Actual source code: pepbasic.c

slepc-main 2025-01-19
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    Basic PEP routines
 12: */

 14: #include <slepc/private/pepimpl.h>

 16: /* Logging support */
 17: PetscClassId      PEP_CLASSID = 0;
 18: PetscLogEvent     PEP_SetUp = 0,PEP_Solve = 0,PEP_Refine = 0,PEP_CISS_SVD = 0;

 20: /* List of registered PEP routines */
 21: PetscFunctionList PEPList = NULL;
 22: PetscBool         PEPRegisterAllCalled = PETSC_FALSE;

 24: /* List of registered PEP monitors */
 25: PetscFunctionList PEPMonitorList              = NULL;
 26: PetscFunctionList PEPMonitorCreateList        = NULL;
 27: PetscFunctionList PEPMonitorDestroyList       = NULL;
 28: PetscBool         PEPMonitorRegisterAllCalled = PETSC_FALSE;

 30: /*@
 31:    PEPCreate - Creates the default PEP context.

 33:    Collective

 35:    Input Parameter:
 36: .  comm - MPI communicator

 38:    Output Parameter:
 39: .  outpep - location to put the PEP context

 41:    Note:
 42:    The default PEP type is PEPTOAR

 44:    Level: beginner

 46: .seealso: PEPSetUp(), PEPSolve(), PEPDestroy(), PEP
 47: @*/
 48: PetscErrorCode PEPCreate(MPI_Comm comm,PEP *outpep)
 49: {
 50:   PEP            pep;

 52:   PetscFunctionBegin;
 53:   PetscAssertPointer(outpep,2);
 54:   PetscCall(PEPInitializePackage());
 55:   PetscCall(SlepcHeaderCreate(pep,PEP_CLASSID,"PEP","Polynomial Eigenvalue Problem","PEP",comm,PEPDestroy,PEPView));

 57:   pep->max_it          = PETSC_DETERMINE;
 58:   pep->nev             = 1;
 59:   pep->ncv             = PETSC_DETERMINE;
 60:   pep->mpd             = PETSC_DETERMINE;
 61:   pep->nini            = 0;
 62:   pep->target          = 0.0;
 63:   pep->tol             = PETSC_DETERMINE;
 64:   pep->conv            = PEP_CONV_REL;
 65:   pep->stop            = PEP_STOP_BASIC;
 66:   pep->which           = (PEPWhich)0;
 67:   pep->basis           = PEP_BASIS_MONOMIAL;
 68:   pep->problem_type    = (PEPProblemType)0;
 69:   pep->scale           = PEP_SCALE_NONE;
 70:   pep->sfactor         = 1.0;
 71:   pep->dsfactor        = 1.0;
 72:   pep->sits            = 5;
 73:   pep->slambda         = 1.0;
 74:   pep->refine          = PEP_REFINE_NONE;
 75:   pep->npart           = 1;
 76:   pep->rtol            = PETSC_DETERMINE;
 77:   pep->rits            = PETSC_DETERMINE;
 78:   pep->scheme          = (PEPRefineScheme)0;
 79:   pep->extract         = (PEPExtract)0;
 80:   pep->trackall        = PETSC_FALSE;

 82:   pep->converged       = PEPConvergedRelative;
 83:   pep->convergeduser   = NULL;
 84:   pep->convergeddestroy= NULL;
 85:   pep->stopping        = PEPStoppingBasic;
 86:   pep->stoppinguser    = NULL;
 87:   pep->stoppingdestroy = NULL;
 88:   pep->convergedctx    = NULL;
 89:   pep->stoppingctx     = NULL;
 90:   pep->numbermonitors  = 0;

 92:   pep->st              = NULL;
 93:   pep->ds              = NULL;
 94:   pep->V               = NULL;
 95:   pep->rg              = NULL;
 96:   pep->A               = NULL;
 97:   pep->nmat            = 0;
 98:   pep->Dl              = NULL;
 99:   pep->Dr              = NULL;
100:   pep->IS              = NULL;
101:   pep->eigr            = NULL;
102:   pep->eigi            = NULL;
103:   pep->errest          = NULL;
104:   pep->perm            = NULL;
105:   pep->pbc             = NULL;
106:   pep->solvematcoeffs  = NULL;
107:   pep->nwork           = 0;
108:   pep->work            = NULL;
109:   pep->refineksp       = NULL;
110:   pep->refinesubc      = NULL;
111:   pep->data            = NULL;

113:   pep->state           = PEP_STATE_INITIAL;
114:   pep->nconv           = 0;
115:   pep->its             = 0;
116:   pep->n               = 0;
117:   pep->nloc            = 0;
118:   pep->nrma            = NULL;
119:   pep->sfactor_set     = PETSC_FALSE;
120:   pep->lineariz        = PETSC_FALSE;
121:   pep->reason          = PEP_CONVERGED_ITERATING;

123:   PetscCall(PetscNew(&pep->sc));
124:   *outpep = pep;
125:   PetscFunctionReturn(PETSC_SUCCESS);
126: }

128: /*@
129:    PEPSetType - Selects the particular solver to be used in the PEP object.

131:    Logically Collective

133:    Input Parameters:
134: +  pep      - the polynomial eigensolver context
135: -  type     - a known method

137:    Options Database Key:
138: .  -pep_type <method> - Sets the method; use -help for a list
139:     of available methods

141:    Notes:
142:    See "slepc/include/slepcpep.h" for available methods. The default
143:    is PEPTOAR.

145:    Normally, it is best to use the PEPSetFromOptions() command and
146:    then set the PEP type from the options database rather than by using
147:    this routine.  Using the options database provides the user with
148:    maximum flexibility in evaluating the different available methods.
149:    The PEPSetType() routine is provided for those situations where it
150:    is necessary to set the iterative solver independently of the command
151:    line or options database.

153:    Level: intermediate

155: .seealso: PEPType
156: @*/
157: PetscErrorCode PEPSetType(PEP pep,PEPType type)
158: {
159:   PetscErrorCode (*r)(PEP);
160:   PetscBool      match;

162:   PetscFunctionBegin;
164:   PetscAssertPointer(type,2);

166:   PetscCall(PetscObjectTypeCompare((PetscObject)pep,type,&match));
167:   if (match) PetscFunctionReturn(PETSC_SUCCESS);

169:   PetscCall(PetscFunctionListFind(PEPList,type,&r));
170:   PetscCheck(r,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown PEP type given: %s",type);

172:   PetscTryTypeMethod(pep,destroy);
173:   PetscCall(PetscMemzero(pep->ops,sizeof(struct _PEPOps)));

175:   pep->state = PEP_STATE_INITIAL;
176:   PetscCall(PetscObjectChangeTypeName((PetscObject)pep,type));
177:   PetscCall((*r)(pep));
178:   PetscFunctionReturn(PETSC_SUCCESS);
179: }

181: /*@
182:    PEPGetType - Gets the PEP type as a string from the PEP object.

184:    Not Collective

186:    Input Parameter:
187: .  pep - the eigensolver context

189:    Output Parameter:
190: .  type - name of PEP method

192:    Level: intermediate

194: .seealso: PEPSetType()
195: @*/
196: PetscErrorCode PEPGetType(PEP pep,PEPType *type)
197: {
198:   PetscFunctionBegin;
200:   PetscAssertPointer(type,2);
201:   *type = ((PetscObject)pep)->type_name;
202:   PetscFunctionReturn(PETSC_SUCCESS);
203: }

205: /*@C
206:    PEPRegister - Adds a method to the polynomial eigenproblem solver package.

208:    Not Collective

210:    Input Parameters:
211: +  name - name of a new user-defined solver
212: -  function - routine to create the solver context

214:    Notes:
215:    PEPRegister() may be called multiple times to add several user-defined solvers.

217:    Example Usage:
218: .vb
219:     PEPRegister("my_solver",MySolverCreate);
220: .ve

222:    Then, your solver can be chosen with the procedural interface via
223: $     PEPSetType(pep,"my_solver")
224:    or at runtime via the option
225: $     -pep_type my_solver

227:    Level: advanced

229: .seealso: PEPRegisterAll()
230: @*/
231: PetscErrorCode PEPRegister(const char *name,PetscErrorCode (*function)(PEP))
232: {
233:   PetscFunctionBegin;
234:   PetscCall(PEPInitializePackage());
235:   PetscCall(PetscFunctionListAdd(&PEPList,name,function));
236:   PetscFunctionReturn(PETSC_SUCCESS);
237: }

239: /*@C
240:    PEPMonitorRegister - Adds PEP monitor routine.

242:    Not Collective

244:    Input Parameters:
245: +  name    - name of a new monitor routine
246: .  vtype   - a PetscViewerType for the output
247: .  format  - a PetscViewerFormat for the output
248: .  monitor - monitor routine
249: .  create  - creation routine, or NULL
250: -  destroy - destruction routine, or NULL

252:    Notes:
253:    PEPMonitorRegister() may be called multiple times to add several user-defined monitors.

255:    Example Usage:
256: .vb
257:    PEPMonitorRegister("my_monitor",PETSCVIEWERASCII,PETSC_VIEWER_ASCII_INFO_DETAIL,MyMonitor,NULL,NULL);
258: .ve

260:    Then, your monitor can be chosen with the procedural interface via
261: $      PEPMonitorSetFromOptions(pep,"-pep_monitor_my_monitor","my_monitor",NULL)
262:    or at runtime via the option
263: $      -pep_monitor_my_monitor

265:    Level: advanced

267: .seealso: PEPMonitorRegisterAll()
268: @*/
269: PetscErrorCode PEPMonitorRegister(const char name[],PetscViewerType vtype,PetscViewerFormat format,PetscErrorCode (*monitor)(PEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,PetscViewerAndFormat*),PetscErrorCode (*create)(PetscViewer,PetscViewerFormat,void*,PetscViewerAndFormat**),PetscErrorCode (*destroy)(PetscViewerAndFormat**))
270: {
271:   char           key[PETSC_MAX_PATH_LEN];

273:   PetscFunctionBegin;
274:   PetscCall(PEPInitializePackage());
275:   PetscCall(SlepcMonitorMakeKey_Internal(name,vtype,format,key));
276:   PetscCall(PetscFunctionListAdd(&PEPMonitorList,key,monitor));
277:   if (create)  PetscCall(PetscFunctionListAdd(&PEPMonitorCreateList,key,create));
278:   if (destroy) PetscCall(PetscFunctionListAdd(&PEPMonitorDestroyList,key,destroy));
279:   PetscFunctionReturn(PETSC_SUCCESS);
280: }

282: /*@
283:    PEPReset - Resets the PEP context to the initial state (prior to setup)
284:    and destroys any allocated Vecs and Mats.

286:    Collective

288:    Input Parameter:
289: .  pep - eigensolver context obtained from PEPCreate()

291:    Level: advanced

293: .seealso: PEPDestroy()
294: @*/
295: PetscErrorCode PEPReset(PEP pep)
296: {
297:   PetscFunctionBegin;
299:   if (!pep) PetscFunctionReturn(PETSC_SUCCESS);
300:   PetscTryTypeMethod(pep,reset);
301:   if (pep->st) PetscCall(STReset(pep->st));
302:   if (pep->refineksp) PetscCall(KSPReset(pep->refineksp));
303:   if (pep->nmat) {
304:     PetscCall(MatDestroyMatrices(pep->nmat,&pep->A));
305:     PetscCall(PetscFree2(pep->pbc,pep->nrma));
306:     PetscCall(PetscFree(pep->solvematcoeffs));
307:     pep->nmat = 0;
308:   }
309:   PetscCall(VecDestroy(&pep->Dl));
310:   PetscCall(VecDestroy(&pep->Dr));
311:   PetscCall(BVDestroy(&pep->V));
312:   PetscCall(VecDestroyVecs(pep->nwork,&pep->work));
313:   pep->nwork = 0;
314:   pep->state = PEP_STATE_INITIAL;
315:   PetscFunctionReturn(PETSC_SUCCESS);
316: }

318: /*@
319:    PEPDestroy - Destroys the PEP context.

321:    Collective

323:    Input Parameter:
324: .  pep - eigensolver context obtained from PEPCreate()

326:    Level: beginner

328: .seealso: PEPCreate(), PEPSetUp(), PEPSolve()
329: @*/
330: PetscErrorCode PEPDestroy(PEP *pep)
331: {
332:   PetscFunctionBegin;
333:   if (!*pep) PetscFunctionReturn(PETSC_SUCCESS);
335:   if (--((PetscObject)*pep)->refct > 0) { *pep = NULL; PetscFunctionReturn(PETSC_SUCCESS); }
336:   PetscCall(PEPReset(*pep));
337:   PetscTryTypeMethod(*pep,destroy);
338:   if ((*pep)->eigr) PetscCall(PetscFree4((*pep)->eigr,(*pep)->eigi,(*pep)->errest,(*pep)->perm));
339:   PetscCall(STDestroy(&(*pep)->st));
340:   PetscCall(RGDestroy(&(*pep)->rg));
341:   PetscCall(DSDestroy(&(*pep)->ds));
342:   PetscCall(KSPDestroy(&(*pep)->refineksp));
343:   PetscCall(PetscSubcommDestroy(&(*pep)->refinesubc));
344:   PetscCall(PetscFree((*pep)->sc));
345:   /* just in case the initial vectors have not been used */
346:   PetscCall(SlepcBasisDestroy_Private(&(*pep)->nini,&(*pep)->IS));
347:   if ((*pep)->convergeddestroy) PetscCall((*(*pep)->convergeddestroy)(&(*pep)->convergedctx));
348:   if ((*pep)->stoppingdestroy) PetscCall((*(*pep)->stoppingdestroy)(&(*pep)->stoppingctx));
349:   PetscCall(PEPMonitorCancel(*pep));
350:   PetscCall(PetscHeaderDestroy(pep));
351:   PetscFunctionReturn(PETSC_SUCCESS);
352: }

354: /*@
355:    PEPSetBV - Associates a basis vectors object to the polynomial eigensolver.

357:    Collective

359:    Input Parameters:
360: +  pep - eigensolver context obtained from PEPCreate()
361: -  bv  - the basis vectors object

363:    Note:
364:    Use PEPGetBV() to retrieve the basis vectors context (for example,
365:    to free it at the end of the computations).

367:    Level: advanced

369: .seealso: PEPGetBV()
370: @*/
371: PetscErrorCode PEPSetBV(PEP pep,BV bv)
372: {
373:   PetscFunctionBegin;
376:   PetscCheckSameComm(pep,1,bv,2);
377:   PetscCall(PetscObjectReference((PetscObject)bv));
378:   PetscCall(BVDestroy(&pep->V));
379:   pep->V = bv;
380:   PetscFunctionReturn(PETSC_SUCCESS);
381: }

383: /*@
384:    PEPGetBV - Obtain the basis vectors object associated to the polynomial
385:    eigensolver object.

387:    Not Collective

389:    Input Parameters:
390: .  pep - eigensolver context obtained from PEPCreate()

392:    Output Parameter:
393: .  bv - basis vectors context

395:    Level: advanced

397: .seealso: PEPSetBV()
398: @*/
399: PetscErrorCode PEPGetBV(PEP pep,BV *bv)
400: {
401:   PetscFunctionBegin;
403:   PetscAssertPointer(bv,2);
404:   if (!pep->V) {
405:     PetscCall(BVCreate(PetscObjectComm((PetscObject)pep),&pep->V));
406:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)pep->V,(PetscObject)pep,0));
407:     PetscCall(PetscObjectSetOptions((PetscObject)pep->V,((PetscObject)pep)->options));
408:   }
409:   *bv = pep->V;
410:   PetscFunctionReturn(PETSC_SUCCESS);
411: }

413: /*@
414:    PEPSetRG - Associates a region object to the polynomial eigensolver.

416:    Collective

418:    Input Parameters:
419: +  pep - eigensolver context obtained from PEPCreate()
420: -  rg  - the region object

422:    Note:
423:    Use PEPGetRG() to retrieve the region context (for example,
424:    to free it at the end of the computations).

426:    Level: advanced

428: .seealso: PEPGetRG()
429: @*/
430: PetscErrorCode PEPSetRG(PEP pep,RG rg)
431: {
432:   PetscFunctionBegin;
434:   if (rg) {
436:     PetscCheckSameComm(pep,1,rg,2);
437:   }
438:   PetscCall(PetscObjectReference((PetscObject)rg));
439:   PetscCall(RGDestroy(&pep->rg));
440:   pep->rg = rg;
441:   PetscFunctionReturn(PETSC_SUCCESS);
442: }

444: /*@
445:    PEPGetRG - Obtain the region object associated to the
446:    polynomial eigensolver object.

448:    Not Collective

450:    Input Parameters:
451: .  pep - eigensolver context obtained from PEPCreate()

453:    Output Parameter:
454: .  rg - region context

456:    Level: advanced

458: .seealso: PEPSetRG()
459: @*/
460: PetscErrorCode PEPGetRG(PEP pep,RG *rg)
461: {
462:   PetscFunctionBegin;
464:   PetscAssertPointer(rg,2);
465:   if (!pep->rg) {
466:     PetscCall(RGCreate(PetscObjectComm((PetscObject)pep),&pep->rg));
467:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)pep->rg,(PetscObject)pep,0));
468:     PetscCall(PetscObjectSetOptions((PetscObject)pep->rg,((PetscObject)pep)->options));
469:   }
470:   *rg = pep->rg;
471:   PetscFunctionReturn(PETSC_SUCCESS);
472: }

474: /*@
475:    PEPSetDS - Associates a direct solver object to the polynomial eigensolver.

477:    Collective

479:    Input Parameters:
480: +  pep - eigensolver context obtained from PEPCreate()
481: -  ds  - the direct solver object

483:    Note:
484:    Use PEPGetDS() to retrieve the direct solver context (for example,
485:    to free it at the end of the computations).

487:    Level: advanced

489: .seealso: PEPGetDS()
490: @*/
491: PetscErrorCode PEPSetDS(PEP pep,DS ds)
492: {
493:   PetscFunctionBegin;
496:   PetscCheckSameComm(pep,1,ds,2);
497:   PetscCall(PetscObjectReference((PetscObject)ds));
498:   PetscCall(DSDestroy(&pep->ds));
499:   pep->ds = ds;
500:   PetscFunctionReturn(PETSC_SUCCESS);
501: }

503: /*@
504:    PEPGetDS - Obtain the direct solver object associated to the
505:    polynomial eigensolver object.

507:    Not Collective

509:    Input Parameters:
510: .  pep - eigensolver context obtained from PEPCreate()

512:    Output Parameter:
513: .  ds - direct solver context

515:    Level: advanced

517: .seealso: PEPSetDS()
518: @*/
519: PetscErrorCode PEPGetDS(PEP pep,DS *ds)
520: {
521:   PetscFunctionBegin;
523:   PetscAssertPointer(ds,2);
524:   if (!pep->ds) {
525:     PetscCall(DSCreate(PetscObjectComm((PetscObject)pep),&pep->ds));
526:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)pep->ds,(PetscObject)pep,0));
527:     PetscCall(PetscObjectSetOptions((PetscObject)pep->ds,((PetscObject)pep)->options));
528:   }
529:   *ds = pep->ds;
530:   PetscFunctionReturn(PETSC_SUCCESS);
531: }

533: /*@
534:    PEPSetST - Associates a spectral transformation object to the eigensolver.

536:    Collective

538:    Input Parameters:
539: +  pep - eigensolver context obtained from PEPCreate()
540: -  st   - the spectral transformation object

542:    Note:
543:    Use PEPGetST() to retrieve the spectral transformation context (for example,
544:    to free it at the end of the computations).

546:    Level: advanced

548: .seealso: PEPGetST()
549: @*/
550: PetscErrorCode PEPSetST(PEP pep,ST st)
551: {
552:   PetscFunctionBegin;
555:   PetscCheckSameComm(pep,1,st,2);
556:   PetscCall(PetscObjectReference((PetscObject)st));
557:   PetscCall(STDestroy(&pep->st));
558:   pep->st = st;
559:   PetscFunctionReturn(PETSC_SUCCESS);
560: }

562: /*@
563:    PEPGetST - Obtain the spectral transformation (ST) object associated
564:    to the eigensolver object.

566:    Not Collective

568:    Input Parameters:
569: .  pep - eigensolver context obtained from PEPCreate()

571:    Output Parameter:
572: .  st - spectral transformation context

574:    Level: intermediate

576: .seealso: PEPSetST()
577: @*/
578: PetscErrorCode PEPGetST(PEP pep,ST *st)
579: {
580:   PetscFunctionBegin;
582:   PetscAssertPointer(st,2);
583:   if (!pep->st) {
584:     PetscCall(STCreate(PetscObjectComm((PetscObject)pep),&pep->st));
585:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)pep->st,(PetscObject)pep,0));
586:     PetscCall(PetscObjectSetOptions((PetscObject)pep->st,((PetscObject)pep)->options));
587:   }
588:   *st = pep->st;
589:   PetscFunctionReturn(PETSC_SUCCESS);
590: }

592: /*@
593:    PEPRefineGetKSP - Obtain the ksp object used by the eigensolver
594:    object in the refinement phase.

596:    Collective

598:    Input Parameters:
599: .  pep - eigensolver context obtained from PEPCreate()

601:    Output Parameter:
602: .  ksp - ksp context

604:    Level: advanced

606: .seealso: PEPSetRefine()
607: @*/
608: PetscErrorCode PEPRefineGetKSP(PEP pep,KSP *ksp)
609: {
610:   MPI_Comm       comm;

612:   PetscFunctionBegin;
614:   PetscAssertPointer(ksp,2);
615:   if (!pep->refineksp) {
616:     if (pep->npart>1) {
617:       /* Split in subcomunicators */
618:       PetscCall(PetscSubcommCreate(PetscObjectComm((PetscObject)pep),&pep->refinesubc));
619:       PetscCall(PetscSubcommSetNumber(pep->refinesubc,pep->npart));
620:       PetscCall(PetscSubcommSetType(pep->refinesubc,PETSC_SUBCOMM_CONTIGUOUS));
621:       PetscCall(PetscSubcommGetChild(pep->refinesubc,&comm));
622:     } else PetscCall(PetscObjectGetComm((PetscObject)pep,&comm));
623:     PetscCall(KSPCreate(comm,&pep->refineksp));
624:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)pep->refineksp,(PetscObject)pep,0));
625:     PetscCall(PetscObjectSetOptions((PetscObject)pep->refineksp,((PetscObject)pep)->options));
626:     PetscCall(KSPSetOptionsPrefix(*ksp,((PetscObject)pep)->prefix));
627:     PetscCall(KSPAppendOptionsPrefix(*ksp,"pep_refine_"));
628:     PetscCall(KSPSetTolerances(pep->refineksp,SlepcDefaultTol(pep->rtol),PETSC_CURRENT,PETSC_CURRENT,PETSC_CURRENT));
629:   }
630:   *ksp = pep->refineksp;
631:   PetscFunctionReturn(PETSC_SUCCESS);
632: }

634: /*@
635:    PEPSetTarget - Sets the value of the target.

637:    Logically Collective

639:    Input Parameters:
640: +  pep    - eigensolver context
641: -  target - the value of the target

643:    Options Database Key:
644: .  -pep_target <scalar> - the value of the target

646:    Notes:
647:    The target is a scalar value used to determine the portion of the spectrum
648:    of interest. It is used in combination with PEPSetWhichEigenpairs().

650:    In the case of complex scalars, a complex value can be provided in the
651:    command line with [+/-][realnumber][+/-]realnumberi with no spaces, e.g.
652:    -pep_target 1.0+2.0i

654:    Level: intermediate

656: .seealso: PEPGetTarget(), PEPSetWhichEigenpairs()
657: @*/
658: PetscErrorCode PEPSetTarget(PEP pep,PetscScalar target)
659: {
660:   PetscFunctionBegin;
663:   pep->target = target;
664:   if (!pep->st) PetscCall(PEPGetST(pep,&pep->st));
665:   PetscCall(STSetDefaultShift(pep->st,target));
666:   PetscFunctionReturn(PETSC_SUCCESS);
667: }

669: /*@
670:    PEPGetTarget - Gets the value of the target.

672:    Not Collective

674:    Input Parameter:
675: .  pep - eigensolver context

677:    Output Parameter:
678: .  target - the value of the target

680:    Note:
681:    If the target was not set by the user, then zero is returned.

683:    Level: intermediate

685: .seealso: PEPSetTarget()
686: @*/
687: PetscErrorCode PEPGetTarget(PEP pep,PetscScalar* target)
688: {
689:   PetscFunctionBegin;
691:   PetscAssertPointer(target,2);
692:   *target = pep->target;
693:   PetscFunctionReturn(PETSC_SUCCESS);
694: }

696: /*@
697:    PEPSetInterval - Defines the computational interval for spectrum slicing.

699:    Logically Collective

701:    Input Parameters:
702: +  pep  - eigensolver context
703: .  inta - left end of the interval
704: -  intb - right end of the interval

706:    Options Database Key:
707: .  -pep_interval <a,b> - set [a,b] as the interval of interest

709:    Notes:
710:    Spectrum slicing is a technique employed for computing all eigenvalues of
711:    symmetric eigenproblems in a given interval. This function provides the
712:    interval to be considered. It must be used in combination with PEP_ALL, see
713:    PEPSetWhichEigenpairs().

715:    In the command-line option, two values must be provided. For an open interval,
716:    one can give an infinite, e.g., -pep_interval 1.0,inf or -pep_interval -inf,1.0.
717:    An open interval in the programmatic interface can be specified with
718:    PETSC_MAX_REAL and -PETSC_MAX_REAL.

720:    Level: intermediate

722: .seealso: PEPGetInterval(), PEPSetWhichEigenpairs()
723: @*/
724: PetscErrorCode PEPSetInterval(PEP pep,PetscReal inta,PetscReal intb)
725: {
726:   PetscFunctionBegin;
730:   PetscCheck(inta<intb,PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_WRONG,"Badly defined interval, must be inta<intb");
731:   if (pep->inta != inta || pep->intb != intb) {
732:     pep->inta = inta;
733:     pep->intb = intb;
734:     pep->state = PEP_STATE_INITIAL;
735:   }
736:   PetscFunctionReturn(PETSC_SUCCESS);
737: }

739: /*@
740:    PEPGetInterval - Gets the computational interval for spectrum slicing.

742:    Not Collective

744:    Input Parameter:
745: .  pep - eigensolver context

747:    Output Parameters:
748: +  inta - left end of the interval
749: -  intb - right end of the interval

751:    Level: intermediate

753:    Note:
754:    If the interval was not set by the user, then zeros are returned.

756: .seealso: PEPSetInterval()
757: @*/
758: PetscErrorCode PEPGetInterval(PEP pep,PetscReal* inta,PetscReal* intb)
759: {
760:   PetscFunctionBegin;
762:   if (inta) *inta = pep->inta;
763:   if (intb) *intb = pep->intb;
764:   PetscFunctionReturn(PETSC_SUCCESS);
765: }