Actual source code: nepopts.c
slepc-main 2024-11-15
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: NEP routines related to options that can be set via the command-line
12: or procedurally
13: */
15: #include <slepc/private/nepimpl.h>
16: #include <petscdraw.h>
18: /*@C
19: NEPMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type
20: indicated by the user.
22: Collective
24: Input Parameters:
25: + nep - the nonlinear eigensolver context
26: . opt - the command line option for this monitor
27: . name - the monitor type one is seeking
28: . ctx - an optional user context for the monitor, or NULL
29: - trackall - whether this monitor tracks all eigenvalues or not
31: Level: developer
33: .seealso: NEPMonitorSet(), NEPSetTrackAll()
34: @*/
35: PetscErrorCode NEPMonitorSetFromOptions(NEP nep,const char opt[],const char name[],void *ctx,PetscBool trackall)
36: {
37: PetscErrorCode (*mfunc)(NEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*);
38: PetscErrorCode (*cfunc)(PetscViewer,PetscViewerFormat,void*,PetscViewerAndFormat**);
39: PetscErrorCode (*dfunc)(PetscViewerAndFormat**);
40: PetscViewerAndFormat *vf;
41: PetscViewer viewer;
42: PetscViewerFormat format;
43: PetscViewerType vtype;
44: char key[PETSC_MAX_PATH_LEN];
45: PetscBool flg;
47: PetscFunctionBegin;
48: PetscCall(PetscOptionsCreateViewer(PetscObjectComm((PetscObject)nep),((PetscObject)nep)->options,((PetscObject)nep)->prefix,opt,&viewer,&format,&flg));
49: if (!flg) PetscFunctionReturn(PETSC_SUCCESS);
51: PetscCall(PetscViewerGetType(viewer,&vtype));
52: PetscCall(SlepcMonitorMakeKey_Internal(name,vtype,format,key));
53: PetscCall(PetscFunctionListFind(NEPMonitorList,key,&mfunc));
54: PetscCheck(mfunc,PetscObjectComm((PetscObject)nep),PETSC_ERR_SUP,"Specified viewer and format not supported");
55: PetscCall(PetscFunctionListFind(NEPMonitorCreateList,key,&cfunc));
56: PetscCall(PetscFunctionListFind(NEPMonitorDestroyList,key,&dfunc));
57: if (!cfunc) cfunc = PetscViewerAndFormatCreate_Internal;
58: if (!dfunc) dfunc = PetscViewerAndFormatDestroy;
60: PetscCall((*cfunc)(viewer,format,ctx,&vf));
61: PetscCall(PetscViewerDestroy(&viewer));
62: PetscCall(NEPMonitorSet(nep,mfunc,vf,(PetscCtxDestroyFn*)dfunc));
63: if (trackall) PetscCall(NEPSetTrackAll(nep,PETSC_TRUE));
64: PetscFunctionReturn(PETSC_SUCCESS);
65: }
67: /*@
68: NEPSetFromOptions - Sets NEP options from the options database.
69: This routine must be called before NEPSetUp() if the user is to be
70: allowed to set the solver type.
72: Collective
74: Input Parameters:
75: . nep - the nonlinear eigensolver context
77: Notes:
78: To see all options, run your program with the -help option.
80: Level: beginner
82: .seealso: NEPSetOptionsPrefix()
83: @*/
84: PetscErrorCode NEPSetFromOptions(NEP nep)
85: {
86: char type[256];
87: PetscBool set,flg,flg1,flg2,flg3,flg4,flg5,bval;
88: PetscReal r;
89: PetscScalar s;
90: PetscInt i,j,k;
91: NEPRefine refine;
92: NEPRefineScheme scheme;
94: PetscFunctionBegin;
96: PetscCall(NEPRegisterAll());
97: PetscObjectOptionsBegin((PetscObject)nep);
98: PetscCall(PetscOptionsFList("-nep_type","Nonlinear eigensolver method","NEPSetType",NEPList,(char*)(((PetscObject)nep)->type_name?((PetscObject)nep)->type_name:NEPRII),type,sizeof(type),&flg));
99: if (flg) PetscCall(NEPSetType(nep,type));
100: else if (!((PetscObject)nep)->type_name) PetscCall(NEPSetType(nep,NEPRII));
102: PetscCall(PetscOptionsBoolGroupBegin("-nep_general","General nonlinear eigenvalue problem","NEPSetProblemType",&flg));
103: if (flg) PetscCall(NEPSetProblemType(nep,NEP_GENERAL));
104: PetscCall(PetscOptionsBoolGroupEnd("-nep_rational","Rational eigenvalue problem","NEPSetProblemType",&flg));
105: if (flg) PetscCall(NEPSetProblemType(nep,NEP_RATIONAL));
107: refine = nep->refine;
108: PetscCall(PetscOptionsEnum("-nep_refine","Iterative refinement method","NEPSetRefine",NEPRefineTypes,(PetscEnum)refine,(PetscEnum*)&refine,&flg1));
109: i = nep->npart;
110: PetscCall(PetscOptionsInt("-nep_refine_partitions","Number of partitions of the communicator for iterative refinement","NEPSetRefine",nep->npart,&i,&flg2));
111: r = nep->rtol;
112: PetscCall(PetscOptionsReal("-nep_refine_tol","Tolerance for iterative refinement","NEPSetRefine",nep->rtol==(PetscReal)PETSC_DETERMINE?SLEPC_DEFAULT_TOL/1000:nep->rtol,&r,&flg3));
113: j = nep->rits;
114: PetscCall(PetscOptionsInt("-nep_refine_its","Maximum number of iterations for iterative refinement","NEPSetRefine",nep->rits,&j,&flg4));
115: scheme = nep->scheme;
116: PetscCall(PetscOptionsEnum("-nep_refine_scheme","Scheme used for linear systems within iterative refinement","NEPSetRefine",NEPRefineSchemes,(PetscEnum)scheme,(PetscEnum*)&scheme,&flg5));
117: if (flg1 || flg2 || flg3 || flg4 || flg5) PetscCall(NEPSetRefine(nep,refine,i,r,j,scheme));
119: i = nep->max_it;
120: PetscCall(PetscOptionsInt("-nep_max_it","Maximum number of iterations","NEPSetTolerances",nep->max_it,&i,&flg1));
121: r = nep->tol;
122: PetscCall(PetscOptionsReal("-nep_tol","Tolerance","NEPSetTolerances",SlepcDefaultTol(nep->tol),&r,&flg2));
123: if (flg1 || flg2) PetscCall(NEPSetTolerances(nep,r,i));
125: PetscCall(PetscOptionsBoolGroupBegin("-nep_conv_rel","Relative error convergence test","NEPSetConvergenceTest",&flg));
126: if (flg) PetscCall(NEPSetConvergenceTest(nep,NEP_CONV_REL));
127: PetscCall(PetscOptionsBoolGroup("-nep_conv_norm","Convergence test relative to the matrix norms","NEPSetConvergenceTest",&flg));
128: if (flg) PetscCall(NEPSetConvergenceTest(nep,NEP_CONV_NORM));
129: PetscCall(PetscOptionsBoolGroup("-nep_conv_abs","Absolute error convergence test","NEPSetConvergenceTest",&flg));
130: if (flg) PetscCall(NEPSetConvergenceTest(nep,NEP_CONV_ABS));
131: PetscCall(PetscOptionsBoolGroupEnd("-nep_conv_user","User-defined convergence test","NEPSetConvergenceTest",&flg));
132: if (flg) PetscCall(NEPSetConvergenceTest(nep,NEP_CONV_USER));
134: PetscCall(PetscOptionsBoolGroupBegin("-nep_stop_basic","Stop iteration if all eigenvalues converged or max_it reached","NEPSetStoppingTest",&flg));
135: if (flg) PetscCall(NEPSetStoppingTest(nep,NEP_STOP_BASIC));
136: PetscCall(PetscOptionsBoolGroupEnd("-nep_stop_user","User-defined stopping test","NEPSetStoppingTest",&flg));
137: if (flg) PetscCall(NEPSetStoppingTest(nep,NEP_STOP_USER));
139: i = nep->nev;
140: PetscCall(PetscOptionsInt("-nep_nev","Number of eigenvalues to compute","NEPSetDimensions",nep->nev,&i,&flg1));
141: j = nep->ncv;
142: PetscCall(PetscOptionsInt("-nep_ncv","Number of basis vectors","NEPSetDimensions",nep->ncv,&j,&flg2));
143: k = nep->mpd;
144: PetscCall(PetscOptionsInt("-nep_mpd","Maximum dimension of projected problem","NEPSetDimensions",nep->mpd,&k,&flg3));
145: if (flg1 || flg2 || flg3) PetscCall(NEPSetDimensions(nep,i,j,k));
147: PetscCall(PetscOptionsBoolGroupBegin("-nep_largest_magnitude","Compute largest eigenvalues in magnitude","NEPSetWhichEigenpairs",&flg));
148: if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_LARGEST_MAGNITUDE));
149: PetscCall(PetscOptionsBoolGroup("-nep_smallest_magnitude","Compute smallest eigenvalues in magnitude","NEPSetWhichEigenpairs",&flg));
150: if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_SMALLEST_MAGNITUDE));
151: PetscCall(PetscOptionsBoolGroup("-nep_largest_real","Compute eigenvalues with largest real parts","NEPSetWhichEigenpairs",&flg));
152: if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_LARGEST_REAL));
153: PetscCall(PetscOptionsBoolGroup("-nep_smallest_real","Compute eigenvalues with smallest real parts","NEPSetWhichEigenpairs",&flg));
154: if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_SMALLEST_REAL));
155: PetscCall(PetscOptionsBoolGroup("-nep_largest_imaginary","Compute eigenvalues with largest imaginary parts","NEPSetWhichEigenpairs",&flg));
156: if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_LARGEST_IMAGINARY));
157: PetscCall(PetscOptionsBoolGroup("-nep_smallest_imaginary","Compute eigenvalues with smallest imaginary parts","NEPSetWhichEigenpairs",&flg));
158: if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_SMALLEST_IMAGINARY));
159: PetscCall(PetscOptionsBoolGroup("-nep_target_magnitude","Compute eigenvalues closest to target","NEPSetWhichEigenpairs",&flg));
160: if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_TARGET_MAGNITUDE));
161: PetscCall(PetscOptionsBoolGroup("-nep_target_real","Compute eigenvalues with real parts closest to target","NEPSetWhichEigenpairs",&flg));
162: if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_TARGET_REAL));
163: PetscCall(PetscOptionsBoolGroup("-nep_target_imaginary","Compute eigenvalues with imaginary parts closest to target","NEPSetWhichEigenpairs",&flg));
164: if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_TARGET_IMAGINARY));
165: PetscCall(PetscOptionsBoolGroupEnd("-nep_all","Compute all eigenvalues in a region","NEPSetWhichEigenpairs",&flg));
166: if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_ALL));
168: PetscCall(PetscOptionsScalar("-nep_target","Value of the target","NEPSetTarget",nep->target,&s,&flg));
169: if (flg) {
170: if (nep->which!=NEP_TARGET_REAL && nep->which!=NEP_TARGET_IMAGINARY) PetscCall(NEPSetWhichEigenpairs(nep,NEP_TARGET_MAGNITUDE));
171: PetscCall(NEPSetTarget(nep,s));
172: }
174: PetscCall(PetscOptionsBool("-nep_two_sided","Use two-sided variant (to compute left eigenvectors)","NEPSetTwoSided",nep->twosided,&bval,&flg));
175: if (flg) PetscCall(NEPSetTwoSided(nep,bval));
177: /* -----------------------------------------------------------------------*/
178: /*
179: Cancels all monitors hardwired into code before call to NEPSetFromOptions()
180: */
181: PetscCall(PetscOptionsBool("-nep_monitor_cancel","Remove any hardwired monitor routines","NEPMonitorCancel",PETSC_FALSE,&flg,&set));
182: if (set && flg) PetscCall(NEPMonitorCancel(nep));
183: PetscCall(NEPMonitorSetFromOptions(nep,"-nep_monitor","first_approximation",NULL,PETSC_FALSE));
184: PetscCall(NEPMonitorSetFromOptions(nep,"-nep_monitor_all","all_approximations",NULL,PETSC_TRUE));
185: PetscCall(NEPMonitorSetFromOptions(nep,"-nep_monitor_conv","convergence_history",NULL,PETSC_FALSE));
187: /* -----------------------------------------------------------------------*/
188: PetscCall(PetscOptionsName("-nep_view","Print detailed information on solver used","NEPView",&set));
189: PetscCall(PetscOptionsName("-nep_view_vectors","View computed eigenvectors","NEPVectorsView",&set));
190: PetscCall(PetscOptionsName("-nep_view_values","View computed eigenvalues","NEPValuesView",&set));
191: PetscCall(PetscOptionsName("-nep_converged_reason","Print reason for convergence, and number of iterations","NEPConvergedReasonView",&set));
192: PetscCall(PetscOptionsName("-nep_error_absolute","Print absolute errors of each eigenpair","NEPErrorView",&set));
193: PetscCall(PetscOptionsName("-nep_error_relative","Print relative errors of each eigenpair","NEPErrorView",&set));
195: PetscTryTypeMethod(nep,setfromoptions,PetscOptionsObject);
196: PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)nep,PetscOptionsObject));
197: PetscOptionsEnd();
199: if (!nep->V) PetscCall(NEPGetBV(nep,&nep->V));
200: PetscCall(BVSetFromOptions(nep->V));
201: if (!nep->rg) PetscCall(NEPGetRG(nep,&nep->rg));
202: PetscCall(RGSetFromOptions(nep->rg));
203: if (nep->useds) {
204: if (!nep->ds) PetscCall(NEPGetDS(nep,&nep->ds));
205: PetscCall(NEPSetDSType(nep));
206: PetscCall(DSSetFromOptions(nep->ds));
207: }
208: if (!nep->refineksp) PetscCall(NEPRefineGetKSP(nep,&nep->refineksp));
209: PetscCall(KSPSetFromOptions(nep->refineksp));
210: if (nep->fui==NEP_USER_INTERFACE_SPLIT) for (i=0;i<nep->nt;i++) PetscCall(FNSetFromOptions(nep->f[i]));
211: PetscFunctionReturn(PETSC_SUCCESS);
212: }
214: /*@
215: NEPGetTolerances - Gets the tolerance and maximum iteration count used
216: by the NEP convergence tests.
218: Not Collective
220: Input Parameter:
221: . nep - the nonlinear eigensolver context
223: Output Parameters:
224: + tol - the convergence tolerance
225: - maxits - maximum number of iterations
227: Notes:
228: The user can specify NULL for any parameter that is not needed.
230: Level: intermediate
232: .seealso: NEPSetTolerances()
233: @*/
234: PetscErrorCode NEPGetTolerances(NEP nep,PetscReal *tol,PetscInt *maxits)
235: {
236: PetscFunctionBegin;
238: if (tol) *tol = nep->tol;
239: if (maxits) *maxits = nep->max_it;
240: PetscFunctionReturn(PETSC_SUCCESS);
241: }
243: /*@
244: NEPSetTolerances - Sets the tolerance and maximum iteration count used
245: by the NEP convergence tests.
247: Logically Collective
249: Input Parameters:
250: + nep - the nonlinear eigensolver context
251: . tol - the convergence tolerance
252: - maxits - maximum number of iterations to use
254: Options Database Keys:
255: + -nep_tol <tol> - Sets the convergence tolerance
256: - -nep_max_it <maxits> - Sets the maximum number of iterations allowed
258: Notes:
259: Use PETSC_CURRENT to retain the current value of any of the parameters.
260: Use PETSC_DETERMINE for either argument to assign a default value computed
261: internally (may be different in each solver).
262: For maxits use PETSC_UMLIMITED to indicate there is no upper bound on this value.
264: Level: intermediate
266: .seealso: NEPGetTolerances()
267: @*/
268: PetscErrorCode NEPSetTolerances(NEP nep,PetscReal tol,PetscInt maxits)
269: {
270: PetscFunctionBegin;
274: if (tol == (PetscReal)PETSC_DETERMINE) {
275: nep->tol = PETSC_DETERMINE;
276: nep->state = NEP_STATE_INITIAL;
277: } else if (tol != (PetscReal)PETSC_CURRENT) {
278: PetscCheck(tol>0.0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
279: nep->tol = tol;
280: }
281: if (maxits == PETSC_DETERMINE) {
282: nep->max_it = PETSC_DETERMINE;
283: nep->state = NEP_STATE_INITIAL;
284: } else if (maxits == PETSC_UNLIMITED) {
285: nep->max_it = PETSC_INT_MAX;
286: } else if (maxits != PETSC_CURRENT) {
287: PetscCheck(maxits>0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of maxits. Must be > 0");
288: nep->max_it = maxits;
289: }
290: PetscFunctionReturn(PETSC_SUCCESS);
291: }
293: /*@
294: NEPGetDimensions - Gets the number of eigenvalues to compute
295: and the dimension of the subspace.
297: Not Collective
299: Input Parameter:
300: . nep - the nonlinear eigensolver context
302: Output Parameters:
303: + nev - number of eigenvalues to compute
304: . ncv - the maximum dimension of the subspace to be used by the solver
305: - mpd - the maximum dimension allowed for the projected problem
307: Notes:
308: The user can specify NULL for any parameter that is not needed.
310: Level: intermediate
312: .seealso: NEPSetDimensions()
313: @*/
314: PetscErrorCode NEPGetDimensions(NEP nep,PetscInt *nev,PetscInt *ncv,PetscInt *mpd)
315: {
316: PetscFunctionBegin;
318: if (nev) *nev = nep->nev;
319: if (ncv) *ncv = nep->ncv;
320: if (mpd) *mpd = nep->mpd;
321: PetscFunctionReturn(PETSC_SUCCESS);
322: }
324: /*@
325: NEPSetDimensions - Sets the number of eigenvalues to compute
326: and the dimension of the subspace.
328: Logically Collective
330: Input Parameters:
331: + nep - the nonlinear eigensolver context
332: . nev - number of eigenvalues to compute
333: . ncv - the maximum dimension of the subspace to be used by the solver
334: - mpd - the maximum dimension allowed for the projected problem
336: Options Database Keys:
337: + -nep_nev <nev> - Sets the number of eigenvalues
338: . -nep_ncv <ncv> - Sets the dimension of the subspace
339: - -nep_mpd <mpd> - Sets the maximum projected dimension
341: Notes:
342: Use PETSC_DETERMINE for ncv and mpd to assign a reasonably good value, which is
343: dependent on the solution method. For any of the arguments, use PETSC_CURRENT
344: to preserve the current value.
346: The parameters ncv and mpd are intimately related, so that the user is advised
347: to set one of them at most. Normal usage is that
348: (a) in cases where nev is small, the user sets ncv (a reasonable default is 2*nev); and
349: (b) in cases where nev is large, the user sets mpd.
351: The value of ncv should always be between nev and (nev+mpd), typically
352: ncv=nev+mpd. If nev is not too large, mpd=nev is a reasonable choice, otherwise
353: a smaller value should be used.
355: Level: intermediate
357: .seealso: NEPGetDimensions()
358: @*/
359: PetscErrorCode NEPSetDimensions(NEP nep,PetscInt nev,PetscInt ncv,PetscInt mpd)
360: {
361: PetscFunctionBegin;
366: if (nev != PETSC_CURRENT) {
367: PetscCheck(nev>0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of nev. Must be > 0");
368: nep->nev = nev;
369: }
370: if (ncv == PETSC_DETERMINE) {
371: nep->ncv = PETSC_DETERMINE;
372: } else if (ncv != PETSC_CURRENT) {
373: PetscCheck(ncv>0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of ncv. Must be > 0");
374: nep->ncv = ncv;
375: }
376: if (mpd == PETSC_DETERMINE) {
377: nep->mpd = PETSC_DETERMINE;
378: } else if (mpd != PETSC_CURRENT) {
379: PetscCheck(mpd>0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of mpd. Must be > 0");
380: nep->mpd = mpd;
381: }
382: nep->state = NEP_STATE_INITIAL;
383: PetscFunctionReturn(PETSC_SUCCESS);
384: }
386: /*@
387: NEPSetWhichEigenpairs - Specifies which portion of the spectrum is
388: to be sought.
390: Logically Collective
392: Input Parameters:
393: + nep - eigensolver context obtained from NEPCreate()
394: - which - the portion of the spectrum to be sought
396: Options Database Keys:
397: + -nep_largest_magnitude - Sets largest eigenvalues in magnitude
398: . -nep_smallest_magnitude - Sets smallest eigenvalues in magnitude
399: . -nep_largest_real - Sets largest real parts
400: . -nep_smallest_real - Sets smallest real parts
401: . -nep_largest_imaginary - Sets largest imaginary parts
402: . -nep_smallest_imaginary - Sets smallest imaginary parts
403: . -nep_target_magnitude - Sets eigenvalues closest to target
404: . -nep_target_real - Sets real parts closest to target
405: . -nep_target_imaginary - Sets imaginary parts closest to target
406: - -nep_all - Sets all eigenvalues in a region
408: Notes:
409: The parameter 'which' can have one of these values
411: + NEP_LARGEST_MAGNITUDE - largest eigenvalues in magnitude (default)
412: . NEP_SMALLEST_MAGNITUDE - smallest eigenvalues in magnitude
413: . NEP_LARGEST_REAL - largest real parts
414: . NEP_SMALLEST_REAL - smallest real parts
415: . NEP_LARGEST_IMAGINARY - largest imaginary parts
416: . NEP_SMALLEST_IMAGINARY - smallest imaginary parts
417: . NEP_TARGET_MAGNITUDE - eigenvalues closest to the target (in magnitude)
418: . NEP_TARGET_REAL - eigenvalues with real part closest to target
419: . NEP_TARGET_IMAGINARY - eigenvalues with imaginary part closest to target
420: . NEP_ALL - all eigenvalues contained in a given region
421: - NEP_WHICH_USER - user defined ordering set with NEPSetEigenvalueComparison()
423: Not all eigensolvers implemented in NEP account for all the possible values
424: stated above. If SLEPc is compiled for real numbers NEP_LARGEST_IMAGINARY
425: and NEP_SMALLEST_IMAGINARY use the absolute value of the imaginary part
426: for eigenvalue selection.
428: The target is a scalar value provided with NEPSetTarget().
430: NEP_ALL is intended for use in the context of the CISS solver for
431: computing all eigenvalues in a region.
433: Level: intermediate
435: .seealso: NEPGetWhichEigenpairs(), NEPSetTarget(), NEPSetEigenvalueComparison(), NEPWhich
436: @*/
437: PetscErrorCode NEPSetWhichEigenpairs(NEP nep,NEPWhich which)
438: {
439: PetscFunctionBegin;
442: switch (which) {
443: case NEP_LARGEST_MAGNITUDE:
444: case NEP_SMALLEST_MAGNITUDE:
445: case NEP_LARGEST_REAL:
446: case NEP_SMALLEST_REAL:
447: case NEP_LARGEST_IMAGINARY:
448: case NEP_SMALLEST_IMAGINARY:
449: case NEP_TARGET_MAGNITUDE:
450: case NEP_TARGET_REAL:
451: #if defined(PETSC_USE_COMPLEX)
452: case NEP_TARGET_IMAGINARY:
453: #endif
454: case NEP_ALL:
455: case NEP_WHICH_USER:
456: if (nep->which != which) {
457: nep->state = NEP_STATE_INITIAL;
458: nep->which = which;
459: }
460: break;
461: #if !defined(PETSC_USE_COMPLEX)
462: case NEP_TARGET_IMAGINARY:
463: SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_SUP,"NEP_TARGET_IMAGINARY can be used only with complex scalars");
464: #endif
465: default:
466: SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'which' value");
467: }
468: PetscFunctionReturn(PETSC_SUCCESS);
469: }
471: /*@
472: NEPGetWhichEigenpairs - Returns which portion of the spectrum is to be
473: sought.
475: Not Collective
477: Input Parameter:
478: . nep - eigensolver context obtained from NEPCreate()
480: Output Parameter:
481: . which - the portion of the spectrum to be sought
483: Notes:
484: See NEPSetWhichEigenpairs() for possible values of 'which'.
486: Level: intermediate
488: .seealso: NEPSetWhichEigenpairs(), NEPWhich
489: @*/
490: PetscErrorCode NEPGetWhichEigenpairs(NEP nep,NEPWhich *which)
491: {
492: PetscFunctionBegin;
494: PetscAssertPointer(which,2);
495: *which = nep->which;
496: PetscFunctionReturn(PETSC_SUCCESS);
497: }
499: /*@C
500: NEPSetEigenvalueComparison - Specifies the eigenvalue comparison function
501: when NEPSetWhichEigenpairs() is set to NEP_WHICH_USER.
503: Logically Collective
505: Input Parameters:
506: + nep - eigensolver context obtained from NEPCreate()
507: . comp - a pointer to the comparison function
508: - ctx - a context pointer (the last parameter to the comparison function)
510: Calling sequence of comp:
511: $ PetscErrorCode comp(PetscScalar ar,PetscScalar ai,PetscScalar br,PetscScalar bi,PetscInt *res,void *ctx)
512: + ar - real part of the 1st eigenvalue
513: . ai - imaginary part of the 1st eigenvalue
514: . br - real part of the 2nd eigenvalue
515: . bi - imaginary part of the 2nd eigenvalue
516: . res - result of comparison
517: - ctx - optional context, as set by NEPSetEigenvalueComparison()
519: Note:
520: The returning parameter 'res' can be
521: + negative - if the 1st eigenvalue is preferred to the 2st one
522: . zero - if both eigenvalues are equally preferred
523: - positive - if the 2st eigenvalue is preferred to the 1st one
525: Level: advanced
527: .seealso: NEPSetWhichEigenpairs(), NEPWhich
528: @*/
529: PetscErrorCode NEPSetEigenvalueComparison(NEP nep,PetscErrorCode (*comp)(PetscScalar ar,PetscScalar ai,PetscScalar br,PetscScalar bi,PetscInt *res,void *ctx),void* ctx)
530: {
531: PetscFunctionBegin;
533: nep->sc->comparison = comp;
534: nep->sc->comparisonctx = ctx;
535: nep->which = NEP_WHICH_USER;
536: PetscFunctionReturn(PETSC_SUCCESS);
537: }
539: /*@
540: NEPSetProblemType - Specifies the type of the nonlinear eigenvalue problem.
542: Logically Collective
544: Input Parameters:
545: + nep - the nonlinear eigensolver context
546: - type - a known type of nonlinear eigenvalue problem
548: Options Database Keys:
549: + -nep_general - general problem with no particular structure
550: - -nep_rational - a rational eigenvalue problem defined in split form with all f_i rational
552: Notes:
553: Allowed values for the problem type are general (NEP_GENERAL), and rational
554: (NEP_RATIONAL).
556: This function is used to provide a hint to the NEP solver to exploit certain
557: properties of the nonlinear eigenproblem. This hint may be used or not,
558: depending on the solver. By default, no particular structure is assumed.
560: Level: intermediate
562: .seealso: NEPSetType(), NEPGetProblemType(), NEPProblemType
563: @*/
564: PetscErrorCode NEPSetProblemType(NEP nep,NEPProblemType type)
565: {
566: PetscFunctionBegin;
569: PetscCheck(type==NEP_GENERAL || type==NEP_RATIONAL,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_WRONG,"Unknown eigenvalue problem type");
570: if (type != nep->problem_type) {
571: nep->problem_type = type;
572: nep->state = NEP_STATE_INITIAL;
573: }
574: PetscFunctionReturn(PETSC_SUCCESS);
575: }
577: /*@
578: NEPGetProblemType - Gets the problem type from the NEP object.
580: Not Collective
582: Input Parameter:
583: . nep - the nonlinear eigensolver context
585: Output Parameter:
586: . type - the problem type
588: Level: intermediate
590: .seealso: NEPSetProblemType(), NEPProblemType
591: @*/
592: PetscErrorCode NEPGetProblemType(NEP nep,NEPProblemType *type)
593: {
594: PetscFunctionBegin;
596: PetscAssertPointer(type,2);
597: *type = nep->problem_type;
598: PetscFunctionReturn(PETSC_SUCCESS);
599: }
601: /*@
602: NEPSetTwoSided - Sets the solver to use a two-sided variant so that left
603: eigenvectors are also computed.
605: Logically Collective
607: Input Parameters:
608: + nep - the eigensolver context
609: - twosided - whether the two-sided variant is to be used or not
611: Options Database Keys:
612: . -nep_two_sided <boolean> - Sets/resets the twosided flag
614: Notes:
615: If the user sets twosided=PETSC_TRUE then the solver uses a variant of
616: the algorithm that computes both right and left eigenvectors. This is
617: usually much more costly. This option is not available in all solvers.
619: When using two-sided solvers, the problem matrices must have both the
620: MatMult and MatMultTranspose operations defined.
622: Level: advanced
624: .seealso: NEPGetTwoSided(), NEPGetLeftEigenvector()
625: @*/
626: PetscErrorCode NEPSetTwoSided(NEP nep,PetscBool twosided)
627: {
628: PetscFunctionBegin;
631: if (twosided!=nep->twosided) {
632: nep->twosided = twosided;
633: nep->state = NEP_STATE_INITIAL;
634: }
635: PetscFunctionReturn(PETSC_SUCCESS);
636: }
638: /*@
639: NEPGetTwoSided - Returns the flag indicating whether a two-sided variant
640: of the algorithm is being used or not.
642: Not Collective
644: Input Parameter:
645: . nep - the eigensolver context
647: Output Parameter:
648: . twosided - the returned flag
650: Level: advanced
652: .seealso: NEPSetTwoSided()
653: @*/
654: PetscErrorCode NEPGetTwoSided(NEP nep,PetscBool *twosided)
655: {
656: PetscFunctionBegin;
658: PetscAssertPointer(twosided,2);
659: *twosided = nep->twosided;
660: PetscFunctionReturn(PETSC_SUCCESS);
661: }
663: /*@C
664: NEPSetConvergenceTestFunction - Sets a function to compute the error estimate
665: used in the convergence test.
667: Logically Collective
669: Input Parameters:
670: + nep - nonlinear eigensolver context obtained from NEPCreate()
671: . conv - convergence test function, see NEPConvergenceTestFn for the calling sequence
672: . ctx - context for private data for the convergence routine (may be NULL)
673: - destroy - a routine for destroying the context (may be NULL), see PetscCtxDestroyFn for the calling sequence
675: Note:
676: If the error estimate returned by the convergence test function is less than
677: the tolerance, then the eigenvalue is accepted as converged.
679: Level: advanced
681: .seealso: NEPSetConvergenceTest(), NEPSetTolerances()
682: @*/
683: PetscErrorCode NEPSetConvergenceTestFunction(NEP nep,NEPConvergenceTestFn *conv,void* ctx,PetscCtxDestroyFn *destroy)
684: {
685: PetscFunctionBegin;
687: if (nep->convergeddestroy) PetscCall((*nep->convergeddestroy)(&nep->convergedctx));
688: nep->convergeduser = conv;
689: nep->convergeddestroy = destroy;
690: nep->convergedctx = ctx;
691: if (conv == NEPConvergedRelative) nep->conv = NEP_CONV_REL;
692: else if (conv == NEPConvergedNorm) nep->conv = NEP_CONV_NORM;
693: else if (conv == NEPConvergedAbsolute) nep->conv = NEP_CONV_ABS;
694: else {
695: nep->conv = NEP_CONV_USER;
696: nep->converged = nep->convergeduser;
697: }
698: PetscFunctionReturn(PETSC_SUCCESS);
699: }
701: /*@
702: NEPSetConvergenceTest - Specifies how to compute the error estimate
703: used in the convergence test.
705: Logically Collective
707: Input Parameters:
708: + nep - nonlinear eigensolver context obtained from NEPCreate()
709: - conv - the type of convergence test
711: Options Database Keys:
712: + -nep_conv_abs - Sets the absolute convergence test
713: . -nep_conv_rel - Sets the convergence test relative to the eigenvalue
714: - -nep_conv_user - Selects the user-defined convergence test
716: Note:
717: The parameter 'conv' can have one of these values
718: + NEP_CONV_ABS - absolute error ||r||
719: . NEP_CONV_REL - error relative to the eigenvalue l, ||r||/|l|
720: . NEP_CONV_NORM - error relative matrix norms, ||r||/sum_i(|f_i(l)|*||A_i||)
721: - NEP_CONV_USER - function set by NEPSetConvergenceTestFunction()
723: Level: intermediate
725: .seealso: NEPGetConvergenceTest(), NEPSetConvergenceTestFunction(), NEPSetStoppingTest(), NEPConv
726: @*/
727: PetscErrorCode NEPSetConvergenceTest(NEP nep,NEPConv conv)
728: {
729: PetscFunctionBegin;
732: switch (conv) {
733: case NEP_CONV_ABS: nep->converged = NEPConvergedAbsolute; break;
734: case NEP_CONV_REL: nep->converged = NEPConvergedRelative; break;
735: case NEP_CONV_NORM: nep->converged = NEPConvergedNorm; break;
736: case NEP_CONV_USER:
737: PetscCheck(nep->convergeduser,PetscObjectComm((PetscObject)nep),PETSC_ERR_ORDER,"Must call NEPSetConvergenceTestFunction() first");
738: nep->converged = nep->convergeduser;
739: break;
740: default:
741: SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'conv' value");
742: }
743: nep->conv = conv;
744: PetscFunctionReturn(PETSC_SUCCESS);
745: }
747: /*@
748: NEPGetConvergenceTest - Gets the method used to compute the error estimate
749: used in the convergence test.
751: Not Collective
753: Input Parameters:
754: . nep - nonlinear eigensolver context obtained from NEPCreate()
756: Output Parameters:
757: . conv - the type of convergence test
759: Level: intermediate
761: .seealso: NEPSetConvergenceTest(), NEPConv
762: @*/
763: PetscErrorCode NEPGetConvergenceTest(NEP nep,NEPConv *conv)
764: {
765: PetscFunctionBegin;
767: PetscAssertPointer(conv,2);
768: *conv = nep->conv;
769: PetscFunctionReturn(PETSC_SUCCESS);
770: }
772: /*@C
773: NEPSetStoppingTestFunction - Sets a function to decide when to stop the outer
774: iteration of the eigensolver.
776: Logically Collective
778: Input Parameters:
779: + nep - nonlinear eigensolver context obtained from NEPCreate()
780: . stop - the stopping test function, see NEPStoppingTestFn for the calling sequence
781: . ctx - context for private data for the stopping routine (may be NULL)
782: - destroy - a routine for destroying the context (may be NULL), see PetscCtxDestroyFn for the calling sequence
784: Note:
785: Normal usage is to first call the default routine NEPStoppingBasic() and then
786: set reason to NEP_CONVERGED_USER if some user-defined conditions have been
787: met. To let the eigensolver continue iterating, the result must be left as
788: NEP_CONVERGED_ITERATING.
790: Level: advanced
792: .seealso: NEPSetStoppingTest(), NEPStoppingBasic()
793: @*/
794: PetscErrorCode NEPSetStoppingTestFunction(NEP nep,NEPStoppingTestFn *stop,void* ctx,PetscCtxDestroyFn *destroy)
795: {
796: PetscFunctionBegin;
798: if (nep->stoppingdestroy) PetscCall((*nep->stoppingdestroy)(&nep->stoppingctx));
799: nep->stoppinguser = stop;
800: nep->stoppingdestroy = destroy;
801: nep->stoppingctx = ctx;
802: if (stop == NEPStoppingBasic) nep->stop = NEP_STOP_BASIC;
803: else {
804: nep->stop = NEP_STOP_USER;
805: nep->stopping = nep->stoppinguser;
806: }
807: PetscFunctionReturn(PETSC_SUCCESS);
808: }
810: /*@
811: NEPSetStoppingTest - Specifies how to decide the termination of the outer
812: loop of the eigensolver.
814: Logically Collective
816: Input Parameters:
817: + nep - nonlinear eigensolver context obtained from NEPCreate()
818: - stop - the type of stopping test
820: Options Database Keys:
821: + -nep_stop_basic - Sets the default stopping test
822: - -nep_stop_user - Selects the user-defined stopping test
824: Note:
825: The parameter 'stop' can have one of these values
826: + NEP_STOP_BASIC - default stopping test
827: - NEP_STOP_USER - function set by NEPSetStoppingTestFunction()
829: Level: advanced
831: .seealso: NEPGetStoppingTest(), NEPSetStoppingTestFunction(), NEPSetConvergenceTest(), NEPStop
832: @*/
833: PetscErrorCode NEPSetStoppingTest(NEP nep,NEPStop stop)
834: {
835: PetscFunctionBegin;
838: switch (stop) {
839: case NEP_STOP_BASIC: nep->stopping = NEPStoppingBasic; break;
840: case NEP_STOP_USER:
841: PetscCheck(nep->stoppinguser,PetscObjectComm((PetscObject)nep),PETSC_ERR_ORDER,"Must call NEPSetStoppingTestFunction() first");
842: nep->stopping = nep->stoppinguser;
843: break;
844: default:
845: SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'stop' value");
846: }
847: nep->stop = stop;
848: PetscFunctionReturn(PETSC_SUCCESS);
849: }
851: /*@
852: NEPGetStoppingTest - Gets the method used to decide the termination of the outer
853: loop of the eigensolver.
855: Not Collective
857: Input Parameters:
858: . nep - nonlinear eigensolver context obtained from NEPCreate()
860: Output Parameters:
861: . stop - the type of stopping test
863: Level: advanced
865: .seealso: NEPSetStoppingTest(), NEPStop
866: @*/
867: PetscErrorCode NEPGetStoppingTest(NEP nep,NEPStop *stop)
868: {
869: PetscFunctionBegin;
871: PetscAssertPointer(stop,2);
872: *stop = nep->stop;
873: PetscFunctionReturn(PETSC_SUCCESS);
874: }
876: /*@
877: NEPSetTrackAll - Specifies if the solver must compute the residual of all
878: approximate eigenpairs or not.
880: Logically Collective
882: Input Parameters:
883: + nep - the eigensolver context
884: - trackall - whether compute all residuals or not
886: Notes:
887: If the user sets trackall=PETSC_TRUE then the solver explicitly computes
888: the residual for each eigenpair approximation. Computing the residual is
889: usually an expensive operation and solvers commonly compute the associated
890: residual to the first unconverged eigenpair.
892: The option '-nep_monitor_all' automatically activates this option.
894: Level: developer
896: .seealso: NEPGetTrackAll()
897: @*/
898: PetscErrorCode NEPSetTrackAll(NEP nep,PetscBool trackall)
899: {
900: PetscFunctionBegin;
903: nep->trackall = trackall;
904: PetscFunctionReturn(PETSC_SUCCESS);
905: }
907: /*@
908: NEPGetTrackAll - Returns the flag indicating whether all residual norms must
909: be computed or not.
911: Not Collective
913: Input Parameter:
914: . nep - the eigensolver context
916: Output Parameter:
917: . trackall - the returned flag
919: Level: developer
921: .seealso: NEPSetTrackAll()
922: @*/
923: PetscErrorCode NEPGetTrackAll(NEP nep,PetscBool *trackall)
924: {
925: PetscFunctionBegin;
927: PetscAssertPointer(trackall,2);
928: *trackall = nep->trackall;
929: PetscFunctionReturn(PETSC_SUCCESS);
930: }
932: /*@
933: NEPSetRefine - Specifies the refinement type (and options) to be used
934: after the solve.
936: Logically Collective
938: Input Parameters:
939: + nep - the nonlinear eigensolver context
940: . refine - refinement type
941: . npart - number of partitions of the communicator
942: . tol - the convergence tolerance
943: . its - maximum number of refinement iterations
944: - scheme - which scheme to be used for solving the involved linear systems
946: Options Database Keys:
947: + -nep_refine <type> - refinement type, one of <none,simple,multiple>
948: . -nep_refine_partitions <n> - the number of partitions
949: . -nep_refine_tol <tol> - the tolerance
950: . -nep_refine_its <its> - number of iterations
951: - -nep_refine_scheme - to set the scheme for the linear solves
953: Notes:
954: By default, iterative refinement is disabled, since it may be very
955: costly. There are two possible refinement strategies, simple and multiple.
956: The simple approach performs iterative refinement on each of the
957: converged eigenpairs individually, whereas the multiple strategy works
958: with the invariant pair as a whole, refining all eigenpairs simultaneously.
959: The latter may be required for the case of multiple eigenvalues.
961: In some cases, especially when using direct solvers within the
962: iterative refinement method, it may be helpful for improved scalability
963: to split the communicator in several partitions. The npart parameter
964: indicates how many partitions to use (defaults to 1).
966: The tol and its parameters specify the stopping criterion. In the simple
967: method, refinement continues until the residual of each eigenpair is
968: below the tolerance (tol defaults to the NEP tol, but may be set to a
969: different value). In contrast, the multiple method simply performs its
970: refinement iterations (just one by default).
972: The scheme argument is used to change the way in which linear systems are
973: solved. Possible choices are explicit, mixed block elimination (MBE),
974: and Schur complement.
976: Use PETSC_CURRENT to retain the current value of npart, tol or its. Use
977: PETSC_DETERMINE to assign a default value.
979: Level: intermediate
981: .seealso: NEPGetRefine()
982: @*/
983: PetscErrorCode NEPSetRefine(NEP nep,NEPRefine refine,PetscInt npart,PetscReal tol,PetscInt its,NEPRefineScheme scheme)
984: {
985: PetscMPIInt size;
987: PetscFunctionBegin;
994: nep->refine = refine;
995: if (refine) { /* process parameters only if not REFINE_NONE */
996: if (npart!=nep->npart) {
997: PetscCall(PetscSubcommDestroy(&nep->refinesubc));
998: PetscCall(KSPDestroy(&nep->refineksp));
999: }
1000: if (npart == PETSC_DETERMINE) {
1001: nep->npart = 1;
1002: } else if (npart != PETSC_CURRENT) {
1003: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)nep),&size));
1004: PetscCheck(npart>0 && npart<=size,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of npart");
1005: nep->npart = npart;
1006: }
1007: if (tol == (PetscReal)PETSC_DETERMINE) {
1008: nep->rtol = PETSC_DETERMINE;
1009: } else if (tol != (PetscReal)PETSC_CURRENT) {
1010: PetscCheck(tol>0.0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
1011: nep->rtol = tol;
1012: }
1013: if (its==PETSC_DETERMINE) {
1014: nep->rits = PETSC_DETERMINE;
1015: } else if (its != PETSC_CURRENT) {
1016: PetscCheck(its>=0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of its. Must be >= 0");
1017: nep->rits = its;
1018: }
1019: nep->scheme = scheme;
1020: }
1021: nep->state = NEP_STATE_INITIAL;
1022: PetscFunctionReturn(PETSC_SUCCESS);
1023: }
1025: /*@
1026: NEPGetRefine - Gets the refinement strategy used by the NEP object, and the
1027: associated parameters.
1029: Not Collective
1031: Input Parameter:
1032: . nep - the nonlinear eigensolver context
1034: Output Parameters:
1035: + refine - refinement type
1036: . npart - number of partitions of the communicator
1037: . tol - the convergence tolerance
1038: . its - maximum number of refinement iterations
1039: - scheme - the scheme used for solving linear systems
1041: Level: intermediate
1043: Note:
1044: The user can specify NULL for any parameter that is not needed.
1046: .seealso: NEPSetRefine()
1047: @*/
1048: PetscErrorCode NEPGetRefine(NEP nep,NEPRefine *refine,PetscInt *npart,PetscReal *tol,PetscInt *its,NEPRefineScheme *scheme)
1049: {
1050: PetscFunctionBegin;
1052: if (refine) *refine = nep->refine;
1053: if (npart) *npart = nep->npart;
1054: if (tol) *tol = nep->rtol;
1055: if (its) *its = nep->rits;
1056: if (scheme) *scheme = nep->scheme;
1057: PetscFunctionReturn(PETSC_SUCCESS);
1058: }
1060: /*@
1061: NEPSetOptionsPrefix - Sets the prefix used for searching for all
1062: NEP options in the database.
1064: Logically Collective
1066: Input Parameters:
1067: + nep - the nonlinear eigensolver context
1068: - prefix - the prefix string to prepend to all NEP option requests
1070: Notes:
1071: A hyphen (-) must NOT be given at the beginning of the prefix name.
1072: The first character of all runtime options is AUTOMATICALLY the
1073: hyphen.
1075: For example, to distinguish between the runtime options for two
1076: different NEP contexts, one could call
1077: .vb
1078: NEPSetOptionsPrefix(nep1,"neig1_")
1079: NEPSetOptionsPrefix(nep2,"neig2_")
1080: .ve
1082: Level: advanced
1084: .seealso: NEPAppendOptionsPrefix(), NEPGetOptionsPrefix()
1085: @*/
1086: PetscErrorCode NEPSetOptionsPrefix(NEP nep,const char *prefix)
1087: {
1088: PetscFunctionBegin;
1090: if (!nep->V) PetscCall(NEPGetBV(nep,&nep->V));
1091: PetscCall(BVSetOptionsPrefix(nep->V,prefix));
1092: if (!nep->ds) PetscCall(NEPGetDS(nep,&nep->ds));
1093: PetscCall(DSSetOptionsPrefix(nep->ds,prefix));
1094: if (!nep->rg) PetscCall(NEPGetRG(nep,&nep->rg));
1095: PetscCall(RGSetOptionsPrefix(nep->rg,prefix));
1096: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)nep,prefix));
1097: PetscFunctionReturn(PETSC_SUCCESS);
1098: }
1100: /*@
1101: NEPAppendOptionsPrefix - Appends to the prefix used for searching for all
1102: NEP options in the database.
1104: Logically Collective
1106: Input Parameters:
1107: + nep - the nonlinear eigensolver context
1108: - prefix - the prefix string to prepend to all NEP option requests
1110: Notes:
1111: A hyphen (-) must NOT be given at the beginning of the prefix name.
1112: The first character of all runtime options is AUTOMATICALLY the hyphen.
1114: Level: advanced
1116: .seealso: NEPSetOptionsPrefix(), NEPGetOptionsPrefix()
1117: @*/
1118: PetscErrorCode NEPAppendOptionsPrefix(NEP nep,const char *prefix)
1119: {
1120: PetscFunctionBegin;
1122: if (!nep->V) PetscCall(NEPGetBV(nep,&nep->V));
1123: PetscCall(BVAppendOptionsPrefix(nep->V,prefix));
1124: if (!nep->ds) PetscCall(NEPGetDS(nep,&nep->ds));
1125: PetscCall(DSAppendOptionsPrefix(nep->ds,prefix));
1126: if (!nep->rg) PetscCall(NEPGetRG(nep,&nep->rg));
1127: PetscCall(RGAppendOptionsPrefix(nep->rg,prefix));
1128: PetscCall(PetscObjectAppendOptionsPrefix((PetscObject)nep,prefix));
1129: PetscFunctionReturn(PETSC_SUCCESS);
1130: }
1132: /*@
1133: NEPGetOptionsPrefix - Gets the prefix used for searching for all
1134: NEP options in the database.
1136: Not Collective
1138: Input Parameters:
1139: . nep - the nonlinear eigensolver context
1141: Output Parameters:
1142: . prefix - pointer to the prefix string used is returned
1144: Note:
1145: On the Fortran side, the user should pass in a string 'prefix' of
1146: sufficient length to hold the prefix.
1148: Level: advanced
1150: .seealso: NEPSetOptionsPrefix(), NEPAppendOptionsPrefix()
1151: @*/
1152: PetscErrorCode NEPGetOptionsPrefix(NEP nep,const char *prefix[])
1153: {
1154: PetscFunctionBegin;
1156: PetscAssertPointer(prefix,2);
1157: PetscCall(PetscObjectGetOptionsPrefix((PetscObject)nep,prefix));
1158: PetscFunctionReturn(PETSC_SUCCESS);
1159: }