Actual source code: ex5.c

slepc-main 2024-12-17
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: static char help[] = "Eigenvalue problem associated with a Markov model of a random walk on a triangular grid. "
 12:   "It is a standard nonsymmetric eigenproblem with real eigenvalues and the rightmost eigenvalue is known to be 1.\n"
 13:   "This example illustrates how the user can set the initial vector.\n\n"
 14:   "The command line options are:\n"
 15:   "  -m <m>, where <m> = number of grid subdivisions in each dimension.\n\n";

 17: #include <slepceps.h>

 19: /*
 20:    User-defined routines
 21: */
 22: PetscErrorCode MatMarkovModel(PetscInt m,Mat A);

 24: int main(int argc,char **argv)
 25: {
 26:   Vec            v0;              /* initial vector */
 27:   Mat            A;               /* operator matrix */
 28:   EPS            eps;             /* eigenproblem solver context */
 29:   EPSType        type;
 30:   EPSStop        stop;
 31:   PetscReal      thres;
 32:   PetscInt       N,m=15,nev;
 33:   PetscMPIInt    rank;
 34:   PetscBool      terse;

 36:   PetscFunctionBeginUser;
 37:   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));

 39:   PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,NULL));
 40:   N = m*(m+1)/2;
 41:   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nMarkov Model, N=%" PetscInt_FMT " (m=%" PetscInt_FMT ")\n\n",N,m));

 43:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 44:      Compute the operator matrix that defines the eigensystem, Ax=kx
 45:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 47:   PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
 48:   PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N));
 49:   PetscCall(MatSetFromOptions(A));
 50:   PetscCall(MatMarkovModel(m,A));

 52:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 53:                 Create the eigensolver and set various options
 54:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 56:   /*
 57:      Create eigensolver context
 58:   */
 59:   PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));

 61:   /*
 62:      Set operators. In this case, it is a standard eigenvalue problem
 63:   */
 64:   PetscCall(EPSSetOperators(eps,A,NULL));
 65:   PetscCall(EPSSetProblemType(eps,EPS_NHEP));

 67:   /*
 68:      Set solver parameters at runtime
 69:   */
 70:   PetscCall(EPSSetFromOptions(eps));

 72:   /*
 73:      Set the initial vector. This is optional, if not done the initial
 74:      vector is set to random values
 75:   */
 76:   PetscCall(MatCreateVecs(A,&v0,NULL));
 77:   PetscCallMPI(MPI_Comm_rank(PETSC_COMM_WORLD,&rank));
 78:   if (!rank) {
 79:     PetscCall(VecSetValue(v0,0,1.0,INSERT_VALUES));
 80:     PetscCall(VecSetValue(v0,1,1.0,INSERT_VALUES));
 81:     PetscCall(VecSetValue(v0,2,1.0,INSERT_VALUES));
 82:   }
 83:   PetscCall(VecAssemblyBegin(v0));
 84:   PetscCall(VecAssemblyEnd(v0));
 85:   PetscCall(EPSSetInitialSpace(eps,1,&v0));

 87:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 88:                       Solve the eigensystem
 89:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 91:   PetscCall(EPSSolve(eps));

 93:   /*
 94:      Optional: Get some information from the solver and display it
 95:   */
 96:   PetscCall(EPSGetType(eps,&type));
 97:   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type));
 98:   PetscCall(EPSGetStoppingTest(eps,&stop));
 99:   if (stop!=EPS_STOP_THRESHOLD) {
100:     PetscCall(EPSGetDimensions(eps,&nev,NULL,NULL));
101:     PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));
102:   } else {
103:     PetscCall(EPSGetThreshold(eps,&thres,NULL));
104:     PetscCall(PetscPrintf(PETSC_COMM_WORLD," Using threshold: %.4g\n",(double)thres));
105:   }

107:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
108:                     Display solution and clean up
109:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

111:   /* show detailed info unless -terse option is given by user */
112:   PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
113:   if (terse) PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL));
114:   else {
115:     PetscCall(PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL));
116:     PetscCall(EPSConvergedReasonView(eps,PETSC_VIEWER_STDOUT_WORLD));
117:     PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD));
118:     PetscCall(PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD));
119:   }
120:   PetscCall(EPSDestroy(&eps));
121:   PetscCall(MatDestroy(&A));
122:   PetscCall(VecDestroy(&v0));
123:   PetscCall(SlepcFinalize());
124:   return 0;
125: }

127: /*
128:     Matrix generator for a Markov model of a random walk on a triangular grid.

130:     This subroutine generates a test matrix that models a random walk on a
131:     triangular grid. This test example was used by G. W. Stewart ["{SRRIT} - a
132:     FORTRAN subroutine to calculate the dominant invariant subspaces of a real
133:     matrix", Tech. report. TR-514, University of Maryland (1978).] and in a few
134:     papers on eigenvalue problems by Y. Saad [see e.g. LAA, vol. 34, pp. 269-295
135:     (1980) ]. These matrices provide reasonably easy test problems for eigenvalue
136:     algorithms. The transpose of the matrix  is stochastic and so it is known
137:     that one is an exact eigenvalue. One seeks the eigenvector of the transpose
138:     associated with the eigenvalue unity. The problem is to calculate the steady
139:     state probability distribution of the system, which is the eigevector
140:     associated with the eigenvalue one and scaled in such a way that the sum all
141:     the components is equal to one.

143:     Note: the code will actually compute the transpose of the stochastic matrix
144:     that contains the transition probabilities.
145: */
146: PetscErrorCode MatMarkovModel(PetscInt m,Mat A)
147: {
148:   const PetscReal cst = 0.5/(PetscReal)(m-1);
149:   PetscReal       pd,pu;
150:   PetscInt        Istart,Iend,i,j,jmax,ix=0;

152:   PetscFunctionBeginUser;
153:   PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
154:   for (i=1;i<=m;i++) {
155:     jmax = m-i+1;
156:     for (j=1;j<=jmax;j++) {
157:       ix = ix + 1;
158:       if (ix-1<Istart || ix>Iend) continue;  /* compute only owned rows */
159:       if (j!=jmax) {
160:         pd = cst*(PetscReal)(i+j-1);
161:         /* north */
162:         if (i==1) PetscCall(MatSetValue(A,ix-1,ix,2*pd,INSERT_VALUES));
163:         else PetscCall(MatSetValue(A,ix-1,ix,pd,INSERT_VALUES));
164:         /* east */
165:         if (j==1) PetscCall(MatSetValue(A,ix-1,ix+jmax-1,2*pd,INSERT_VALUES));
166:         else PetscCall(MatSetValue(A,ix-1,ix+jmax-1,pd,INSERT_VALUES));
167:       }
168:       /* south */
169:       pu = 0.5 - cst*(PetscReal)(i+j-3);
170:       if (j>1) PetscCall(MatSetValue(A,ix-1,ix-2,pu,INSERT_VALUES));
171:       /* west */
172:       if (i>1) PetscCall(MatSetValue(A,ix-1,ix-jmax-2,pu,INSERT_VALUES));
173:     }
174:   }
175:   PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
176:   PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
177:   PetscFunctionReturn(PETSC_SUCCESS);
178: }

180: /*TEST

182:    test:
183:       suffix: 1
184:       nsize: 2
185:       args: -eps_largest_real -eps_nev 4 -eps_two_sided {{0 1}} -eps_krylovschur_locking {{0 1}} -ds_parallel synchronized -terse
186:       filter: sed -e "s/90424/90423/" | sed -e "s/85715/85714/"

188:    test:
189:       suffix: 2
190:       args: -eps_threshold_relative .9 -eps_ncv 10 -terse
191:       filter: sed -e "s/-0.85714/0.85714/" | sed -e "s/90424/90423/" | sed -e "s/-1.00000, 1.00000/1.00000, -1.00000/" | sed -e "s/-0.97137, 0.97137/0.97137, -0.97137/" | sed -e "s/-0.90423, 0.90423/0.90423, -0.90423/"

193: TEST*/