T,&T));
 98:     PetscCall(DSGetArrayReal(ds,DS_MAT_D,&S));
 99:     PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_FALSE));
100:     if (format == PETSC_VIEWER_ASCII_MATLAB) {
101:       PetscCall(PetscViewerASCIIPrintf(viewer,"%% Size = %" PetscInt_FMT " %" PetscInt_FMT "\n",ds->n,ds->n));
102:       PetscCall(PetscViewerASCIIPrintf(viewer,"zzz = zeros(%" PetscInt_FMT ",3);\n",3*ds->n));
103:       PetscCall(PetscViewerASCIIPrintf(viewer,"zzz = [\n"));
104:       for (i=0;i<ds->n;i++) PetscCall(PetscViewerASCIIPrintf(viewer,"%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n",i+1,i+1,(double)T[i]));
105:       for (i=0;i<ds->n-1;i++) {
106:         if (T[i+ds->ld] !=0 && i!=ds->k-1) {
107:           PetscCall(PetscViewerASCIIPrintf(viewer,"%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n",i+2,i+1,(double)T[i+ds->ld]));
108:           PetscCall(PetscViewerASCIIPrintf(viewer,"%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n",i+1,i+2,(double)T[i+ds->ld]));
109:         }
110:       }
111:       for (i = ds->l;i<ds->k;i++) {
112:         if (T[i+2*ds->ld]) {
113:           PetscCall(PetscViewerASCIIPrintf(viewer,"%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n",ds->k+1,i+1,(double)T[i+2*ds->ld]));
114:           PetscCall(PetscViewerASCIIPrintf(viewer,"%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n",i+1,ds->k+1,(double)T[i+2*ds->ld]));
115:         }
116:       }
117:       PetscCall(PetscViewerASCIIPrintf(viewer,"];\n%s = spconvert(zzz);\n",DSMatName[DS_MAT_A]));

119:       PetscCall(PetscViewerASCIIPrintf(viewer,"%% Size = %" PetscInt_FMT " %" PetscInt_FMT "\n",ds->n,ds->n));
120:       PetscCall(PetscViewerASCIIPrintf(viewer,"omega = zeros(%" PetscInt_FMT ",3);\n",3*ds->n));
121:       PetscCall(PetscViewerASCIIPrintf(viewer,"omega = [\n"));
122:       for (i=0;i<ds->n;i++) PetscCall(PetscViewerASCIIPrintf(viewer,"%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n",i+1,i+1,(double)S[i]));
123:       PetscCall(PetscViewerASCIIPrintf(viewer,"];\n%s = spconvert(omega);\n",DSMatName[DS_MAT_B]));

125:     } else {
126:       PetscCall(PetscViewerASCIIPrintf(viewer,"T\n"));
127:       for (i=0;i<ds->n;i++) {
128:         for (j=0;j<ds->n;j++) {
129:           if (i==j) value = T[i];
130:           else if (i==j+1 || j==i+1) value = T[PetscMin(i,j)+ds->ld];
131:           else if ((i<ds->k && j==ds->k) || (i==ds->k && j<ds->k)) value = T[PetscMin(i,j)+2*ds->ld];
132:           else value = 0.0;
133:           PetscCall(PetscViewerASCIIPrintf(viewer," %18.16e ",(double)value));
134:         }
135:         PetscCall(PetscViewerASCIIPrintf(viewer,"\n"));
136:       }
137:       PetscCall(PetscViewerASCIIPrintf(viewer,"omega\n"));
138:       for (i=0;i<ds->n;i++) {
139:         for (j=0;j<ds->n;j++) {
140:           if (i==j) value = S[i];
141:           else value = 0.0;
142:           PetscCall(PetscViewerASCIIPrintf(viewer," %18.16e ",(double)value));
143:         }
144:         PetscCall(PetscViewerASCIIPrintf(viewer,"\n"));
145:       }
146:     }
147:     PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_TRUE));
148:     PetscCall(PetscViewerFlush(viewer));
149:     PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&T));
150:     PetscCall(DSRestoreArrayReal(ds,DS_MAT_D,&S));
151:   } else {
152:     PetscCall(DSViewMat(ds,viewer,DS_MAT_A));
153:     PetscCall(DSViewMat(ds,viewer,DS_MAT_B));
154:   }
155:   if (ds->state>DS_STATE_INTERMEDIATE) PetscCall(DSViewMat(ds,viewer,DS_MAT_Q));
156:   PetscFunctionReturn(PETSC_SUCCESS);
157: }

159: static PetscErrorCode DSVectors_GHIEP_Eigen_Some(DS ds,PetscInt *idx,PetscReal *rnorm)
160: {
161:   PetscReal         b[4],M[4],*T,*S,d1,d2,s1,s2,e,scal1,scal2,wr1,wr2,wi,ep,norm;
162:   PetscScalar       *X,Y[4],alpha,szero=0.0;
163:   const PetscScalar *A,*B,*Q;
164:   PetscInt          k;
165:   PetscBLASInt      two=2,n_,ld,one=1;
166: #if !defined(PETSC_USE_COMPLEX)
167:   PetscBLASInt      four=4;
168: #endif

170:   PetscFunctionBegin;
171:   PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_A],&A));
172:   PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_B],&B));
173:   PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_Q],&Q));
174:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_X],&X));
175:   PetscCall(DSGetArrayReal(ds,DS_MAT_T,&T));
176:   PetscCall(DSGetArrayReal(ds,DS_MAT_D,&S));
177:   k = *idx;
178:   PetscCall(PetscBLASIntCast(ds->n,&n_));
179:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
180:   if (k < ds->n-1) e = (ds->compact)?T[k+ld]:PetscRealPart(A[(k+1)+ld*k]);
181:   else e = 0.0;
182:   if (e == 0.0) { /* Real */
183:     if (ds->state>=DS_STATE_CONDENSED) PetscCall(PetscArraycpy(X+k*ld,Q+k*ld,ld));
184:     else {
185:       PetscCall(PetscArrayzero(X+k*ds->ld,ds->ld));
186:       X[k+k*ds->ld] = 1.0;
187:     }
188:     if (rnorm) *rnorm = PetscAbsScalar(X[ds->n-1+k*ld]);
189:   } else { /* 2x2 block */
190:     if (ds->compact) {
191:       s1 = S[k];
192:       d1 = T[k];
193:       s2 = S[k+1];
194:       d2 = T[k+1];
195:     } else {
196:       s1 = PetscRealPart(B[k*ld+k]);
197:       d1 = PetscRealPart(A[k+k*ld]);
198:       s2 = PetscRealPart(B[(k+1)*ld+k+1]);
199:       d2 = PetscRealPart(A[k+1+(k+1)*ld]);
200:     }
201:     M[0] = d1; M[1] = e; M[2] = e; M[3]= d2;
202:     b[0] = s1; b[1] = 0.0; b[2] = 0.0; b[3] = s2;
203:     ep = LAPACKlamch_("S");
204:     /* Compute eigenvalues of the block */
205:     PetscCallBLAS("LAPACKlag2",LAPACKlag2_(M,&two,b,&two,&ep,&scal1,&scal2,&wr1,&wr2,&wi));
206:     PetscCheck(wi!=0.0,PETSC_COMM_SELF,PETSC_ERR_PLIB,"Real block in DSVectors_GHIEP");
207:     /* Complex eigenvalues */
208:     PetscCheck(scal1>=ep,PETSC_COMM_SELF,PETSC_ERR_FP,"Nearly infinite eigenvalue");
209:     wr1 /= scal1;
210:     wi  /= scal1;
211: #if !defined(PETSC_USE_COMPLEX)
212:     if (SlepcAbs(s1*d1-wr1,wi)<SlepcAbs(s2*d2-wr1,wi)) {
213:       Y[0] = wr1-s2*d2; Y[1] = s2*e; Y[2] = wi; Y[3] = 0.0;
214:     } else {
215:       Y[0] = s1*e; Y[1] = wr1-s1*d1; Y[2] = 0.0; Y[3] = wi;
216:     }
217:     norm = BLASnrm2_(&four,Y,&one);
218:     norm = 1.0/norm;
219:     if (ds->state >= DS_STATE_CONDENSED) {
220:       alpha = norm;
221:       PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&two,&two,&alpha,Q+k*ld,&ld,Y,&two,&szero,X+k*ld,&ld));
222:       if (rnorm) *rnorm = SlepcAbsEigenvalue(X[ds->n-1+k*ld],X[ds->n-1+(k+1)*ld]);
223:     } else {
224:       PetscCall(PetscArrayzero(X+k*ld,2*ld));
225:       X[k*ld+k]       = Y[0]*norm;
226:       X[k*ld+k+1]     = Y[1]*norm;
227:       X[(k+1)*ld+k]   = Y[2]*norm;
228:       X[(k+1)*ld+k+1] = Y[3]*norm;
229:     }
230: #else
231:     if (SlepcAbs(s1*d1-wr1,wi)<SlepcAbs(s2*d2-wr1,wi)) {
232:       Y[0] = PetscCMPLX(wr1-s2*d2,wi);
233:       Y[1] = s2*e;
234:     } else {
235:       Y[0] = s1*e;
236:       Y[1] = PetscCMPLX(wr1-s1*d1,wi);
237:     }
238:     norm = BLASnrm2_(&two,Y,&one);
239:     norm = 1.0/norm;
240:     if (ds->state >= DS_STATE_CONDENSED) {
241:       alpha = norm;
242:       PetscCallBLAS("BLASgemv",BLASgemv_("N",&n_,&two,&alpha,Q+k*ld,&ld,Y,&one,&szero,X+k*ld,&one));
243:       if (rnorm) *rnorm = PetscAbsScalar(X[ds->n-1+k*ld]);
244:     } else {
245:       PetscCall(PetscArrayzero(X+k*ld,2*ld));
246:       X[k*ld+k]   = Y[0]*norm;
247:       X[k*ld+k+1] = Y[1]*norm;
248:     }
249:     X[(k+1)*ld+k]   = PetscConj(X[k*ld+k]);
250:     X[(k+1)*ld+k+1] = PetscConj(X[k*ld+k+1]);
251: #endif
252:     (*idx)++;
253:   }
254:   PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_A],&A));
255:   PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_B],&B));
256:   PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_Q],&Q));
257:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_X],&X));
258:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&T));
259:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_D,&S));
260:   PetscFunctionReturn(PETSC_SUCCESS);
261: }

263: static PetscErrorCode DSVectors_GHIEP(DS ds,DSMatType mat,PetscInt *k,PetscReal *rnorm)
264: {
265:   PetscScalar       *Z;
266:   const PetscScalar *A,*Q;
267:   PetscInt          i;
268:   PetscReal         e,*T,*S;

270:   PetscFunctionBegin;
271:   switch (mat) {
272:     case DS_MAT_X:
273:     case DS_MAT_Y:
274:       if (k) PetscCall(DSVectors_GHIEP_Eigen_Some(ds,k,rnorm));
275:       else {
276:         PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_A],&A));
277:         PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_Q],&Q));
278:         PetscCall(MatDenseGetArray(ds->omat[mat],&Z));
279:         PetscCall(DSGetArrayReal(ds,DS_MAT_T,&T));
280:         for (i=0; i<ds->n; i++) {
281:           e = (ds->compact)?T[i+ds->ld]:PetscRealPart(A[(i+1)+ds->ld*i]);
282:           if (e == 0.0) { /* real */
283:             if (ds->state >= DS_STATE_CONDENSED) PetscCall(PetscArraycpy(Z+i*ds->ld,Q+i*ds->ld,ds->ld));
284:             else {
285:               PetscCall(PetscArrayzero(Z+i*ds->ld,ds->ld));
286:               Z[i+i*ds->ld] = 1.0;
287:             }
288:           } else {
289:             PetscCall(DSVectors_GHIEP_Eigen_Some(ds,&i,rnorm));
290:             PetscCall(DSGetArrayReal(ds,DS_MAT_D,&S));
291:             S[i]=S[i-1]=1.0;
292:             PetscCall(DSRestoreArrayReal(ds,DS_MAT_D,&S));
293:           }
294:         }
295:         PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_A],&A));
296:         PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_Q],&Q));
297:         PetscCall(MatDenseRestoreArray(ds->omat[mat],&Z));
298:         PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&T));
299:       }
300:       break;
301:     case DS_MAT_U:
302:     case DS_MAT_V:
303:       SETERRQ(PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"Not implemented yet");
304:     default:
305:       SETERRQ(PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"Invalid mat parameter");
306:   }
307:   PetscFunctionReturn(PETSC_SUCCESS);
308: }

310: /*
311:   Extract the eigenvalues contained in the block-diagonal of the indefinite problem.
312:   Only the index range n0..n1 is processed.
313: */
314: PetscErrorCode DSGHIEPComplexEigs(DS ds,PetscInt n0,PetscInt n1,PetscScalar *wr,PetscScalar *wi)
315: {
316:   PetscInt          k,ld;
317:   PetscBLASInt      two=2;
318:   const PetscScalar *A,*B;
319:   PetscReal         *D,*T,b[4],M[4],d1,d2,s1,s2,e,scal1,scal2,ep,wr1,wr2,wi1;

321:   PetscFunctionBegin;
322:   ld = ds->ld;
323:   PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_A],&A));
324:   PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_B],&B));
325:   PetscCall(DSGetArrayReal(ds,DS_MAT_T,&T));
326:   PetscCall(DSGetArrayReal(ds,DS_MAT_D,&D));
327:   for (k=n0;k<n1;k++) {
328:     if (k < n1-1) e = (ds->compact)?T[ld+k]:PetscRealPart(A[(k+1)+ld*k]);
329:     else e = 0.0;
330:     if (e==0.0) { /* real eigenvalue */
331:       wr[k] = (ds->compact)?T[k]/D[k]:A[k+k*ld]/B[k+k*ld];
332: #if !defined(PETSC_USE_COMPLEX)
333:       wi[k] = 0.0 ;
334: #endif
335:     } else { /* diagonal block */
336:       if (ds->compact) {
337:         s1 = D[k];
338:         d1 = T[k];
339:         s2 = D[k+1];
340:         d2 = T[k+1];
341:       } else {
342:         s1 = PetscRealPart(B[k*ld+k]);
343:         d1 = PetscRealPart(A[k+k*ld]);
344:         s2 = PetscRealPart(B[(k+1)*ld+k+1]);
345:         d2 = PetscRealPart(A[k+1+(k+1)*ld]);
346:       }
347:       M[0] = d1; M[1] = e; M[2] = e; M[3]= d2;
348:       b[0] = s1; b[1] = 0.0; b[2] = 0.0; b[3] = s2;
349:       ep = LAPACKlamch_("S");
350:       /* Compute eigenvalues of the block */
351:       PetscCallBLAS("LAPACKlag2",LAPACKlag2_(M,&two,b,&two,&ep,&scal1,&scal2,&wr1,&wr2,&wi1));
352:       PetscCheck(scal1>=ep,PETSC_COMM_SELF,PETSC_ERR_FP,"Nearly infinite eigenvalue");
353:       if (wi1==0.0) { /* Real eigenvalues */
354:         PetscCheck(scal2>=ep,PETSC_COMM_SELF,PETSC_ERR_FP,"Nearly infinite eigenvalue");
355:         wr[k] = wr1/scal1; wr[k+1] = wr2/scal2;
356: #if !defined(PETSC_USE_COMPLEX)
357:         wi[k] = wi[k+1] = 0.0;
358: #endif
359:       } else { /* Complex eigenvalues */
360: #if !defined(PETSC_USE_COMPLEX)
361:         wr[k]   = wr1/scal1;
362:         wr[k+1] = wr[k];
363:         wi[k]   = wi1/scal1;
364:         wi[k+1] = -wi[k];
365: #else
366:         wr[k]   = PetscCMPLX(wr1,wi1)/scal1;
367:         wr[k+1] = PetscConj(wr[k]);
368: #endif
369:       }
370:       k++;
371:     }
372:   }
373: #if defined(PETSC_USE_COMPLEX)
374:   if (wi) {
375:     for (k=n0;k<n1;k++) wi[k] = 0.0;
376:   }
377: #endif
378:   PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_A],&A));
379:   PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_B],&B));
380:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&T));
381:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_D,&D));
382:   PetscFunctionReturn(PETSC_SUCCESS);
383: }

385: static PetscErrorCode DSSort_GHIEP(DS ds,PetscScalar *wr,PetscScalar *wi,PetscScalar *rr,PetscScalar *ri,PetscInt *k)
386: {
387:   PetscInt       n,i,*perm;
388:   PetscReal      *d,*e,*s;

390:   PetscFunctionBegin;
391: #if !defined(PETSC_USE_COMPLEX)
392:   PetscAssertPointer(wi,3);
393: #endif
394:   n = ds->n;
395:   PetscCall(DSGetArrayReal(ds,DS_MAT_T,&d));
396:   e = d + ds->ld;
397:   PetscCall(DSGetArrayReal(ds,DS_MAT_D,&s));
398:   PetscCall(DSAllocateWork_Private(ds,ds->ld,ds->ld,0));
399:   perm = ds->perm;
400:   if (!rr) {
401:     rr = wr;
402:     ri = wi;
403:   }
404:   PetscCall(DSSortEigenvalues_Private(ds,rr,ri,perm,PETSC_TRUE));
405:   if (!ds->compact) PetscCall(DSSwitchFormat_GHIEP(ds,PETSC_TRUE));
406:   PetscCall(PetscArraycpy(ds->work,wr,n));
407:   for (i=ds->l;i<n;i++) wr[i] = *(ds->work+perm[i]);
408: #if !defined(PETSC_USE_COMPLEX)
409:   PetscCall(PetscArraycpy(ds->work,wi,n));
410:   for (i=ds->l;i<n;i++) wi[i] = *(ds->work+perm[i]);
411: #endif
412:   PetscCall(PetscArraycpy(ds->rwork,s,n));
413:   for (i=ds->l;i<n;i++) s[i] = *(ds->rwork+perm[i]);
414:   PetscCall(PetscArraycpy(ds->rwork,d,n));
415:   for (i=ds->l;i<n;i++) d[i] = *(ds->rwork+perm[i]);
416:   PetscCall(PetscArraycpy(ds->rwork,e,n-1));
417:   PetscCall(PetscArrayzero(e+ds->l,n-1-ds->l));
418:   for (i=ds->l;i<n-1;i++) {
419:     if (perm[i]<n-1) e[i] = *(ds->rwork+perm[i]);
420:   }
421:   if (!ds->compact) PetscCall(DSSwitchFormat_GHIEP(ds,PETSC_FALSE));
422:   PetscCall(DSPermuteColumns_Private(ds,ds->l,n,n,DS_MAT_Q,perm));
423:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&d));
424:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_D,&s));
425:   PetscFunctionReturn(PETSC_SUCCESS);
426: }

428: static PetscErrorCode DSUpdateExtraRow_GHIEP(DS ds)
429: {
430:   PetscInt          i;
431:   PetscBLASInt      n,ld,incx=1;
432:   PetscScalar       *A,*x,*y,one=1.0,zero=0.0;
433:   const PetscScalar *Q;
434:   PetscReal         *T,*b,*r,beta;

436:   PetscFunctionBegin;
437:   PetscCall(PetscBLASIntCast(ds->n,&n));
438:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
439:   PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_Q],&Q));
440:   if (ds->compact) {
441:     PetscCall(DSGetArrayReal(ds,DS_MAT_T,&T));
442:     b = T+ld;
443:     r = T+2*ld;
444:     beta = b[n-1];   /* in compact, we assume all entries are zero except the last one */
445:     for (i=0;i<n;i++) r[i] = PetscRealPart(beta*Q[n-1+i*ld]);
446:     ds->k = n;
447:     PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&T));
448:   } else {
449:     PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
450:     PetscCall(DSAllocateWork_Private(ds,2*ld,0,0));
451:     x = ds->work;
452:     y = ds->work+ld;
453:     for (i=0;i<n;i++) x[i] = PetscConj(A[n+i*ld]);
454:     PetscCallBLAS("BLASgemv",BLASgemv_("C",&n,&n,&one,Q,&ld,x,&incx,&zero,y,&incx));
455:     for (i=0;i<n;i++) A[n+i*ld] = PetscConj(y[i]);
456:     ds->k = n;
457:     PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
458:   }
459:   PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_Q],&Q));
460:   PetscFunctionReturn(PETSC_SUCCESS);
461: }

463: /*
464:   Get eigenvectors with inverse iteration.
465:   The system matrix is in Hessenberg form.
466: */
467: PetscErrorCode DSGHIEPInverseIteration(DS ds,PetscScalar *wr,PetscScalar *wi)
468: {
469:   PetscInt          i,off;
470:   PetscBLASInt      *select,*infoC,ld,n1,mout,info;
471:   const PetscScalar *A,*B;
472:   PetscScalar       *H,*X;
473:   PetscReal         *s,*d,*e;
474: #if defined(PETSC_USE_COMPLEX)
475:   PetscInt          j;
476: #endif

478:   PetscFunctionBegin;
479:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
480:   PetscCall(PetscBLASIntCast(ds->n-ds->l,&n1));
481:   PetscCall(DSAllocateWork_Private(ds,ld*ld+2*ld,ld,2*ld));
482:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_W));
483:   PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_A],&A));
484:   PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_B],&B));
485:   PetscCall(MatDenseGetArrayWrite(ds->omat[DS_MAT_W],&H));
486:   PetscCall(DSGetArrayReal(ds,DS_MAT_T,&d));
487:   PetscCall(DSGetArrayReal(ds,DS_MAT_D,&s));
488:   e = d + ld;
489:   select = ds->iwork;
490:   infoC = ds->iwork + ld;
491:   off = ds->l+ds->l*ld;
492:   if (ds->compact) {
493:     H[off] = d[ds->l]*s[ds->l];
494:     H[off+ld] = e[ds->l]*s[ds->l];
495:     for (i=ds->l+1;i<ds->n-1;i++) {
496:       H[i+(i-1)*ld] = e[i-1]*s[i];
497:       H[i+i*ld] = d[i]*s[i];
498:       H[i+(i+1)*ld] = e[i]*s[i];
499:     }
500:     H[ds->n-1+(ds->n-2)*ld] = e[ds->n-2]*s[ds->n-1];
501:     H[ds->n-1+(ds->n-1)*ld] = d[ds->n-1]*s[ds->n-1];
502:   } else {
503:     s[ds->l]  = PetscRealPart(B[off]);
504:     H[off]    = A[off]*s[ds->l];
505:     H[off+ld] = A[off+ld]*s[ds->l];
506:     for (i=ds->l+1;i<ds->n-1;i++) {
507:       s[i] = PetscRealPart(B[i+i*ld]);
508:       H[i+(i-1)*ld] = A[i+(i-1)*ld]*s[i];
509:       H[i+i*ld]     = A[i+i*ld]*s[i];
510:       H[i+(i+1)*ld] = A[i+(i+1)*ld]*s[i];
511:     }
512:     s[ds->n-1] = PetscRealPart(B[ds->n-1+(ds->n-1)*ld]);
513:     H[ds->n-1+(ds->n-2)*ld] = A[ds->n-1+(ds->n-2)*ld]*s[ds->n-1];
514:     H[ds->n-1+(ds->n-1)*ld] = A[ds->n-1+(ds->n-1)*ld]*s[ds->n-1];
515:   }
516:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_X));
517:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_X],&X));
518:   for (i=0;i<n1;i++) select[i] = 1;
519: #if !defined(PETSC_USE_COMPLEX)
520:   PetscCallBLAS("LAPACKhsein",LAPACKhsein_("R","N","N",select,&n1,H+off,&ld,wr+ds->l,wi+ds->l,NULL,&ld,X+off,&ld,&n1,&mout,ds->work,NULL,infoC,&info));
521: #else
522:   PetscCallBLAS("LAPACKhsein",LAPACKhsein_("R","N","N",select,&n1,H+off,&ld,wr+ds->l,NULL,&ld,X+off,&ld,&n1,&mout,ds->work,ds->rwork,NULL,infoC,&info));

524:   /* Separate real and imaginary part of complex eigenvectors */
525:   for (j=ds->l;j<ds->n;j++) {
526:     if (PetscAbsReal(PetscImaginaryPart(wr[j])) > PetscAbsScalar(wr[j])*PETSC_SQRT_MACHINE_EPSILON) {
527:       for (i=ds->l;i<ds->n;i++) {
528:         X[i+(j+1)*ds->ld] = PetscImaginaryPart(X[i+j*ds->ld]);
529:         X[i+j*ds->ld] = PetscRealPart(X[i+j*ds->ld]);
530:       }
531:       j++;
532:     }
533:   }
534: #endif
535:   SlepcCheckLapackInfo("hsein",info);
536:   PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_A],&A));
537:   PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_B],&B));
538:   PetscCall(MatDenseRestoreArrayWrite(ds->omat[DS_MAT_W],&H));
539:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_X],&X));
540:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&d));
541:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_D,&s));
542:   PetscCall(DSGHIEPOrthogEigenv(ds,DS_MAT_X,wr,wi,PETSC_TRUE));
543:   PetscFunctionReturn(PETSC_SUCCESS);
544: }

546: /*
547:    Undo 2x2 blocks that have real eigenvalues.
548: */
549: PetscErrorCode DSGHIEPRealBlocks(DS ds)
550: {
551:   PetscInt       i;
552:   PetscReal      e,d1,d2,s1,s2,ss1,ss2,t,dd,ss;
553:   PetscReal      maxy,ep,scal1,scal2,snorm;
554:   PetscReal      *T,*D,b[4],M[4],wr1,wr2,wi;
555:   PetscScalar    *A,*B,*Q,Y[4],sone=1.0,szero=0.0;
556:   PetscBLASInt   m,two=2,ld;
557:   PetscBool      isreal;

559:   PetscFunctionBegin;
560:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
561:   PetscCall(PetscBLASIntCast(ds->n-ds->l,&m));
562:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
563:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_B],&B));
564:   PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Q],&Q));
565:   PetscCall(DSGetArrayReal(ds,DS_MAT_T,&T));
566:   PetscCall(DSGetArrayReal(ds,DS_MAT_D,&D));
567:   PetscCall(DSAllocateWork_Private(ds,2*m,0,0));
568:   for (i=ds->l;i<ds->n-1;i++) {
569:     e = (ds->compact)?T[ld+i]:PetscRealPart(A[(i+1)+ld*i]);
570:     if (e != 0.0) { /* 2x2 block */
571:       if (ds->compact) {
572:         s1 = D[i];
573:         d1 = T[i];
574:         s2 = D[i+1];
575:         d2 = T[i+1];
576:       } else {
577:         s1 = PetscRealPart(B[i*ld+i]);
578:         d1 = PetscRealPart(A[i*ld+i]);
579:         s2 = PetscRealPart(B[(i+1)*ld+i+1]);
580:         d2 = PetscRealPart(A[(i+1)*ld+i+1]);
581:       }
582:       isreal = PETSC_FALSE;
583:       if (s1==s2) { /* apply a Jacobi rotation to compute the eigendecomposition */
584:         dd = d1-d2;
585:         if (2*PetscAbsReal(e) <= dd) {
586:           t = 2*e/dd;
587:           t = t/(1 + PetscSqrtReal(1+t*t));
588:         } else {
589:           t = dd/(2*e);
590:           ss = (t>=0)?1.0:-1.0;
591:           t = ss/(PetscAbsReal(t)+PetscSqrtReal(1+t*t));
592:         }
593:         Y[0] = 1/PetscSqrtReal(1 + t*t); Y[3] = Y[0]; /* c */
594:         Y[1] = Y[0]*t; Y[2] = -Y[1]; /* s */
595:         wr1 = d1+t*e; wr2 = d2-t*e;
596:         ss1 = s1; ss2 = s2;
597:         isreal = PETSC_TRUE;
598:       } else {
599:         ss1 = 1.0; ss2 = 1.0,
600:         M[0] = d1; M[1] = e; M[2] = e; M[3]= d2;
601:         b[0] = s1; b[1] = 0.0; b[2] = 0.0; b[3] = s2;
602:         ep = LAPACKlamch_("S");

604:         /* Compute eigenvalues of the block */
605:         PetscCallBLAS("LAPACKlag2",LAPACKlag2_(M,&two,b,&two,&ep,&scal1,&scal2,&wr1,&wr2,&wi));
606:         if (wi==0.0) { /* Real eigenvalues */
607:           isreal = PETSC_TRUE;
608:           PetscCheck(scal1>=ep && scal2>=ep,PETSC_COMM_SELF,PETSC_ERR_FP,"Nearly infinite eigenvalue");
609:           wr1 /= scal1;
610:           wr2 /= scal2;
611:           if (PetscAbsReal(s1*d1-wr1)<PetscAbsReal(s2*d2-wr1)) {
612:             Y[0] = wr1-s2*d2;
613:             Y[1] = s2*e;
614:           } else {
615:             Y[0] = s1*e;
616:             Y[1] = wr1-s1*d1;
617:           }
618:           /* normalize with a signature*/
619:           maxy = PetscMax(PetscAbsScalar(Y[0]),PetscAbsScalar(Y[1]));
620:           scal1 = PetscRealPart(Y[0])/maxy;
621:           scal2 = PetscRealPart(Y[1])/maxy;
622:           snorm = scal1*scal1*s1 + scal2*scal2*s2;
623:           if (snorm<0) { ss1 = -1.0; snorm = -snorm; }
624:           snorm = maxy*PetscSqrtReal(snorm);
625:           Y[0] = Y[0]/snorm;
626:           Y[1] = Y[1]/snorm;
627:           if (PetscAbsReal(s1*d1-wr2)<PetscAbsReal(s2*d2-wr2)) {
628:             Y[2] = wr2-s2*d2;
629:             Y[3] = s2*e;
630:           } else {
631:             Y[2] = s1*e;
632:             Y[3] = wr2-s1*d1;
633:           }
634:           maxy = PetscMax(PetscAbsScalar(Y[2]),PetscAbsScalar(Y[3]));
635:           scal1 = PetscRealPart(Y[2])/maxy;
636:           scal2 = PetscRealPart(Y[3])/maxy;
637:           snorm = scal1*scal1*s1 + scal2*scal2*s2;
638:           if (snorm<0) { ss2 = -1.0; snorm = -snorm; }
639:           snorm = maxy*PetscSqrtReal(snorm); Y[2] = Y[2]/snorm; Y[3] = Y[3]/snorm;
640:         }
641:         wr1 *= ss1; wr2 *= ss2;
642:       }
643:       if (isreal) {
644:         if (ds->compact) {
645:           D[i]    = ss1;
646:           T[i]    = wr1;
647:           D[i+1]  = ss2;
648:           T[i+1]  = wr2;
649:           T[ld+i] = 0.0;
650:         } else {
651:           B[i*ld+i]       = ss1;
652:           A[i*ld+i]       = wr1;
653:           B[(i+1)*ld+i+1] = ss2;
654:           A[(i+1)*ld+i+1] = wr2;
655:           A[(i+1)+ld*i]   = 0.0;
656:           A[i+ld*(i+1)]   = 0.0;
657:         }
658:         PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&m,&two,&two,&sone,Q+ds->l+i*ld,&ld,Y,&two,&szero,ds->work,&m));
659:         PetscCall(PetscArraycpy(Q+ds->l+i*ld,ds->work,m));
660:         PetscCall(PetscArraycpy(Q+ds->l+(i+1)*ld,ds->work+m,m));
661:       }
662:       i++;
663:     }
664:   }
665:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
666:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_B],&B));
667:   PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Q],&Q));
668:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&T));
669:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_D,&D));
670:   PetscFunctionReturn(PETSC_SUCCESS);
671: }

673: static PetscErrorCode DSSolve_GHIEP_QR_II(DS ds,PetscScalar *wr,PetscScalar *wi)
674: {
675:   PetscInt          i,off;
676:   PetscBLASInt      n1,ld,one=1,info,lwork;
677:   const PetscScalar *A,*B;
678:   PetscScalar       *H,*Q;
679:   PetscReal         *d,*e,*s;
680: #if defined(PETSC_USE_COMPLEX)
681:   PetscInt          j;
682: #endif

684:   PetscFunctionBegin;
685: #if !defined(PETSC_USE_COMPLEX)
686:   PetscAssertPointer(wi,3);
687: #endif
688:   PetscCall(PetscBLASIntCast(ds->n-ds->l,&n1));
689:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
690:   off = ds->l + ds->l*ld;
691:   PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_A],&A));
692:   PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_B],&B));
693:   PetscCall(DSGetArrayReal(ds,DS_MAT_T,&d));
694:   PetscCall(DSGetArrayReal(ds,DS_MAT_D,&s));
695:   e = d + ld;
696: #if defined(PETSC_USE_DEBUG)
697:   /* Check signature */
698:   for (i=0;i<ds->n;i++) {
699:     PetscReal de = (ds->compact)?s[i]:PetscRealPart(B[i*ld+i]);
700:     PetscCheck(de==1.0 || de==-1.0,PETSC_COMM_SELF,PETSC_ERR_PLIB,"Diagonal elements of the signature matrix must be 1 or -1");
701:   }
702: #endif

704:   /* Quick return if possible */
705:   if (n1 == 1) {
706:     PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Q],&Q));
707:     for (i=0;i<=ds->l;i++) Q[i+i*ld] = 1.0;
708:     PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Q],&Q));
709:     PetscCall(DSGHIEPComplexEigs(ds,0,ds->l,wr,wi));
710:     if (!ds->compact) {
711:       d[ds->l] = PetscRealPart(A[off]);
712:       s[ds->l] = PetscRealPart(B[off]);
713:     }
714:     PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_A],&A));
715:     PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_B],&B));
716:     wr[ds->l] = d[ds->l]/s[ds->l];
717:     if (wi) wi[ds->l] = 0.0;
718:     PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&d));
719:     PetscCall(DSRestoreArrayReal(ds,DS_MAT_D,&s));
720:     PetscFunctionReturn(PETSC_SUCCESS);
721:   }

723:   PetscCall(DSAllocateWork_Private(ds,ld*ld,2*ld,ld*2));
724:   lwork = ld*ld;

726:   /* Reduce to pseudotriadiagonal form */
727:   PetscCall(DSIntermediate_GHIEP(ds));

729:   /* Compute Eigenvalues (QR) */
730:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_W));
731:   PetscCall(MatDenseGetArrayWrite(ds->omat[DS_MAT_W],&H));
732:   if (ds->compact) {
733:     H[off]    = d[ds->l]*s[ds->l];
734:     H[off+ld] = e[ds->l]*s[ds->l];
735:     for (i=ds->l+1;i<ds->n-1;i++) {
736:       H[i+(i-1)*ld] = e[i-1]*s[i];
737:       H[i+i*ld]     = d[i]*s[i];
738:       H[i+(i+1)*ld] = e[i]*s[i];
739:     }
740:     H[ds->n-1+(ds->n-2)*ld] = e[ds->n-2]*s[ds->n-1];
741:     H[ds->n-1+(ds->n-1)*ld] = d[ds->n-1]*s[ds->n-1];
742:   } else {
743:     s[ds->l]  = PetscRealPart(B[off]);
744:     H[off]    = A[off]*s[ds->l];
745:     H[off+ld] = A[off+ld]*s[ds->l];
746:     for (i=ds->l+1;i<ds->n-1;i++) {
747:       s[i] = PetscRealPart(B[i+i*ld]);
748:       H[i+(i-1)*ld] = A[i+(i-1)*ld]*s[i];
749:       H[i+i*ld]     = A[i+i*ld]*s[i];
750:       H[i+(i+1)*ld] = A[i+(i+1)*ld]*s[i];
751:     }
752:     s[ds->n-1] = PetscRealPart(B[ds->n-1+(ds->n-1)*ld]);
753:     H[ds->n-1+(ds->n-2)*ld] = A[ds->n-1+(ds->n-2)*ld]*s[ds->n-1];
754:     H[ds->n-1+(ds->n-1)*ld] = A[ds->n-1+(ds->n-1)*ld]*s[ds->n-1];
755:   }

757: #if !defined(PETSC_USE_COMPLEX)
758:   PetscCallBLAS("LAPACKhseqr",LAPACKhseqr_("E","N",&n1,&one,&n1,H+off,&ld,wr+ds->l,wi+ds->l,NULL,&ld,ds->work,&lwork,&info));
759: #else
760:   PetscCallBLAS("LAPACKhseqr",LAPACKhseqr_("E","N",&n1,&one,&n1,H+off,&ld,wr+ds->l,NULL,&ld,ds->work,&lwork,&info));
761:   for (i=ds->l;i<ds->n;i++) if (PetscAbsReal(PetscImaginaryPart(wr[i]))<10*PETSC_MACHINE_EPSILON) wr[i] = PetscRealPart(wr[i]);
762:   /* Sort to have consecutive conjugate pairs */
763:   for (i=ds->l;i<ds->n;i++) {
764:     j=i+1;
765:     while (j<ds->n && (PetscAbsScalar(wr[i]-PetscConj(wr[j]))>PetscAbsScalar(wr[i])*PETSC_SQRT_MACHINE_EPSILON)) j++;
766:     if (j==ds->n) {
767:       PetscCheck(PetscAbsReal(PetscImaginaryPart(wr[i]))<PetscAbsScalar(wr[i])*PETSC_SQRT_MACHINE_EPSILON,PETSC_COMM_SELF,PETSC_ERR_LIB,"Found complex without conjugate pair");
768:       wr[i] = PetscRealPart(wr[i]);
769:     } else { /* complex eigenvalue */
770:       wr[j] = wr[i+1];
771:       if (PetscImaginaryPart(wr[i])<0) wr[i] = PetscConj(wr[i]);
772:       wr[i+1] = PetscConj(wr[i]);
773:       i++;
774:     }
775:   }
776: #endif
777:   SlepcCheckLapackInfo("hseqr",info);
778:   PetscCall(MatDenseRestoreArrayWrite(ds->omat[DS_MAT_W],&H));
779:   PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_A],&A));
780:   PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_B],&B));
781:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&d));
782:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_D,&s));

784:   /* Compute Eigenvectors with Inverse Iteration */
785:   PetscCall(DSGHIEPInverseIteration(ds,wr,wi));

787:   /* Recover eigenvalues from diagonal */
788:   PetscCall(DSGHIEPComplexEigs(ds,0,ds->l,wr,wi));
789: #if defined(PETSC_USE_COMPLEX)
790:   if (wi) {
791:     for (i=ds->l;i<ds->n;i++) wi[i] = 0.0;
792:   }
793: #endif
794:   PetscFunctionReturn(PETSC_SUCCESS);
795: }

797: static PetscErrorCode DSSolve_GHIEP_QR(DS ds,PetscScalar *wr,PetscScalar *wi)
798: {
799:   PetscInt          i,j,off,nwu=0,n,lw,lwr,nwru=0;
800:   PetscBLASInt      n_,ld,info,lwork,ilo,ihi;
801:   const PetscScalar *A,*B;
802:   PetscScalar       *H,*Q,*X;
803:   PetscReal         *d,*s,*scale,nrm,*rcde,*rcdv;
804: #if defined(PETSC_USE_COMPLEX)
805:   PetscInt          k;
806: #endif

808:   PetscFunctionBegin;
809: #if !defined(PETSC_USE_COMPLEX)
810:   PetscAssertPointer(wi,3);
811: #endif
812:   n = ds->n-ds->l;
813:   PetscCall(PetscBLASIntCast(n,&n_));
814:   PetscCall(PetscBLASIntCast(ds->ld,&ld));
815:   off = ds->l + ds->l*ld;
816:   PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_A],&A));
817:   PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_B],&B));
818:   PetscCall(DSGetArrayReal(ds,DS_MAT_T,&d));
819:   PetscCall(DSGetArrayReal(ds,DS_MAT_D,&s));
820: #if defined(PETSC_USE_DEBUG)
821:   /* Check signature */
822:   for (i=0;i<ds->n;i++) {
823:     PetscReal de = (ds->compact)?s[i]:PetscRealPart(B[i*ld+i]);
824:     PetscCheck(de==1.0 || de==-1.0,PETSC_COMM_SELF,PETSC_ERR_PLIB,"Diagonal elements of the signature matrix must be 1 or -1");
825:   }
826: #endif

828:   /* Quick return if possible */
829:   if (n_ == 1) {
830:     PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Q],&Q));
831:     for (i=0;i<=ds->l;i++) Q[i+i*ld] = 1.0;
832:     PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Q],&Q));
833:     PetscCall(DSGHIEPComplexEigs(ds,0,ds->l,wr,wi));
834:     if (!ds->compact) {
835:       d[ds->l] = PetscRealPart(A[off]);
836:       s[ds->l] = PetscRealPart(B[off]);
837:     }
838:     PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_A],&A));
839:     PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_B],&B));
840:     wr[ds->l] = d[ds->l]/s[ds->l];
841:     if (wi) wi[ds->l] = 0.0;
842:     PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&d));
843:     PetscCall(DSRestoreArrayReal(ds,DS_MAT_D,&s));
844:     PetscFunctionReturn(PETSC_SUCCESS);
845:   }

847:   lw = 14*ld+ld*ld;
848:   lwr = 7*ld;
849:   PetscCall(DSAllocateWork_Private(ds,lw,lwr,0));
850:   scale = ds->rwork+nwru;
851:   nwru += ld;
852:   rcde = ds->rwork+nwru;
853:   nwru += ld;
854:   rcdv = ds->rwork+nwru;

856:   /* Form pseudo-symmetric matrix */
857:   H =  ds->work+nwu;
858:   nwu += n*n;
859:   PetscCall(PetscArrayzero(H,n*n));
860:   if (ds->compact) {
861:     for (i=0;i<n-1;i++) {
862:       H[i+i*n]     = s[ds->l+i]*d[ds->l+i];
863:       H[i+1+i*n]   = s[ds->l+i+1]*d[ld+ds->l+i];
864:       H[i+(i+1)*n] = s[ds->l+i]*d[ld+ds->l+i];
865:     }
866:     H[n-1+(n-1)*n] = s[ds->l+n-1]*d[ds->l+n-1];
867:     for (i=0;i<ds->k-ds->l;i++) {
868:       H[ds->k-ds->l+i*n] = s[ds->k]*d[2*ld+ds->l+i];
869:       H[i+(ds->k-ds->l)*n] = s[i+ds->l]*d[2*ld+ds->l+i];
870:     }
871:   } else {
872:     for (j=0;j<n;j++) {
873:       for (i=0;i<n;i++) H[i+j*n] = B[off+i+i*ld]*A[off+i+j*ld];
874:     }
875:   }

877:   /* Compute eigenpairs */
878:   PetscCall(PetscBLASIntCast(lw-nwu,&lwork));
879:   PetscCall(DSAllocateMat_Private(ds,DS_MAT_X));
880:   PetscCall(MatDenseGetArrayWrite(ds->omat[DS_MAT_X],&X));
881: #if !defined(PETSC_USE_COMPLEX)
882:   PetscCallBLAS("LAPACKgeevx",LAPACKgeevx_("B","N","V","N",&n_,H,&n_,wr+ds->l,wi+ds->l,NULL,&ld,X+off,&ld,&ilo,&ihi,scale,&nrm,rcde,rcdv,ds->work+nwu,&lwork,NULL,&info));
883: #else
884:   PetscCallBLAS("LAPACKgeevx",LAPACKgeevx_("B","N","V","N",&n_,H,&n_,wr+ds->l,NULL,&ld,X+off,&ld,&ilo,&ihi,scale,&nrm,rcde,rcdv,ds->work+nwu,&lwork,ds->rwork+nwru,&info));

886:   /* Sort to have consecutive conjugate pairs
887:      Separate real and imaginary part of complex eigenvectors*/
888:   for (i=ds->l;i<ds->n;i++) {
889:     j=i+1;
890:     while (j<ds->n && (PetscAbsScalar(wr[i]-PetscConj(wr[j]))>PetscAbsScalar(wr[i])*PETSC_SQRT_MACHINE_EPSILON)) j++;
891:     if (j==ds->n) {
892:       PetscCheck(PetscAbsReal(PetscImaginaryPart(wr[i]))<PetscAbsScalar(wr[i])*PETSC_SQRT_MACHINE_EPSILON,PETSC_COMM_SELF,PETSC_ERR_LIB,"Found complex without conjugate pair");
893:       wr[i]=PetscRealPart(wr[i]); /* real eigenvalue */
894:       for (k=ds->l;k<ds->n;k++) {
895:         X[k+i*ds->ld] = PetscRealPart(X[k+i*ds->ld]);
896:       }
897:     } else { /* complex eigenvalue */
898:       if (j!=i+1) {
899:         wr[j] = wr[i+1];
900:         PetscCall(PetscArraycpy(X+j*ds->ld,X+(i+1)*ds->ld,ds->ld));
901:       }
902:       if (PetscImaginaryPart(wr[i])<0) {
903:         wr[i] = PetscConj(wr[i]);
904:         for (k=ds->l;k<ds->n;k++) {
905:           X[k+(i+1)*ds->ld] = -PetscImaginaryPart(X[k+i*ds->ld]);
906:           X[k+i*ds->ld] = PetscRealPart(X[k+i*ds->ld]);
907:         }
908:       } else {
909:         for (k=ds->l;k<ds->n;k++) {
910:           X[k+(i+1)*ds->ld] = PetscImaginaryPart(X[k+i*ds->ld]);
911:           X[k+i*ds->ld] = PetscRealPart(X[k+i*ds->ld]);
912:         }
913:       }
914:       wr[i+1] = PetscConj(wr[i]);
915:       i++;
916:     }
917:   }
918: #endif
919:   SlepcCheckLapackInfo("geevx",info);
920:   PetscCall(MatDenseRestoreArrayWrite(ds->omat[DS_MAT_X],&X));
921:   PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_A],&A));
922:   PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_B],&B));
923:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&d));
924:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_D,&s));

926:   /* Compute real s-orthonormal basis */
927:   PetscCall(DSGHIEPOrthogEigenv(ds,DS_MAT_X,wr,wi,PETSC_FALSE));

929:   /* Recover eigenvalues from diagonal */
930:   PetscCall(DSGHIEPComplexEigs(ds,0,ds->l,wr,wi));
931: #if defined(PETSC_USE_COMPLEX)
932:   if (wi) {
933:     for (i=ds->l;i<ds->n;i++) wi[i] = 0.0;
934:   }
935: #endif
936:   PetscFunctionReturn(PETSC_SUCCESS);
937: }

939: static PetscErrorCode DSGetTruncateSize_GHIEP(DS ds,PetscInt l,PetscInt n,PetscInt *k)
940: {
941:   PetscReal *T;

943:   PetscFunctionBegin;
944:   PetscCall(DSGetArrayReal(ds,DS_MAT_T,&T));
945:   if (T[l+(*k)-1+ds->ld] !=0.0) {
946:     if (l+(*k)<n-1) (*k)++;
947:     else (*k)--;
948:   }
949:   PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&T));
950:   PetscFunctionReturn(PETSC_SUCCESS);
951: }

953: static PetscErrorCode DSTruncate_GHIEP(DS ds,PetscInt n,PetscBool trim)
954: {
955:   PetscInt    i,ld=ds->ld,l=ds->l;
956:   PetscScalar *A;
957:   PetscReal   *T,*b,*r,*omega;

959:   PetscFunctionBegin;
960:   if (ds->compact) {
961:     PetscCall(DSGetArrayReal(ds,DS_MAT_T,&T));
962:     PetscCall(DSGetArrayReal(ds,DS_MAT_D,&omega));
963: #if defined(PETSC_USE_DEBUG)
964:     /* make sure diagonal 2x2 block is not broken */
965:     PetscCheck(ds->state<DS_STATE_CONDENSED || n==0 || n==ds->n || T[n-1+ld]==0.0,PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"The given size would break a 2x2 block, call DSGetTruncateSize() first");
966: #endif
967:   }
968:   if (trim) {
969:     if (!ds->compact && ds->extrarow) {   /* clean extra row */
970:       PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
971:       for (i=l;i<ds->n;i++) A[ds->n+i*ld] = 0.0;
972:       PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
973:     }
974:     ds->l = 0;
975:     ds->k = 0;
976:     ds->n = n;
977:     ds->t = ds->n;   /* truncated length equal to the new dimension */
978:   } else {
979:     if (!ds->compact && ds->extrarow && ds->k==ds->n) {
980:       /* copy entries of extra row to the new position, then clean last row */
981:       PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
982:       for (i=l;i<n;i++) A[n+i*ld] = A[ds->n+i*ld];
983:       for (i=l;i<ds->n;i++) A[ds->n+i*ld] = 0.0;
984:       PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
985:     }
986:     if (ds->compact) {
987:       b = T+ld;
988:       r = T+2*ld;
989:       b[n-1] = r[n-1];
990:       b[n] = b[ds->n];
991:       omega[n] = omega[ds->n];
992:     }
993:     ds->k = (ds->extrarow)? n: 0;
994:     ds->t = ds->n;   /* truncated length equal to previous dimension */
995:     ds->n = n;
996:   }
997:   if (ds->compact) {
998:     PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&T));
999:     PetscCall(DSRestoreArrayReal(ds,DS_MAT_D,&omega));
1000:   }
1001:   PetscFunctionReturn(PETSC_SUCCESS);
1002: }

1004: #if !defined(PETSC_HAVE_MPIUNI)
1005: static PetscErrorCode DSSynchronize_GHIEP(DS ds,PetscScalar eigr[],PetscScalar eigi[])
1006: {
1007:   PetscScalar    *A,*B,*Q;
1008:   PetscReal      *T,*D;
1009:   PetscInt       ld=ds->ld,l=ds->l,k=0,kr=0;
1010:   PetscMPIInt    n,rank,off=0,size,ldn,ld3,ld_;

1012:   PetscFunctionBegin;
1013:   if (ds->compact) kr = 4*ld;
1014:   else k = 2*(ds->n-l)*ld;
1015:   if (ds->state>DS_STATE_RAW) k += (ds->n-l)*ld;
1016:   if (eigr) k += (ds->n-l);
1017:   if (eigi) k += (ds->n-l);
1018:   PetscCall(DSAllocateWork_Private(ds,k+kr,0,0));
1019:   PetscCall(PetscMPIIntCast(k*sizeof(PetscScalar)+kr*sizeof(PetscReal),&size));
1020:   PetscCall(PetscMPIIntCast(ds->n-l,&n));
1021:   PetscCall(PetscMPIIntCast(ld*(ds->n-l),&ldn));
1022:   PetscCall(PetscMPIIntCast(ld*3,&ld3));
1023:   PetscCall(PetscMPIIntCast(ld,&ld_));
1024:   if (ds->compact) {
1025:     PetscCall(DSGetArrayReal(ds,DS_MAT_T,&T));
1026:     PetscCall(DSGetArrayReal(ds,DS_MAT_D,&D));
1027:   } else {
1028:     PetscCall(MatDenseGetArray(ds->omat[DS_MAT_A],&A));
1029:     PetscCall(MatDenseGetArray(ds->omat[DS_MAT_B],&B));
1030:   }
1031:   if (ds->state>DS_STATE_RAW) PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Q],&Q));
1032:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)ds),&rank));
1033:   if (!rank) {
1034:     if (ds->compact) {
1035:       PetscCallMPI(MPI_Pack(T,ld3,MPIU_REAL,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
1036:       PetscCallMPI(MPI_Pack(D,ld_,MPIU_REAL,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
1037:     } else {
1038:       PetscCallMPI(MPI_Pack(A+l*ld,ldn,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
1039:       PetscCallMPI(MPI_Pack(B+l*ld,ldn,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
1040:     }
1041:     if (ds->state>DS_STATE_RAW) PetscCallMPI(MPI_Pack(Q+l*ld,ldn,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
1042:     if (eigr) PetscCallMPI(MPI_Pack(eigr+l,n,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
1043: #if !defined(PETSC_USE_COMPLEX)
1044:     if (eigi) PetscCallMPI(MPI_Pack(eigi+l,n,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds)));
1045: #endif
1046:   }
1047:   PetscCallMPI(MPI_Bcast(ds->work,size,MPI_BYTE,0,PetscObjectComm((PetscObject)ds)));
1048:   if (rank) {
1049:     if (ds->compact) {
1050:       PetscCallMPI(MPI_Unpack(ds->work,size,&off,T,ld3,MPIU_REAL,PetscObjectComm((PetscObject)ds)));
1051:       PetscCallMPI(MPI_Unpack(ds->work,size,&off,D,ld_,MPIU_REAL,PetscObjectComm((PetscObject)ds)));
1052:     } else {
1053:       PetscCallMPI(MPI_Unpack(ds->work,size,&off,A+l*ld,ldn,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
1054:       PetscCallMPI(MPI_Unpack(ds->work,size,&off,B+l*ld,ldn,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
1055:     }
1056:     if (ds->state>DS_STATE_RAW) PetscCallMPI(MPI_Unpack(ds->work,size,&off,Q+l*ld,ldn,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
1057:     if (eigr) PetscCallMPI(MPI_Unpack(ds->work,size,&off,eigr+l,n,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
1058: #if !defined(PETSC_USE_COMPLEX)
1059:     if (eigi) PetscCallMPI(MPI_Unpack(ds->work,size,&off,eigi+l,n,MPIU_SCALAR,PetscObjectComm((PetscObject)ds)));
1060: #endif
1061:   }
1062:   if (ds->compact) {
1063:     PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&T));
1064:     PetscCall(DSRestoreArrayReal(ds,DS_MAT_D,&D));
1065:   } else {
1066:     PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_A],&A));
1067:     PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_B],&B));
1068:   }
1069:   if (ds->state>DS_STATE_RAW) PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Q],&Q));
1070:   PetscFunctionReturn(PETSC_SUCCESS);
1071: }
1072: #endif

1074: static PetscErrorCode DSHermitian_GHIEP(DS ds,DSMatType m,PetscBool *flg)
1075: {
1076:   PetscFunctionBegin;
1077:   if ((m==DS_MAT_A && !ds->extrarow) || m==DS_MAT_B) *flg = PETSC_TRUE;
1078:   else *flg = PETSC_FALSE;
1079:   PetscFunctionReturn(PETSC_SUCCESS);
1080: }

1082: /*MC
1083:    DSGHIEP - Dense Generalized Hermitian Indefinite Eigenvalue Problem.

1085:    Level: beginner

1087:    Notes:
1088:    The problem is expressed as A*X = B*X*Lambda, where both A and B are
1089:    real symmetric (or complex Hermitian) and possibly indefinite. Lambda
1090:    is a diagonal matrix whose diagonal elements are the arguments of DSSolve().
1091:    After solve, A is overwritten with Lambda. Note that in the case of real
1092:    scalars, A is overwritten with a real representation of Lambda, i.e.,
1093:    complex conjugate eigenvalue pairs are stored as a 2x2 block in the
1094:    quasi-diagonal matrix.

1096:    In the intermediate state A is reduced to tridiagonal form and B is
1097:    transformed into a signature matrix. In compact storage format, these
1098:    matrices are stored in T and D, respectively.

1100:    Used DS matrices:
1101: +  DS_MAT_A - first problem matrix
1102: .  DS_MAT_B - second problem matrix
1103: .  DS_MAT_T - symmetric tridiagonal matrix of the reduced pencil
1104: .  DS_MAT_D - diagonal matrix (signature) of the reduced pencil
1105: -  DS_MAT_Q - pseudo-orthogonal transformation that reduces (A,B) to
1106:    tridiagonal-diagonal form (intermediate step) or a real basis of eigenvectors

1108:    Implemented methods:
1109: +  0 - QR iteration plus inverse iteration for the eigenvectors
1110: .  1 - HZ iteration
1111: -  2 - QR iteration plus pseudo-orthogonalization for the eigenvectors

1113:    References:
1114: .  1. - C. Campos and J. E. Roman, "Restarted Q-Arnoldi-type methods exploiting
1115:    symmetry in quadratic eigenvalue problems", BIT Numer. Math. 56(4):1213-1236, 2016.

1117: .seealso: DSCreate(), DSSetType(), DSType
1118: M*/
1119: SLEPC_EXTERN PetscErrorCode DSCreate_GHIEP(DS ds)
1120: {
1121:   PetscFunctionBegin;
1122:   ds->ops->allocate        = DSAllocate_GHIEP;
1123:   ds->ops->view            = DSView_GHIEP;
1124:   ds->ops->vectors         = DSVectors_GHIEP;
1125:   ds->ops->solve[0]        = DSSolve_GHIEP_QR_II;
1126:   ds->ops->solve[1]        = DSSolve_GHIEP_HZ;
1127:   ds->ops->solve[2]        = DSSolve_GHIEP_QR;
1128:   ds->ops->sort            = DSSort_GHIEP;
1129: #if !defined(PETSC_HAVE_MPIUNI)
1130:   ds->ops->synchronize     = DSSynchronize_GHIEP;
1131: #endif
1132:   ds->ops->gettruncatesize = DSGetTruncateSize_GHIEP;
1133:   ds->ops->truncate        = DSTruncate_GHIEP;
1134:   ds->ops->update          = DSUpdateExtraRow_GHIEP;
1135:   ds->ops->hermitian       = DSHermitian_GHIEP;
1136:   PetscFunctionReturn(PETSC_SUCCESS);
1137: }