Actual source code: acoustic_wave_2d.c

slepc-main 2024-11-09
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    This example implements one of the problems found at
 12:        NLEVP: A Collection of Nonlinear Eigenvalue Problems,
 13:        The University of Manchester.
 14:    The details of the collection can be found at:
 15:        [1] T. Betcke et al., "NLEVP: A Collection of Nonlinear Eigenvalue
 16:            Problems", ACM Trans. Math. Software 39(2), Article 7, 2013.

 18:    The acoustic_wave_2d problem is a 2-D version of acoustic_wave_1d, also
 19:    scaled for real arithmetic.
 20: */

 22: static char help[] = "Quadratic eigenproblem from an acoustics application (2-D).\n\n"
 23:   "The command line options are:\n"
 24:   "  -m <m>, where <m> = grid size, the matrices have dimension m*(m-1).\n"
 25:   "  -z <z>, where <z> = impedance (default 1.0).\n\n";

 27: #include <slepcpep.h>

 29: int main(int argc,char **argv)
 30: {
 31:   Mat            M,C,K,A[3];      /* problem matrices */
 32:   PEP            pep;             /* polynomial eigenproblem solver context */
 33:   PetscInt       m=6,n,II,Istart,Iend,i,j;
 34:   PetscScalar    z=1.0;
 35:   PetscReal      h;
 36:   char           str[50];
 37:   PetscBool      terse;

 39:   PetscFunctionBeginUser;
 40:   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));

 42:   PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,NULL));
 43:   PetscCheck(m>1,PETSC_COMM_WORLD,PETSC_ERR_USER_INPUT,"m must be at least 2");
 44:   PetscCall(PetscOptionsGetScalar(NULL,NULL,"-z",&z,NULL));
 45:   h = 1.0/m;
 46:   n = m*(m-1);
 47:   PetscCall(SlepcSNPrintfScalar(str,sizeof(str),z,PETSC_FALSE));
 48:   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nAcoustic wave 2-D, n=%" PetscInt_FMT " (m=%" PetscInt_FMT "), z=%s\n\n",n,m,str));

 50:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 51:      Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0
 52:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 54:   /* K has a pattern similar to the 2D Laplacian */
 55:   PetscCall(MatCreate(PETSC_COMM_WORLD,&K));
 56:   PetscCall(MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,n,n));
 57:   PetscCall(MatSetFromOptions(K));

 59:   PetscCall(MatGetOwnershipRange(K,&Istart,&Iend));
 60:   for (II=Istart;II<Iend;II++) {
 61:     i = II/m; j = II-i*m;
 62:     if (i>0) PetscCall(MatSetValue(K,II,II-m,(j==m-1)?-0.5:-1.0,INSERT_VALUES));
 63:     if (i<m-2) PetscCall(MatSetValue(K,II,II+m,(j==m-1)?-0.5:-1.0,INSERT_VALUES));
 64:     if (j>0) PetscCall(MatSetValue(K,II,II-1,-1.0,INSERT_VALUES));
 65:     if (j<m-1) PetscCall(MatSetValue(K,II,II+1,-1.0,INSERT_VALUES));
 66:     PetscCall(MatSetValue(K,II,II,(j==m-1)?2.0:4.0,INSERT_VALUES));
 67:   }

 69:   PetscCall(MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY));
 70:   PetscCall(MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY));

 72:   /* C is the zero matrix except for a few nonzero elements on the diagonal */
 73:   PetscCall(MatCreate(PETSC_COMM_WORLD,&C));
 74:   PetscCall(MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,n,n));
 75:   PetscCall(MatSetFromOptions(C));

 77:   PetscCall(MatGetOwnershipRange(C,&Istart,&Iend));
 78:   for (i=Istart;i<Iend;i++) {
 79:     if (i%m==m-1) PetscCall(MatSetValue(C,i,i,-2*PETSC_PI*h/z,INSERT_VALUES));
 80:   }
 81:   PetscCall(MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY));
 82:   PetscCall(MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY));

 84:   /* M is a diagonal matrix */
 85:   PetscCall(MatCreate(PETSC_COMM_WORLD,&M));
 86:   PetscCall(MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,n,n));
 87:   PetscCall(MatSetFromOptions(M));

 89:   PetscCall(MatGetOwnershipRange(M,&Istart,&Iend));
 90:   for (i=Istart;i<Iend;i++) {
 91:     if (i%m==m-1) PetscCall(MatSetValue(M,i,i,2*PETSC_PI*PETSC_PI*h*h,INSERT_VALUES));
 92:     else PetscCall(MatSetValue(M,i,i,4*PETSC_PI*PETSC_PI*h*h,INSERT_VALUES));
 93:   }
 94:   PetscCall(MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY));
 95:   PetscCall(MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY));

 97:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 98:                 Create the eigensolver and solve the problem
 99:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

101:   PetscCall(PEPCreate(PETSC_COMM_WORLD,&pep));
102:   A[0] = K; A[1] = C; A[2] = M;
103:   PetscCall(PEPSetOperators(pep,3,A));
104:   PetscCall(PEPSetFromOptions(pep));
105:   PetscCall(PEPSolve(pep));

107:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
108:                     Display solution and clean up
109:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

111:   /* show detailed info unless -terse option is given by user */
112:   PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
113:   if (terse) PetscCall(PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL));
114:   else {
115:     PetscCall(PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL));
116:     PetscCall(PEPConvergedReasonView(pep,PETSC_VIEWER_STDOUT_WORLD));
117:     PetscCall(PEPErrorView(pep,PEP_ERROR_BACKWARD,PETSC_VIEWER_STDOUT_WORLD));
118:     PetscCall(PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD));
119:   }
120:   PetscCall(PEPDestroy(&pep));
121:   PetscCall(MatDestroy(&M));
122:   PetscCall(MatDestroy(&C));
123:   PetscCall(MatDestroy(&K));
124:   PetscCall(SlepcFinalize());
125:   return 0;
126: }

128: /*TEST

130:    testset:
131:       args: -pep_nev 2 -pep_ncv 18 -terse
132:       output_file: output/acoustic_wave_2d_1.out
133:       filter: sed -e "s/2.60936i/2.60937i/g" | sed -e "s/2.60938i/2.60937i/g"
134:       test:
135:          suffix: 1
136:          args: -pep_type {{qarnoldi linear}}
137:       test:
138:          suffix: 1_toar
139:          args: -pep_type toar -pep_toar_locking 0

141:    testset:
142:       args: -pep_nev 2 -pep_ncv 18 -pep_type stoar -pep_hermitian -pep_scale scalar -st_type sinvert -terse
143:       output_file: output/acoustic_wave_2d_2.out
144:       test:
145:          suffix: 2
146:       test:
147:          suffix: 2_lin_b
148:          args: -pep_stoar_linearization 0,1
149:       test:
150:          suffix: 2_lin_ab
151:          args: -pep_stoar_linearization 0.1,0.9

153: TEST*/