Actual source code: epsopts.c
slepc-main 2025-01-19
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: EPS routines related to options that can be set via the command-line
12: or procedurally.
13: */
15: #include <slepc/private/epsimpl.h>
16: #include <petscdraw.h>
18: /*@C
19: EPSMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type
20: indicated by the user.
22: Collective
24: Input Parameters:
25: + eps - the eigensolver context
26: . opt - the command line option for this monitor
27: . name - the monitor type one is seeking
28: . ctx - an optional user context for the monitor, or NULL
29: - trackall - whether this monitor tracks all eigenvalues or not
31: Level: developer
33: .seealso: EPSMonitorSet(), EPSSetTrackAll()
34: @*/
35: PetscErrorCode EPSMonitorSetFromOptions(EPS eps,const char opt[],const char name[],void *ctx,PetscBool trackall)
36: {
37: PetscErrorCode (*mfunc)(EPS,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*);
38: PetscErrorCode (*cfunc)(PetscViewer,PetscViewerFormat,void*,PetscViewerAndFormat**);
39: PetscErrorCode (*dfunc)(PetscViewerAndFormat**);
40: PetscViewerAndFormat *vf;
41: PetscViewer viewer;
42: PetscViewerFormat format;
43: PetscViewerType vtype;
44: char key[PETSC_MAX_PATH_LEN];
45: PetscBool flg;
47: PetscFunctionBegin;
48: PetscCall(PetscOptionsCreateViewer(PetscObjectComm((PetscObject)eps),((PetscObject)eps)->options,((PetscObject)eps)->prefix,opt,&viewer,&format,&flg));
49: if (!flg) PetscFunctionReturn(PETSC_SUCCESS);
51: PetscCall(PetscViewerGetType(viewer,&vtype));
52: PetscCall(SlepcMonitorMakeKey_Internal(name,vtype,format,key));
53: PetscCall(PetscFunctionListFind(EPSMonitorList,key,&mfunc));
54: PetscCheck(mfunc,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Specified viewer and format not supported");
55: PetscCall(PetscFunctionListFind(EPSMonitorCreateList,key,&cfunc));
56: PetscCall(PetscFunctionListFind(EPSMonitorDestroyList,key,&dfunc));
57: if (!cfunc) cfunc = PetscViewerAndFormatCreate_Internal;
58: if (!dfunc) dfunc = PetscViewerAndFormatDestroy;
60: PetscCall((*cfunc)(viewer,format,ctx,&vf));
61: PetscCall(PetscViewerDestroy(&viewer));
62: PetscCall(EPSMonitorSet(eps,mfunc,vf,(PetscCtxDestroyFn*)dfunc));
63: if (trackall) PetscCall(EPSSetTrackAll(eps,PETSC_TRUE));
64: PetscFunctionReturn(PETSC_SUCCESS);
65: }
67: /*@
68: EPSSetFromOptions - Sets EPS options from the options database.
69: This routine must be called before EPSSetUp() if the user is to be
70: allowed to set the solver type.
72: Collective
74: Input Parameters:
75: . eps - the eigensolver context
77: Notes:
78: To see all options, run your program with the -help option.
80: Level: beginner
82: .seealso: EPSSetOptionsPrefix()
83: @*/
84: PetscErrorCode EPSSetFromOptions(EPS eps)
85: {
86: char type[256];
87: PetscBool set,flg,flg1,flg2,flg3,bval;
88: PetscReal r,array[2]={0,0};
89: PetscScalar s;
90: PetscInt i,j,k;
91: EPSBalance bal;
93: PetscFunctionBegin;
95: PetscCall(EPSRegisterAll());
96: PetscObjectOptionsBegin((PetscObject)eps);
97: PetscCall(PetscOptionsFList("-eps_type","Eigensolver method","EPSSetType",EPSList,(char*)(((PetscObject)eps)->type_name?((PetscObject)eps)->type_name:EPSKRYLOVSCHUR),type,sizeof(type),&flg));
98: if (flg) PetscCall(EPSSetType(eps,type));
99: else if (!((PetscObject)eps)->type_name) PetscCall(EPSSetType(eps,EPSKRYLOVSCHUR));
101: PetscCall(PetscOptionsBoolGroupBegin("-eps_hermitian","Hermitian eigenvalue problem","EPSSetProblemType",&flg));
102: if (flg) PetscCall(EPSSetProblemType(eps,EPS_HEP));
103: PetscCall(PetscOptionsBoolGroup("-eps_gen_hermitian","Generalized Hermitian eigenvalue problem","EPSSetProblemType",&flg));
104: if (flg) PetscCall(EPSSetProblemType(eps,EPS_GHEP));
105: PetscCall(PetscOptionsBoolGroup("-eps_non_hermitian","Non-Hermitian eigenvalue problem","EPSSetProblemType",&flg));
106: if (flg) PetscCall(EPSSetProblemType(eps,EPS_NHEP));
107: PetscCall(PetscOptionsBoolGroup("-eps_gen_non_hermitian","Generalized non-Hermitian eigenvalue problem","EPSSetProblemType",&flg));
108: if (flg) PetscCall(EPSSetProblemType(eps,EPS_GNHEP));
109: PetscCall(PetscOptionsBoolGroup("-eps_pos_gen_non_hermitian","Generalized non-Hermitian eigenvalue problem with positive semi-definite B","EPSSetProblemType",&flg));
110: if (flg) PetscCall(EPSSetProblemType(eps,EPS_PGNHEP));
111: PetscCall(PetscOptionsBoolGroup("-eps_gen_indefinite","Generalized Hermitian-indefinite eigenvalue problem","EPSSetProblemType",&flg));
112: if (flg) PetscCall(EPSSetProblemType(eps,EPS_GHIEP));
113: PetscCall(PetscOptionsBoolGroupEnd("-eps_bse","Structured Bethe-Salpeter eigenvalue problem","EPSSetProblemType",&flg));
114: if (flg) PetscCall(EPSSetProblemType(eps,EPS_BSE));
116: PetscCall(PetscOptionsBoolGroupBegin("-eps_ritz","Rayleigh-Ritz extraction","EPSSetExtraction",&flg));
117: if (flg) PetscCall(EPSSetExtraction(eps,EPS_RITZ));
118: PetscCall(PetscOptionsBoolGroup("-eps_harmonic","Harmonic Ritz extraction","EPSSetExtraction",&flg));
119: if (flg) PetscCall(EPSSetExtraction(eps,EPS_HARMONIC));
120: PetscCall(PetscOptionsBoolGroup("-eps_harmonic_relative","Relative harmonic Ritz extraction","EPSSetExtraction",&flg));
121: if (flg) PetscCall(EPSSetExtraction(eps,EPS_HARMONIC_RELATIVE));
122: PetscCall(PetscOptionsBoolGroup("-eps_harmonic_right","Right harmonic Ritz extraction","EPSSetExtraction",&flg));
123: if (flg) PetscCall(EPSSetExtraction(eps,EPS_HARMONIC_RIGHT));
124: PetscCall(PetscOptionsBoolGroup("-eps_harmonic_largest","Largest harmonic Ritz extraction","EPSSetExtraction",&flg));
125: if (flg) PetscCall(EPSSetExtraction(eps,EPS_HARMONIC_LARGEST));
126: PetscCall(PetscOptionsBoolGroup("-eps_refined","Refined Ritz extraction","EPSSetExtraction",&flg));
127: if (flg) PetscCall(EPSSetExtraction(eps,EPS_REFINED));
128: PetscCall(PetscOptionsBoolGroupEnd("-eps_refined_harmonic","Refined harmonic Ritz extraction","EPSSetExtraction",&flg));
129: if (flg) PetscCall(EPSSetExtraction(eps,EPS_REFINED_HARMONIC));
131: bal = eps->balance;
132: PetscCall(PetscOptionsEnum("-eps_balance","Balancing method","EPSSetBalance",EPSBalanceTypes,(PetscEnum)bal,(PetscEnum*)&bal,&flg1));
133: j = eps->balance_its;
134: PetscCall(PetscOptionsInt("-eps_balance_its","Number of iterations in balancing","EPSSetBalance",eps->balance_its,&j,&flg2));
135: r = eps->balance_cutoff;
136: PetscCall(PetscOptionsReal("-eps_balance_cutoff","Cutoff value in balancing","EPSSetBalance",eps->balance_cutoff,&r,&flg3));
137: if (flg1 || flg2 || flg3) PetscCall(EPSSetBalance(eps,bal,j,r));
139: i = eps->max_it;
140: PetscCall(PetscOptionsInt("-eps_max_it","Maximum number of iterations","EPSSetTolerances",eps->max_it,&i,&flg1));
141: r = eps->tol;
142: PetscCall(PetscOptionsReal("-eps_tol","Tolerance","EPSSetTolerances",SlepcDefaultTol(eps->tol),&r,&flg2));
143: if (flg1 || flg2) PetscCall(EPSSetTolerances(eps,r,i));
145: r = eps->thres;
146: PetscCall(PetscOptionsReal("-eps_threshold_absolute","Absolute threshold","EPSSetThreshold",r,&r,&flg));
147: if (flg) PetscCall(EPSSetThreshold(eps,r,PETSC_FALSE));
148: PetscCall(PetscOptionsReal("-eps_threshold_relative","Relative threshold","EPSSetThreshold",r,&r,&flg));
149: if (flg) PetscCall(EPSSetThreshold(eps,r,PETSC_TRUE));
151: PetscCall(PetscOptionsBoolGroupBegin("-eps_conv_rel","Relative error convergence test","EPSSetConvergenceTest",&flg));
152: if (flg) PetscCall(EPSSetConvergenceTest(eps,EPS_CONV_REL));
153: PetscCall(PetscOptionsBoolGroup("-eps_conv_norm","Convergence test relative to the eigenvalue and the matrix norms","EPSSetConvergenceTest",&flg));
154: if (flg) PetscCall(EPSSetConvergenceTest(eps,EPS_CONV_NORM));
155: PetscCall(PetscOptionsBoolGroup("-eps_conv_abs","Absolute error convergence test","EPSSetConvergenceTest",&flg));
156: if (flg) PetscCall(EPSSetConvergenceTest(eps,EPS_CONV_ABS));
157: PetscCall(PetscOptionsBoolGroupEnd("-eps_conv_user","User-defined convergence test","EPSSetConvergenceTest",&flg));
158: if (flg) PetscCall(EPSSetConvergenceTest(eps,EPS_CONV_USER));
160: PetscCall(PetscOptionsBoolGroupBegin("-eps_stop_basic","Stop iteration if all eigenvalues converged or max_it reached","EPSSetStoppingTest",&flg));
161: if (flg) PetscCall(EPSSetStoppingTest(eps,EPS_STOP_BASIC));
162: PetscCall(PetscOptionsBoolGroup("-eps_stop_threshold","Stop iteration if a converged eigenvalue is below/above the threshold","EPSSetStoppingTest",&flg));
163: if (flg) PetscCall(EPSSetStoppingTest(eps,EPS_STOP_THRESHOLD));
164: PetscCall(PetscOptionsBoolGroupEnd("-eps_stop_user","User-defined stopping test","EPSSetStoppingTest",&flg));
165: if (flg) PetscCall(EPSSetStoppingTest(eps,EPS_STOP_USER));
167: i = eps->nev;
168: PetscCall(PetscOptionsInt("-eps_nev","Number of eigenvalues to compute","EPSSetDimensions",eps->nev,&i,&flg1));
169: if (!flg1) i = PETSC_CURRENT;
170: j = eps->ncv;
171: PetscCall(PetscOptionsInt("-eps_ncv","Number of basis vectors","EPSSetDimensions",eps->ncv,&j,&flg2));
172: k = eps->mpd;
173: PetscCall(PetscOptionsInt("-eps_mpd","Maximum dimension of projected problem","EPSSetDimensions",eps->mpd,&k,&flg3));
174: if (flg1 || flg2 || flg3) PetscCall(EPSSetDimensions(eps,i,j,k));
176: PetscCall(PetscOptionsBoolGroupBegin("-eps_largest_magnitude","Compute largest eigenvalues in magnitude","EPSSetWhichEigenpairs",&flg));
177: if (flg) PetscCall(EPSSetWhichEigenpairs(eps,EPS_LARGEST_MAGNITUDE));
178: PetscCall(PetscOptionsBoolGroup("-eps_smallest_magnitude","Compute smallest eigenvalues in magnitude","EPSSetWhichEigenpairs",&flg));
179: if (flg) PetscCall(EPSSetWhichEigenpairs(eps,EPS_SMALLEST_MAGNITUDE));
180: PetscCall(PetscOptionsBoolGroup("-eps_largest_real","Compute eigenvalues with largest real parts","EPSSetWhichEigenpairs",&flg));
181: if (flg) PetscCall(EPSSetWhichEigenpairs(eps,EPS_LARGEST_REAL));
182: PetscCall(PetscOptionsBoolGroup("-eps_smallest_real","Compute eigenvalues with smallest real parts","EPSSetWhichEigenpairs",&flg));
183: if (flg) PetscCall(EPSSetWhichEigenpairs(eps,EPS_SMALLEST_REAL));
184: PetscCall(PetscOptionsBoolGroup("-eps_largest_imaginary","Compute eigenvalues with largest imaginary parts","EPSSetWhichEigenpairs",&flg));
185: if (flg) PetscCall(EPSSetWhichEigenpairs(eps,EPS_LARGEST_IMAGINARY));
186: PetscCall(PetscOptionsBoolGroup("-eps_smallest_imaginary","Compute eigenvalues with smallest imaginary parts","EPSSetWhichEigenpairs",&flg));
187: if (flg) PetscCall(EPSSetWhichEigenpairs(eps,EPS_SMALLEST_IMAGINARY));
188: PetscCall(PetscOptionsBoolGroup("-eps_target_magnitude","Compute eigenvalues closest to target","EPSSetWhichEigenpairs",&flg));
189: if (flg) PetscCall(EPSSetWhichEigenpairs(eps,EPS_TARGET_MAGNITUDE));
190: PetscCall(PetscOptionsBoolGroup("-eps_target_real","Compute eigenvalues with real parts closest to target","EPSSetWhichEigenpairs",&flg));
191: if (flg) PetscCall(EPSSetWhichEigenpairs(eps,EPS_TARGET_REAL));
192: PetscCall(PetscOptionsBoolGroup("-eps_target_imaginary","Compute eigenvalues with imaginary parts closest to target","EPSSetWhichEigenpairs",&flg));
193: if (flg) PetscCall(EPSSetWhichEigenpairs(eps,EPS_TARGET_IMAGINARY));
194: PetscCall(PetscOptionsBoolGroupEnd("-eps_all","Compute all eigenvalues in an interval or a region","EPSSetWhichEigenpairs",&flg));
195: if (flg) PetscCall(EPSSetWhichEigenpairs(eps,EPS_ALL));
197: PetscCall(PetscOptionsScalar("-eps_target","Value of the target","EPSSetTarget",eps->target,&s,&flg));
198: if (flg) {
199: if (eps->which!=EPS_TARGET_REAL && eps->which!=EPS_TARGET_IMAGINARY) PetscCall(EPSSetWhichEigenpairs(eps,EPS_TARGET_MAGNITUDE));
200: PetscCall(EPSSetTarget(eps,s));
201: }
203: k = 2;
204: PetscCall(PetscOptionsRealArray("-eps_interval","Computational interval (two real values separated with a comma without spaces)","EPSSetInterval",array,&k,&flg));
205: if (flg) {
206: PetscCheck(k>1,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_SIZ,"Must pass two values in -eps_interval (comma-separated without spaces)");
207: PetscCall(EPSSetWhichEigenpairs(eps,EPS_ALL));
208: PetscCall(EPSSetInterval(eps,array[0],array[1]));
209: }
211: PetscCall(PetscOptionsBool("-eps_true_residual","Compute true residuals explicitly","EPSSetTrueResidual",eps->trueres,&eps->trueres,NULL));
212: PetscCall(PetscOptionsBool("-eps_purify","Postprocess eigenvectors for purification","EPSSetPurify",eps->purify,&bval,&flg));
213: if (flg) PetscCall(EPSSetPurify(eps,bval));
214: PetscCall(PetscOptionsBool("-eps_two_sided","Use two-sided variant (to compute left eigenvectors)","EPSSetTwoSided",eps->twosided,&bval,&flg));
215: if (flg) PetscCall(EPSSetTwoSided(eps,bval));
217: /* -----------------------------------------------------------------------*/
218: /*
219: Cancels all monitors hardwired into code before call to EPSSetFromOptions()
220: */
221: PetscCall(PetscOptionsBool("-eps_monitor_cancel","Remove any hardwired monitor routines","EPSMonitorCancel",PETSC_FALSE,&flg,&set));
222: if (set && flg) PetscCall(EPSMonitorCancel(eps));
223: PetscCall(EPSMonitorSetFromOptions(eps,"-eps_monitor","first_approximation",NULL,PETSC_FALSE));
224: PetscCall(EPSMonitorSetFromOptions(eps,"-eps_monitor_all","all_approximations",NULL,PETSC_TRUE));
225: PetscCall(EPSMonitorSetFromOptions(eps,"-eps_monitor_conv","convergence_history",NULL,PETSC_FALSE));
227: /* -----------------------------------------------------------------------*/
228: PetscCall(PetscOptionsName("-eps_view","Print detailed information on solver used","EPSView",&set));
229: PetscCall(PetscOptionsName("-eps_view_vectors","View computed eigenvectors","EPSVectorsView",&set));
230: PetscCall(PetscOptionsName("-eps_view_values","View computed eigenvalues","EPSValuesView",&set));
231: PetscCall(PetscOptionsName("-eps_converged_reason","Print reason for convergence, and number of iterations","EPSConvergedReasonView",&set));
232: PetscCall(PetscOptionsName("-eps_error_absolute","Print absolute errors of each eigenpair","EPSErrorView",&set));
233: PetscCall(PetscOptionsName("-eps_error_relative","Print relative errors of each eigenpair","EPSErrorView",&set));
234: PetscCall(PetscOptionsName("-eps_error_backward","Print backward errors of each eigenpair","EPSErrorView",&set));
236: PetscTryTypeMethod(eps,setfromoptions,PetscOptionsObject);
237: PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)eps,PetscOptionsObject));
238: PetscOptionsEnd();
240: if (!eps->V) PetscCall(EPSGetBV(eps,&eps->V));
241: PetscCall(BVSetFromOptions(eps->V));
242: if (!eps->rg) PetscCall(EPSGetRG(eps,&eps->rg));
243: PetscCall(RGSetFromOptions(eps->rg));
244: if (eps->useds) {
245: if (!eps->ds) PetscCall(EPSGetDS(eps,&eps->ds));
246: PetscCall(EPSSetDSType(eps));
247: PetscCall(DSSetFromOptions(eps->ds));
248: }
249: if (!eps->st) PetscCall(EPSGetST(eps,&eps->st));
250: PetscCall(EPSSetDefaultST(eps));
251: PetscCall(STSetFromOptions(eps->st));
252: PetscFunctionReturn(PETSC_SUCCESS);
253: }
255: /*@
256: EPSGetTolerances - Gets the tolerance and maximum iteration count used
257: by the EPS convergence tests.
259: Not Collective
261: Input Parameter:
262: . eps - the eigensolver context
264: Output Parameters:
265: + tol - the convergence tolerance
266: - maxits - maximum number of iterations
268: Notes:
269: The user can specify NULL for any parameter that is not needed.
271: Level: intermediate
273: .seealso: EPSSetTolerances()
274: @*/
275: PetscErrorCode EPSGetTolerances(EPS eps,PetscReal *tol,PetscInt *maxits)
276: {
277: PetscFunctionBegin;
279: if (tol) *tol = eps->tol;
280: if (maxits) *maxits = eps->max_it;
281: PetscFunctionReturn(PETSC_SUCCESS);
282: }
284: /*@
285: EPSSetTolerances - Sets the tolerance and maximum iteration count used
286: by the EPS convergence tests.
288: Logically Collective
290: Input Parameters:
291: + eps - the eigensolver context
292: . tol - the convergence tolerance
293: - maxits - maximum number of iterations to use
295: Options Database Keys:
296: + -eps_tol <tol> - Sets the convergence tolerance
297: - -eps_max_it <maxits> - Sets the maximum number of iterations allowed
299: Notes:
300: Use PETSC_CURRENT to retain the current value of any of the parameters.
301: Use PETSC_DETERMINE for either argument to assign a default value computed
302: internally (may be different in each solver).
303: For maxits use PETSC_UMLIMITED to indicate there is no upper bound on this value.
305: Level: intermediate
307: .seealso: EPSGetTolerances()
308: @*/
309: PetscErrorCode EPSSetTolerances(EPS eps,PetscReal tol,PetscInt maxits)
310: {
311: PetscFunctionBegin;
315: if (tol == (PetscReal)PETSC_DETERMINE) {
316: eps->tol = PETSC_DETERMINE;
317: eps->state = EPS_STATE_INITIAL;
318: } else if (tol != (PetscReal)PETSC_CURRENT) {
319: PetscCheck(tol>0.0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
320: eps->tol = tol;
321: }
322: if (maxits == PETSC_DETERMINE) {
323: eps->max_it = PETSC_DETERMINE;
324: eps->state = EPS_STATE_INITIAL;
325: } else if (maxits == PETSC_UNLIMITED) {
326: eps->max_it = PETSC_INT_MAX;
327: } else if (maxits != PETSC_CURRENT) {
328: PetscCheck(maxits>0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of maxits. Must be > 0");
329: eps->max_it = maxits;
330: }
331: PetscFunctionReturn(PETSC_SUCCESS);
332: }
334: /*@
335: EPSGetDimensions - Gets the number of eigenvalues to compute
336: and the dimension of the subspace.
338: Not Collective
340: Input Parameter:
341: . eps - the eigensolver context
343: Output Parameters:
344: + nev - number of eigenvalues to compute
345: . ncv - the maximum dimension of the subspace to be used by the solver
346: - mpd - the maximum dimension allowed for the projected problem
348: Level: intermediate
350: .seealso: EPSSetDimensions()
351: @*/
352: PetscErrorCode EPSGetDimensions(EPS eps,PetscInt *nev,PetscInt *ncv,PetscInt *mpd)
353: {
354: PetscFunctionBegin;
356: if (nev) *nev = eps->nev? eps->nev: 1;
357: if (ncv) *ncv = eps->ncv;
358: if (mpd) *mpd = eps->mpd;
359: PetscFunctionReturn(PETSC_SUCCESS);
360: }
362: /*@
363: EPSSetDimensions - Sets the number of eigenvalues to compute
364: and the dimension of the subspace.
366: Logically Collective
368: Input Parameters:
369: + eps - the eigensolver context
370: . nev - number of eigenvalues to compute
371: . ncv - the maximum dimension of the subspace to be used by the solver
372: - mpd - the maximum dimension allowed for the projected problem
374: Options Database Keys:
375: + -eps_nev <nev> - Sets the number of eigenvalues
376: . -eps_ncv <ncv> - Sets the dimension of the subspace
377: - -eps_mpd <mpd> - Sets the maximum projected dimension
379: Notes:
380: Use PETSC_DETERMINE for ncv and mpd to assign a reasonably good value, which is
381: dependent on the solution method. For any of the arguments, use PETSC_CURRENT
382: to preserve the current value.
384: The parameters ncv and mpd are intimately related, so that the user is advised
385: to set one of them at most. Normal usage is that
386: (a) in cases where nev is small, the user sets ncv (a reasonable default is 2*nev); and
387: (b) in cases where nev is large, the user sets mpd.
389: The value of ncv should always be between nev and (nev+mpd), typically
390: ncv=nev+mpd. If nev is not too large, mpd=nev is a reasonable choice, otherwise
391: a smaller value should be used.
393: When computing all eigenvalues in an interval, see EPSSetInterval(), these
394: parameters lose relevance, and tuning must be done with
395: EPSKrylovSchurSetDimensions().
397: Level: intermediate
399: .seealso: EPSGetDimensions(), EPSSetInterval(), EPSKrylovSchurSetDimensions()
400: @*/
401: PetscErrorCode EPSSetDimensions(EPS eps,PetscInt nev,PetscInt ncv,PetscInt mpd)
402: {
403: PetscFunctionBegin;
408: if (nev != PETSC_CURRENT) {
409: PetscCheck(nev>0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of nev. Must be > 0");
410: eps->nev = nev;
411: }
412: if (ncv == PETSC_DETERMINE) {
413: eps->ncv = PETSC_DETERMINE;
414: } else if (ncv != PETSC_CURRENT) {
415: PetscCheck(ncv>0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of ncv. Must be > 0");
416: eps->ncv = ncv;
417: }
418: if (mpd == PETSC_DETERMINE) {
419: eps->mpd = PETSC_DETERMINE;
420: } else if (mpd != PETSC_CURRENT) {
421: PetscCheck(mpd>0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of mpd. Must be > 0");
422: eps->mpd = mpd;
423: }
424: eps->state = EPS_STATE_INITIAL;
425: PetscFunctionReturn(PETSC_SUCCESS);
426: }
428: /*@
429: EPSSetWhichEigenpairs - Specifies which portion of the spectrum is
430: to be sought.
432: Logically Collective
434: Input Parameters:
435: + eps - eigensolver context obtained from EPSCreate()
436: - which - the portion of the spectrum to be sought
438: Options Database Keys:
439: + -eps_largest_magnitude - Sets largest eigenvalues in magnitude
440: . -eps_smallest_magnitude - Sets smallest eigenvalues in magnitude
441: . -eps_largest_real - Sets largest real parts
442: . -eps_smallest_real - Sets smallest real parts
443: . -eps_largest_imaginary - Sets largest imaginary parts
444: . -eps_smallest_imaginary - Sets smallest imaginary parts
445: . -eps_target_magnitude - Sets eigenvalues closest to target
446: . -eps_target_real - Sets real parts closest to target
447: . -eps_target_imaginary - Sets imaginary parts closest to target
448: - -eps_all - Sets all eigenvalues in an interval or region
450: Notes:
451: The parameter 'which' can have one of these values
453: + EPS_LARGEST_MAGNITUDE - largest eigenvalues in magnitude (default)
454: . EPS_SMALLEST_MAGNITUDE - smallest eigenvalues in magnitude
455: . EPS_LARGEST_REAL - largest real parts
456: . EPS_SMALLEST_REAL - smallest real parts
457: . EPS_LARGEST_IMAGINARY - largest imaginary parts
458: . EPS_SMALLEST_IMAGINARY - smallest imaginary parts
459: . EPS_TARGET_MAGNITUDE - eigenvalues closest to the target (in magnitude)
460: . EPS_TARGET_REAL - eigenvalues with real part closest to target
461: . EPS_TARGET_IMAGINARY - eigenvalues with imaginary part closest to target
462: . EPS_ALL - all eigenvalues contained in a given interval or region
463: - EPS_WHICH_USER - user defined ordering set with EPSSetEigenvalueComparison()
465: Not all eigensolvers implemented in EPS account for all the possible values
466: stated above. Also, some values make sense only for certain types of
467: problems. If SLEPc is compiled for real numbers EPS_LARGEST_IMAGINARY
468: and EPS_SMALLEST_IMAGINARY use the absolute value of the imaginary part
469: for eigenvalue selection.
471: The target is a scalar value provided with EPSSetTarget().
473: The criterion EPS_TARGET_IMAGINARY is available only in case PETSc and
474: SLEPc have been built with complex scalars.
476: EPS_ALL is intended for use in combination with an interval (see
477: EPSSetInterval()), when all eigenvalues within the interval are requested,
478: or in the context of the CISS solver for computing all eigenvalues in a region.
479: In those cases, the number of eigenvalues is unknown, so the nev parameter
480: has a different sense, see EPSSetDimensions().
482: Level: intermediate
484: .seealso: EPSGetWhichEigenpairs(), EPSSetTarget(), EPSSetInterval(),
485: EPSSetDimensions(), EPSSetEigenvalueComparison(), EPSWhich
486: @*/
487: PetscErrorCode EPSSetWhichEigenpairs(EPS eps,EPSWhich which)
488: {
489: PetscFunctionBegin;
492: switch (which) {
493: case EPS_LARGEST_MAGNITUDE:
494: case EPS_SMALLEST_MAGNITUDE:
495: case EPS_LARGEST_REAL:
496: case EPS_SMALLEST_REAL:
497: case EPS_LARGEST_IMAGINARY:
498: case EPS_SMALLEST_IMAGINARY:
499: case EPS_TARGET_MAGNITUDE:
500: case EPS_TARGET_REAL:
501: #if defined(PETSC_USE_COMPLEX)
502: case EPS_TARGET_IMAGINARY:
503: #endif
504: case EPS_ALL:
505: case EPS_WHICH_USER:
506: if (eps->which != which) {
507: eps->state = EPS_STATE_INITIAL;
508: eps->which = which;
509: }
510: break;
511: #if !defined(PETSC_USE_COMPLEX)
512: case EPS_TARGET_IMAGINARY:
513: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"EPS_TARGET_IMAGINARY can be used only with complex scalars");
514: #endif
515: default:
516: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'which' value");
517: }
518: PetscFunctionReturn(PETSC_SUCCESS);
519: }
521: /*@
522: EPSGetWhichEigenpairs - Returns which portion of the spectrum is to be
523: sought.
525: Not Collective
527: Input Parameter:
528: . eps - eigensolver context obtained from EPSCreate()
530: Output Parameter:
531: . which - the portion of the spectrum to be sought
533: Notes:
534: See EPSSetWhichEigenpairs() for possible values of 'which'.
536: Level: intermediate
538: .seealso: EPSSetWhichEigenpairs(), EPSWhich
539: @*/
540: PetscErrorCode EPSGetWhichEigenpairs(EPS eps,EPSWhich *which)
541: {
542: PetscFunctionBegin;
544: PetscAssertPointer(which,2);
545: *which = eps->which;
546: PetscFunctionReturn(PETSC_SUCCESS);
547: }
549: /*@
550: EPSSetThreshold - Sets the threshold used in the threshold stopping test.
552: Logically Collective
554: Input Parameters:
555: + eps - the eigenvalue solver context
556: . thres - the threshold value
557: - rel - whether the threshold is relative or not
559: Options Database Keys:
560: + -eps_threshold_absolute <thres> - Sets an absolute threshold
561: - -eps_threshold_relative <thres> - Sets a relative threshold
563: Notes:
564: This function internally calls EPSSetStoppingTest() to set a special stopping
565: test based on the threshold, where eigenvalues are computed in sequence until
566: one of the computed eigenvalues is below the threshold (in magnitude). This is
567: the interpretation in case of searching for largest eigenvalues in magnitude,
568: see EPSSetWhichEigenpairs().
570: If the solver is configured to compute smallest magnitude eigenvalues, then the
571: threshold must be interpreted in the opposite direction, i.e., the computation
572: will stop when one of the computed values is above the threshold (in magnitude).
574: The threshold can also be used when computing largest/smallest real eigenvalues
575: (i.e, rightmost or leftmost), in which case the threshold is allowed to be
576: negative. The solver will stop when one of the computed eigenvalues is above
577: or below the threshold (considering the real part of the eigenvalue). This mode
578: is allowed only in problem types whose eigenvalues are always real (e.g., HEP).
580: In the case of largest magnitude eigenvalues, the threshold can be made relative
581: with respect to the dominant eigenvalue. Otherwise, the argument rel should be
582: PETSC_FALSE.
584: An additional use case is with target magnitude selection of eigenvalues (e.g.,
585: with shift-and-invert), but this must be used with caution to avoid unexpected
586: behaviour. With an absolute threshold, the solver will assume that leftmost
587: eigenvalues are being computed (e.g., with target=0 for a problem with real
588: positive eigenvalues). In case of a relative threshold, a value of threshold<1
589: implies that the wanted eigenvalues are the largest ones, and otherwise the
590: solver assumes that smallest eigenvalues are being computed.
592: The test against the threshold is done for converged eigenvalues, which
593: implies that the final number of converged eigenvalues will be at least
594: one more than the actual number of values below/above the threshold.
596: Since the number of computed eigenvalues is not known a priori, the solver
597: will need to reallocate the basis of vectors internally, to have enough room
598: to accommodate all the eigenvectors. Hence, this option must be used with
599: caution to avoid out-of-memory problems. The recommendation is to set the value
600: of ncv to be larger than the estimated number of eigenvalues, to minimize the
601: number of reallocations.
603: If a number of wanted eigenvalues has been set with EPSSetDimensions()
604: it is also taken into account and the solver will stop when one of the two
605: conditions (threshold or number of converged values) is met.
607: Use EPSSetStoppingTest() to return to the usual computation of a fixed number
608: of eigenvalues.
610: Level: advanced
612: .seealso: EPSGetThreshold(), EPSSetStoppingTest(), EPSSetDimensions(), EPSSetWhichEigenpairs(), EPSSetProblemType()
613: @*/
614: PetscErrorCode EPSSetThreshold(EPS eps,PetscReal thres,PetscBool rel)
615: {
616: PetscFunctionBegin;
620: if (eps->thres != thres || eps->threlative != rel) {
621: eps->thres = thres;
622: eps->threlative = rel;
623: eps->state = EPS_STATE_INITIAL;
624: PetscCall(EPSSetStoppingTest(eps,EPS_STOP_THRESHOLD));
625: }
626: PetscFunctionReturn(PETSC_SUCCESS);
627: }
629: /*@
630: EPSGetThreshold - Gets the threshold used by the threshold stopping test.
632: Not Collective
634: Input Parameter:
635: . eps - the eigenvalue solver context
637: Output Parameters:
638: + thres - the threshold
639: - rel - whether the threshold is relative or not
641: Level: advanced
643: .seealso: EPSSetThreshold()
644: @*/
645: PetscErrorCode EPSGetThreshold(EPS eps,PetscReal *thres,PetscBool *rel)
646: {
647: PetscFunctionBegin;
649: if (thres) *thres = eps->thres;
650: if (rel) *rel = eps->threlative;
651: PetscFunctionReturn(PETSC_SUCCESS);
652: }
654: /*@C
655: EPSSetEigenvalueComparison - Specifies the eigenvalue comparison function
656: when EPSSetWhichEigenpairs() is set to EPS_WHICH_USER.
658: Logically Collective
660: Input Parameters:
661: + eps - eigensolver context obtained from EPSCreate()
662: . func - the comparison function, see EPSEigenvalueComparisonFn for the calling sequence
663: - ctx - a context pointer (the last parameter to the comparison function)
665: Note:
666: The returning parameter 'res' can be
667: + negative - if the 1st eigenvalue is preferred to the 2st one
668: . zero - if both eigenvalues are equally preferred
669: - positive - if the 2st eigenvalue is preferred to the 1st one
671: Level: advanced
673: .seealso: EPSSetWhichEigenpairs(), EPSWhich
674: @*/
675: PetscErrorCode EPSSetEigenvalueComparison(EPS eps,SlepcEigenvalueComparisonFn *func,void* ctx)
676: {
677: PetscFunctionBegin;
679: eps->sc->comparison = func;
680: eps->sc->comparisonctx = ctx;
681: eps->which = EPS_WHICH_USER;
682: PetscFunctionReturn(PETSC_SUCCESS);
683: }
685: /*@C
686: EPSSetArbitrarySelection - Specifies a function intended to look for
687: eigenvalues according to an arbitrary selection criterion. This criterion
688: can be based on a computation involving the current eigenvector approximation.
690: Logically Collective
692: Input Parameters:
693: + eps - eigensolver context obtained from EPSCreate()
694: . func - the arbitrary selection function, see SlepcArbitrarySelectionFn for a calling sequence
695: - ctx - a context pointer (the last parameter to the arbitrary selection function)
697: Notes:
698: This provides a mechanism to select eigenpairs by evaluating a user-defined
699: function. When a function has been provided, the default selection based on
700: sorting the eigenvalues is replaced by the sorting of the results of this
701: function (with the same sorting criterion given in EPSSetWhichEigenpairs()).
703: For instance, suppose you want to compute those eigenvectors that maximize
704: a certain computable expression. Then implement the computation using
705: the arguments xr and xi, and return the result in rr. Then set the standard
706: sorting by magnitude so that the eigenpair with largest value of rr is
707: selected.
709: This evaluation function is collective, that is, all processes call it and
710: it can use collective operations; furthermore, the computed result must
711: be the same in all processes.
713: The result of func is expressed as a complex number so that it is possible to
714: use the standard eigenvalue sorting functions, but normally only rr is used.
715: Set ri to zero unless it is meaningful in your application.
717: Level: advanced
719: .seealso: EPSSetWhichEigenpairs()
720: @*/
721: PetscErrorCode EPSSetArbitrarySelection(EPS eps,SlepcArbitrarySelectionFn *func,void* ctx)
722: {
723: PetscFunctionBegin;
725: eps->arbitrary = func;
726: eps->arbitraryctx = ctx;
727: eps->state = EPS_STATE_INITIAL;
728: PetscFunctionReturn(PETSC_SUCCESS);
729: }
731: /*@C
732: EPSSetConvergenceTestFunction - Sets a function to compute the error estimate
733: used in the convergence test.
735: Logically Collective
737: Input Parameters:
738: + eps - eigensolver context obtained from EPSCreate()
739: . func - convergence test function, see EPSConvergenceTestFn for the calling sequence
740: . ctx - context for private data for the convergence routine (may be NULL)
741: - destroy - a routine for destroying the context (may be NULL), see PetscCtxDestroyFn for the calling sequence
743: Note:
744: If the error estimate returned by the convergence test function is less than
745: the tolerance, then the eigenvalue is accepted as converged.
747: Level: advanced
749: .seealso: EPSSetConvergenceTest(), EPSSetTolerances()
750: @*/
751: PetscErrorCode EPSSetConvergenceTestFunction(EPS eps,EPSConvergenceTestFn *func,void* ctx,PetscCtxDestroyFn *destroy)
752: {
753: PetscFunctionBegin;
755: if (eps->convergeddestroy) PetscCall((*eps->convergeddestroy)(&eps->convergedctx));
756: eps->convergeduser = func;
757: eps->convergeddestroy = destroy;
758: eps->convergedctx = ctx;
759: if (func == EPSConvergedRelative) eps->conv = EPS_CONV_REL;
760: else if (func == EPSConvergedNorm) eps->conv = EPS_CONV_NORM;
761: else if (func == EPSConvergedAbsolute) eps->conv = EPS_CONV_ABS;
762: else {
763: eps->conv = EPS_CONV_USER;
764: eps->converged = eps->convergeduser;
765: }
766: PetscFunctionReturn(PETSC_SUCCESS);
767: }
769: /*@
770: EPSSetConvergenceTest - Specifies how to compute the error estimate
771: used in the convergence test.
773: Logically Collective
775: Input Parameters:
776: + eps - eigensolver context obtained from EPSCreate()
777: - conv - the type of convergence test
779: Options Database Keys:
780: + -eps_conv_abs - Sets the absolute convergence test
781: . -eps_conv_rel - Sets the convergence test relative to the eigenvalue
782: . -eps_conv_norm - Sets the convergence test relative to the matrix norms
783: - -eps_conv_user - Selects the user-defined convergence test
785: Note:
786: The parameter 'conv' can have one of these values
787: + EPS_CONV_ABS - absolute error ||r||
788: . EPS_CONV_REL - error relative to the eigenvalue l, ||r||/|l|
789: . EPS_CONV_NORM - error relative to the matrix norms, ||r||/(||A||+|l|*||B||)
790: - EPS_CONV_USER - function set by EPSSetConvergenceTestFunction()
792: Level: intermediate
794: .seealso: EPSGetConvergenceTest(), EPSSetConvergenceTestFunction(), EPSSetStoppingTest(), EPSConv
795: @*/
796: PetscErrorCode EPSSetConvergenceTest(EPS eps,EPSConv conv)
797: {
798: PetscFunctionBegin;
801: switch (conv) {
802: case EPS_CONV_ABS: eps->converged = EPSConvergedAbsolute; break;
803: case EPS_CONV_REL: eps->converged = EPSConvergedRelative; break;
804: case EPS_CONV_NORM: eps->converged = EPSConvergedNorm; break;
805: case EPS_CONV_USER:
806: PetscCheck(eps->convergeduser,PetscObjectComm((PetscObject)eps),PETSC_ERR_ORDER,"Must call EPSSetConvergenceTestFunction() first");
807: eps->converged = eps->convergeduser;
808: break;
809: default:
810: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'conv' value");
811: }
812: eps->conv = conv;
813: PetscFunctionReturn(PETSC_SUCCESS);
814: }
816: /*@
817: EPSGetConvergenceTest - Gets the method used to compute the error estimate
818: used in the convergence test.
820: Not Collective
822: Input Parameters:
823: . eps - eigensolver context obtained from EPSCreate()
825: Output Parameters:
826: . conv - the type of convergence test
828: Level: intermediate
830: .seealso: EPSSetConvergenceTest(), EPSConv
831: @*/
832: PetscErrorCode EPSGetConvergenceTest(EPS eps,EPSConv *conv)
833: {
834: PetscFunctionBegin;
836: PetscAssertPointer(conv,2);
837: *conv = eps->conv;
838: PetscFunctionReturn(PETSC_SUCCESS);
839: }
841: /*@C
842: EPSSetStoppingTestFunction - Sets a function to decide when to stop the outer
843: iteration of the eigensolver.
845: Logically Collective
847: Input Parameters:
848: + eps - eigensolver context obtained from EPSCreate()
849: . func - stopping test function, see EPSStoppingTestFn for the calling sequence
850: . ctx - context for private data for the stopping routine (may be NULL)
851: - destroy - a routine for destroying the context (may be NULL), see PetscCtxDestroyFn for the calling sequence
853: Note:
854: Normal usage is to first call the default routine EPSStoppingBasic() and then
855: set reason to EPS_CONVERGED_USER if some user-defined conditions have been
856: met. To let the eigensolver continue iterating, the result must be left as
857: EPS_CONVERGED_ITERATING.
859: Level: advanced
861: .seealso: EPSSetStoppingTest(), EPSStoppingBasic()
862: @*/
863: PetscErrorCode EPSSetStoppingTestFunction(EPS eps,EPSStoppingTestFn *func,void* ctx,PetscCtxDestroyFn *destroy)
864: {
865: PetscFunctionBegin;
867: if (eps->stoppingdestroy) PetscCall((*eps->stoppingdestroy)(&eps->stoppingctx));
868: eps->stoppinguser = func;
869: eps->stoppingdestroy = destroy;
870: eps->stoppingctx = ctx;
871: if (func == EPSStoppingBasic) PetscCall(EPSSetStoppingTest(eps,EPS_STOP_BASIC));
872: else if (func == EPSStoppingThreshold) PetscCall(EPSSetStoppingTest(eps,EPS_STOP_THRESHOLD));
873: else {
874: eps->stop = EPS_STOP_USER;
875: eps->stopping = eps->stoppinguser;
876: }
877: PetscFunctionReturn(PETSC_SUCCESS);
878: }
880: /*@
881: EPSSetStoppingTest - Specifies how to decide the termination of the outer
882: loop of the eigensolver.
884: Logically Collective
886: Input Parameters:
887: + eps - eigensolver context obtained from EPSCreate()
888: - stop - the type of stopping test
890: Options Database Keys:
891: + -eps_stop_basic - Sets the default stopping test
892: . -eps_stop_threshold - Sets the threshold stopping test
893: - -eps_stop_user - Selects the user-defined stopping test
895: Note:
896: The parameter 'stop' can have one of these values
897: + EPS_STOP_BASIC - default stopping test
898: . EPS_STOP_THRESHOLD - threshold stopping test)
899: - EPS_STOP_USER - function set by EPSSetStoppingTestFunction()
901: Level: advanced
903: .seealso: EPSGetStoppingTest(), EPSSetStoppingTestFunction(), EPSSetConvergenceTest(), EPSStop
904: @*/
905: PetscErrorCode EPSSetStoppingTest(EPS eps,EPSStop stop)
906: {
907: PetscFunctionBegin;
910: switch (stop) {
911: case EPS_STOP_BASIC: eps->stopping = EPSStoppingBasic; break;
912: case EPS_STOP_THRESHOLD: eps->stopping = EPSStoppingThreshold; break;
913: case EPS_STOP_USER:
914: PetscCheck(eps->stoppinguser,PetscObjectComm((PetscObject)eps),PETSC_ERR_ORDER,"Must call EPSSetStoppingTestFunction() first");
915: eps->stopping = eps->stoppinguser;
916: break;
917: default:
918: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'stop' value");
919: }
920: eps->stop = stop;
921: PetscFunctionReturn(PETSC_SUCCESS);
922: }
924: /*@
925: EPSGetStoppingTest - Gets the method used to decide the termination of the outer
926: loop of the eigensolver.
928: Not Collective
930: Input Parameters:
931: . eps - eigensolver context obtained from EPSCreate()
933: Output Parameters:
934: . stop - the type of stopping test
936: Level: advanced
938: .seealso: EPSSetStoppingTest(), EPSStop
939: @*/
940: PetscErrorCode EPSGetStoppingTest(EPS eps,EPSStop *stop)
941: {
942: PetscFunctionBegin;
944: PetscAssertPointer(stop,2);
945: *stop = eps->stop;
946: PetscFunctionReturn(PETSC_SUCCESS);
947: }
949: /*@
950: EPSSetProblemType - Specifies the type of the eigenvalue problem.
952: Logically Collective
954: Input Parameters:
955: + eps - the eigensolver context
956: - type - a known type of eigenvalue problem
958: Options Database Keys:
959: + -eps_hermitian - Hermitian eigenvalue problem
960: . -eps_gen_hermitian - generalized Hermitian eigenvalue problem
961: . -eps_non_hermitian - non-Hermitian eigenvalue problem
962: . -eps_gen_non_hermitian - generalized non-Hermitian eigenvalue problem
963: . -eps_pos_gen_non_hermitian - generalized non-Hermitian eigenvalue problem
964: with positive semi-definite B
965: . -eps_gen_indefinite - generalized Hermitian-indefinite eigenvalue problem
966: - -eps_bse - structured Bethe-Salpeter eigenvalue problem
968: Notes:
969: This function must be used to instruct SLEPc to exploit symmetry or other
970: kind of structure. If no
971: problem type is specified, by default a non-Hermitian problem is assumed
972: (either standard or generalized). If the user knows that the problem is
973: Hermitian (i.e. A=A^H) or generalized Hermitian (i.e. A=A^H, B=B^H, and
974: B positive definite) then it is recommended to set the problem type so
975: that eigensolver can exploit these properties.
977: If the user does not call this function, the solver will use a reasonable
978: guess.
980: For structured problem types such as EPS_BSE, the matrices passed in via
981: EPSSetOperators() must have been created with the corresponding helper
982: function, i.e., MatCreateBSE().
984: Level: intermediate
986: .seealso: EPSSetOperators(), EPSSetType(), EPSGetProblemType(), EPSProblemType
987: @*/
988: PetscErrorCode EPSSetProblemType(EPS eps,EPSProblemType type)
989: {
990: PetscFunctionBegin;
993: if (type == eps->problem_type) PetscFunctionReturn(PETSC_SUCCESS);
994: switch (type) {
995: case EPS_HEP:
996: eps->isgeneralized = PETSC_FALSE;
997: eps->ishermitian = PETSC_TRUE;
998: eps->ispositive = PETSC_FALSE;
999: eps->isstructured = PETSC_FALSE;
1000: break;
1001: case EPS_NHEP:
1002: eps->isgeneralized = PETSC_FALSE;
1003: eps->ishermitian = PETSC_FALSE;
1004: eps->ispositive = PETSC_FALSE;
1005: eps->isstructured = PETSC_FALSE;
1006: break;
1007: case EPS_GHEP:
1008: eps->isgeneralized = PETSC_TRUE;
1009: eps->ishermitian = PETSC_TRUE;
1010: eps->ispositive = PETSC_TRUE;
1011: eps->isstructured = PETSC_FALSE;
1012: break;
1013: case EPS_GNHEP:
1014: eps->isgeneralized = PETSC_TRUE;
1015: eps->ishermitian = PETSC_FALSE;
1016: eps->ispositive = PETSC_FALSE;
1017: eps->isstructured = PETSC_FALSE;
1018: break;
1019: case EPS_PGNHEP:
1020: eps->isgeneralized = PETSC_TRUE;
1021: eps->ishermitian = PETSC_FALSE;
1022: eps->ispositive = PETSC_TRUE;
1023: eps->isstructured = PETSC_FALSE;
1024: break;
1025: case EPS_GHIEP:
1026: eps->isgeneralized = PETSC_TRUE;
1027: eps->ishermitian = PETSC_TRUE;
1028: eps->ispositive = PETSC_FALSE;
1029: eps->isstructured = PETSC_FALSE;
1030: break;
1031: case EPS_BSE:
1032: eps->isgeneralized = PETSC_FALSE;
1033: eps->ishermitian = PETSC_FALSE;
1034: eps->ispositive = PETSC_FALSE;
1035: eps->isstructured = PETSC_TRUE;
1036: break;
1037: default:
1038: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"Unknown eigenvalue problem type");
1039: }
1040: eps->problem_type = type;
1041: eps->state = EPS_STATE_INITIAL;
1042: PetscFunctionReturn(PETSC_SUCCESS);
1043: }
1045: /*@
1046: EPSGetProblemType - Gets the problem type from the EPS object.
1048: Not Collective
1050: Input Parameter:
1051: . eps - the eigensolver context
1053: Output Parameter:
1054: . type - the problem type
1056: Level: intermediate
1058: .seealso: EPSSetProblemType(), EPSProblemType
1059: @*/
1060: PetscErrorCode EPSGetProblemType(EPS eps,EPSProblemType *type)
1061: {
1062: PetscFunctionBegin;
1064: PetscAssertPointer(type,2);
1065: *type = eps->problem_type;
1066: PetscFunctionReturn(PETSC_SUCCESS);
1067: }
1069: /*@
1070: EPSSetExtraction - Specifies the type of extraction technique to be employed
1071: by the eigensolver.
1073: Logically Collective
1075: Input Parameters:
1076: + eps - the eigensolver context
1077: - extr - a known type of extraction
1079: Options Database Keys:
1080: + -eps_ritz - Rayleigh-Ritz extraction
1081: . -eps_harmonic - harmonic Ritz extraction
1082: . -eps_harmonic_relative - harmonic Ritz extraction relative to the eigenvalue
1083: . -eps_harmonic_right - harmonic Ritz extraction for rightmost eigenvalues
1084: . -eps_harmonic_largest - harmonic Ritz extraction for largest magnitude
1085: (without target)
1086: . -eps_refined - refined Ritz extraction
1087: - -eps_refined_harmonic - refined harmonic Ritz extraction
1089: Notes:
1090: Not all eigensolvers support all types of extraction. See the SLEPc
1091: Users Manual for details.
1093: By default, a standard Rayleigh-Ritz extraction is used. Other extractions
1094: may be useful when computing interior eigenvalues.
1096: Harmonic-type extractions are used in combination with a 'target'.
1098: Level: advanced
1100: .seealso: EPSSetTarget(), EPSGetExtraction(), EPSExtraction
1101: @*/
1102: PetscErrorCode EPSSetExtraction(EPS eps,EPSExtraction extr)
1103: {
1104: PetscFunctionBegin;
1107: if (eps->extraction != extr) {
1108: eps->state = EPS_STATE_INITIAL;
1109: eps->extraction = extr;
1110: }
1111: PetscFunctionReturn(PETSC_SUCCESS);
1112: }
1114: /*@
1115: EPSGetExtraction - Gets the extraction type used by the EPS object.
1117: Not Collective
1119: Input Parameter:
1120: . eps - the eigensolver context
1122: Output Parameter:
1123: . extr - name of extraction type
1125: Level: advanced
1127: .seealso: EPSSetExtraction(), EPSExtraction
1128: @*/
1129: PetscErrorCode EPSGetExtraction(EPS eps,EPSExtraction *extr)
1130: {
1131: PetscFunctionBegin;
1133: PetscAssertPointer(extr,2);
1134: *extr = eps->extraction;
1135: PetscFunctionReturn(PETSC_SUCCESS);
1136: }
1138: /*@
1139: EPSSetBalance - Specifies the balancing technique to be employed by the
1140: eigensolver, and some parameters associated to it.
1142: Logically Collective
1144: Input Parameters:
1145: + eps - the eigensolver context
1146: . bal - the balancing method, one of EPS_BALANCE_NONE, EPS_BALANCE_ONESIDE,
1147: EPS_BALANCE_TWOSIDE, or EPS_BALANCE_USER
1148: . its - number of iterations of the balancing algorithm
1149: - cutoff - cutoff value
1151: Options Database Keys:
1152: + -eps_balance <method> - the balancing method, where <method> is one of
1153: 'none', 'oneside', 'twoside', or 'user'
1154: . -eps_balance_its <its> - number of iterations
1155: - -eps_balance_cutoff <cutoff> - cutoff value
1157: Notes:
1158: When balancing is enabled, the solver works implicitly with matrix DAD^-1,
1159: where D is an appropriate diagonal matrix. This improves the accuracy of
1160: the computed results in some cases. See the SLEPc Users Manual for details.
1162: Balancing makes sense only for non-Hermitian problems when the required
1163: precision is high (i.e. a small tolerance such as 1e-15).
1165: By default, balancing is disabled. The two-sided method is much more
1166: effective than the one-sided counterpart, but it requires the system
1167: matrices to have the MatMultTranspose operation defined.
1169: The parameter 'its' is the number of iterations performed by the method. The
1170: cutoff value is used only in the two-side variant. Use PETSC_DETERMINE to assign
1171: a reasonably good value, or PETSC_CURRENT to leave the value unchanged.
1173: User-defined balancing is allowed provided that the corresponding matrix
1174: is set via STSetBalanceMatrix.
1176: Level: intermediate
1178: .seealso: EPSGetBalance(), EPSBalance, STSetBalanceMatrix()
1179: @*/
1180: PetscErrorCode EPSSetBalance(EPS eps,EPSBalance bal,PetscInt its,PetscReal cutoff)
1181: {
1182: PetscFunctionBegin;
1187: switch (bal) {
1188: case EPS_BALANCE_NONE:
1189: case EPS_BALANCE_ONESIDE:
1190: case EPS_BALANCE_TWOSIDE:
1191: case EPS_BALANCE_USER:
1192: if (eps->balance != bal) {
1193: eps->state = EPS_STATE_INITIAL;
1194: eps->balance = bal;
1195: }
1196: break;
1197: default:
1198: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid value of argument 'bal'");
1199: }
1200: if (its==PETSC_DETERMINE) eps->balance_its = 5;
1201: else if (its!=PETSC_CURRENT) {
1202: PetscCheck(its>0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of its. Must be > 0");
1203: eps->balance_its = its;
1204: }
1205: if (cutoff==(PetscReal)PETSC_DETERMINE) eps->balance_cutoff = 1e-8;
1206: else if (cutoff!=(PetscReal)PETSC_CURRENT) {
1207: PetscCheck(cutoff>0.0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of cutoff. Must be > 0");
1208: eps->balance_cutoff = cutoff;
1209: }
1210: PetscFunctionReturn(PETSC_SUCCESS);
1211: }
1213: /*@
1214: EPSGetBalance - Gets the balancing type used by the EPS object, and the
1215: associated parameters.
1217: Not Collective
1219: Input Parameter:
1220: . eps - the eigensolver context
1222: Output Parameters:
1223: + bal - the balancing method
1224: . its - number of iterations of the balancing algorithm
1225: - cutoff - cutoff value
1227: Level: intermediate
1229: Note:
1230: The user can specify NULL for any parameter that is not needed.
1232: .seealso: EPSSetBalance(), EPSBalance
1233: @*/
1234: PetscErrorCode EPSGetBalance(EPS eps,EPSBalance *bal,PetscInt *its,PetscReal *cutoff)
1235: {
1236: PetscFunctionBegin;
1238: if (bal) *bal = eps->balance;
1239: if (its) *its = eps->balance_its;
1240: if (cutoff) *cutoff = eps->balance_cutoff;
1241: PetscFunctionReturn(PETSC_SUCCESS);
1242: }
1244: /*@
1245: EPSSetTwoSided - Sets the solver to use a two-sided variant so that left
1246: eigenvectors are also computed.
1248: Logically Collective
1250: Input Parameters:
1251: + eps - the eigensolver context
1252: - twosided - whether the two-sided variant is to be used or not
1254: Options Database Keys:
1255: . -eps_two_sided <boolean> - Sets/resets the twosided flag
1257: Notes:
1258: If the user sets twosided=PETSC_TRUE then the solver uses a variant of
1259: the algorithm that computes both right and left eigenvectors. This is
1260: usually much more costly. This option is not available in all solvers.
1262: When using two-sided solvers, the problem matrices must have both the
1263: MatMult and MatMultTranspose operations defined.
1265: Level: advanced
1267: .seealso: EPSGetTwoSided(), EPSGetLeftEigenvector()
1268: @*/
1269: PetscErrorCode EPSSetTwoSided(EPS eps,PetscBool twosided)
1270: {
1271: PetscFunctionBegin;
1274: if (twosided!=eps->twosided) {
1275: eps->twosided = twosided;
1276: eps->state = EPS_STATE_INITIAL;
1277: }
1278: PetscFunctionReturn(PETSC_SUCCESS);
1279: }
1281: /*@
1282: EPSGetTwoSided - Returns the flag indicating whether a two-sided variant
1283: of the algorithm is being used or not.
1285: Not Collective
1287: Input Parameter:
1288: . eps - the eigensolver context
1290: Output Parameter:
1291: . twosided - the returned flag
1293: Level: advanced
1295: .seealso: EPSSetTwoSided()
1296: @*/
1297: PetscErrorCode EPSGetTwoSided(EPS eps,PetscBool *twosided)
1298: {
1299: PetscFunctionBegin;
1301: PetscAssertPointer(twosided,2);
1302: *twosided = eps->twosided;
1303: PetscFunctionReturn(PETSC_SUCCESS);
1304: }
1306: /*@
1307: EPSSetTrueResidual - Specifies if the solver must compute the true residual
1308: explicitly or not.
1310: Logically Collective
1312: Input Parameters:
1313: + eps - the eigensolver context
1314: - trueres - whether true residuals are required or not
1316: Options Database Keys:
1317: . -eps_true_residual <boolean> - Sets/resets the boolean flag 'trueres'
1319: Notes:
1320: If the user sets trueres=PETSC_TRUE then the solver explicitly computes
1321: the true residual for each eigenpair approximation, and uses it for
1322: convergence testing. Computing the residual is usually an expensive
1323: operation. Some solvers (e.g., Krylov solvers) can avoid this computation
1324: by using a cheap estimate of the residual norm, but this may sometimes
1325: give inaccurate results (especially if a spectral transform is being
1326: used). On the contrary, preconditioned eigensolvers (e.g., Davidson solvers)
1327: do rely on computing the true residual, so this option is irrelevant for them.
1329: Level: advanced
1331: .seealso: EPSGetTrueResidual()
1332: @*/
1333: PetscErrorCode EPSSetTrueResidual(EPS eps,PetscBool trueres)
1334: {
1335: PetscFunctionBegin;
1338: eps->trueres = trueres;
1339: PetscFunctionReturn(PETSC_SUCCESS);
1340: }
1342: /*@
1343: EPSGetTrueResidual - Returns the flag indicating whether true
1344: residuals must be computed explicitly or not.
1346: Not Collective
1348: Input Parameter:
1349: . eps - the eigensolver context
1351: Output Parameter:
1352: . trueres - the returned flag
1354: Level: advanced
1356: .seealso: EPSSetTrueResidual()
1357: @*/
1358: PetscErrorCode EPSGetTrueResidual(EPS eps,PetscBool *trueres)
1359: {
1360: PetscFunctionBegin;
1362: PetscAssertPointer(trueres,2);
1363: *trueres = eps->trueres;
1364: PetscFunctionReturn(PETSC_SUCCESS);
1365: }
1367: /*@
1368: EPSSetTrackAll - Specifies if the solver must compute the residual norm of all
1369: approximate eigenpairs or not.
1371: Logically Collective
1373: Input Parameters:
1374: + eps - the eigensolver context
1375: - trackall - whether to compute all residuals or not
1377: Notes:
1378: If the user sets trackall=PETSC_TRUE then the solver computes (or estimates)
1379: the residual norm for each eigenpair approximation. Computing the residual is
1380: usually an expensive operation and solvers commonly compute only the residual
1381: associated to the first unconverged eigenpair.
1383: The option '-eps_monitor_all' automatically activates this option.
1385: Level: developer
1387: .seealso: EPSGetTrackAll()
1388: @*/
1389: PetscErrorCode EPSSetTrackAll(EPS eps,PetscBool trackall)
1390: {
1391: PetscFunctionBegin;
1394: eps->trackall = trackall;
1395: PetscFunctionReturn(PETSC_SUCCESS);
1396: }
1398: /*@
1399: EPSGetTrackAll - Returns the flag indicating whether all residual norms must
1400: be computed or not.
1402: Not Collective
1404: Input Parameter:
1405: . eps - the eigensolver context
1407: Output Parameter:
1408: . trackall - the returned flag
1410: Level: developer
1412: .seealso: EPSSetTrackAll()
1413: @*/
1414: PetscErrorCode EPSGetTrackAll(EPS eps,PetscBool *trackall)
1415: {
1416: PetscFunctionBegin;
1418: PetscAssertPointer(trackall,2);
1419: *trackall = eps->trackall;
1420: PetscFunctionReturn(PETSC_SUCCESS);
1421: }
1423: /*@
1424: EPSSetPurify - Deactivate eigenvector purification (which is activated by default).
1426: Logically Collective
1428: Input Parameters:
1429: + eps - the eigensolver context
1430: - purify - whether purification is required or not
1432: Options Database Keys:
1433: . -eps_purify <boolean> - Sets/resets the boolean flag 'purify'
1435: Notes:
1436: By default, eigenvectors of generalized symmetric eigenproblems are purified
1437: in order to purge directions in the nullspace of matrix B. If the user knows
1438: that B is non-singular, then purification can be safely deactivated and some
1439: computational cost is avoided (this is particularly important in interval computations).
1441: Level: intermediate
1443: .seealso: EPSGetPurify(), EPSSetInterval()
1444: @*/
1445: PetscErrorCode EPSSetPurify(EPS eps,PetscBool purify)
1446: {
1447: PetscFunctionBegin;
1450: if (purify!=eps->purify) {
1451: eps->purify = purify;
1452: eps->state = EPS_STATE_INITIAL;
1453: }
1454: PetscFunctionReturn(PETSC_SUCCESS);
1455: }
1457: /*@
1458: EPSGetPurify - Returns the flag indicating whether purification is activated
1459: or not.
1461: Not Collective
1463: Input Parameter:
1464: . eps - the eigensolver context
1466: Output Parameter:
1467: . purify - the returned flag
1469: Level: intermediate
1471: .seealso: EPSSetPurify()
1472: @*/
1473: PetscErrorCode EPSGetPurify(EPS eps,PetscBool *purify)
1474: {
1475: PetscFunctionBegin;
1477: PetscAssertPointer(purify,2);
1478: *purify = eps->purify;
1479: PetscFunctionReturn(PETSC_SUCCESS);
1480: }
1482: /*@
1483: EPSSetOptionsPrefix - Sets the prefix used for searching for all
1484: EPS options in the database.
1486: Logically Collective
1488: Input Parameters:
1489: + eps - the eigensolver context
1490: - prefix - the prefix string to prepend to all EPS option requests
1492: Notes:
1493: A hyphen (-) must NOT be given at the beginning of the prefix name.
1494: The first character of all runtime options is AUTOMATICALLY the
1495: hyphen.
1497: For example, to distinguish between the runtime options for two
1498: different EPS contexts, one could call
1499: .vb
1500: EPSSetOptionsPrefix(eps1,"eig1_")
1501: EPSSetOptionsPrefix(eps2,"eig2_")
1502: .ve
1504: Level: advanced
1506: .seealso: EPSAppendOptionsPrefix(), EPSGetOptionsPrefix()
1507: @*/
1508: PetscErrorCode EPSSetOptionsPrefix(EPS eps,const char *prefix)
1509: {
1510: PetscFunctionBegin;
1512: if (!eps->st) PetscCall(EPSGetST(eps,&eps->st));
1513: PetscCall(STSetOptionsPrefix(eps->st,prefix));
1514: if (!eps->V) PetscCall(EPSGetBV(eps,&eps->V));
1515: PetscCall(BVSetOptionsPrefix(eps->V,prefix));
1516: if (!eps->ds) PetscCall(EPSGetDS(eps,&eps->ds));
1517: PetscCall(DSSetOptionsPrefix(eps->ds,prefix));
1518: if (!eps->rg) PetscCall(EPSGetRG(eps,&eps->rg));
1519: PetscCall(RGSetOptionsPrefix(eps->rg,prefix));
1520: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)eps,prefix));
1521: PetscFunctionReturn(PETSC_SUCCESS);
1522: }
1524: /*@
1525: EPSAppendOptionsPrefix - Appends to the prefix used for searching for all
1526: EPS options in the database.
1528: Logically Collective
1530: Input Parameters:
1531: + eps - the eigensolver context
1532: - prefix - the prefix string to prepend to all EPS option requests
1534: Notes:
1535: A hyphen (-) must NOT be given at the beginning of the prefix name.
1536: The first character of all runtime options is AUTOMATICALLY the hyphen.
1538: Level: advanced
1540: .seealso: EPSSetOptionsPrefix(), EPSGetOptionsPrefix()
1541: @*/
1542: PetscErrorCode EPSAppendOptionsPrefix(EPS eps,const char *prefix)
1543: {
1544: PetscFunctionBegin;
1546: if (!eps->st) PetscCall(EPSGetST(eps,&eps->st));
1547: PetscCall(STAppendOptionsPrefix(eps->st,prefix));
1548: if (!eps->V) PetscCall(EPSGetBV(eps,&eps->V));
1549: PetscCall(BVAppendOptionsPrefix(eps->V,prefix));
1550: if (!eps->ds) PetscCall(EPSGetDS(eps,&eps->ds));
1551: PetscCall(DSAppendOptionsPrefix(eps->ds,prefix));
1552: if (!eps->rg) PetscCall(EPSGetRG(eps,&eps->rg));
1553: PetscCall(RGAppendOptionsPrefix(eps->rg,prefix));
1554: PetscCall(PetscObjectAppendOptionsPrefix((PetscObject)eps,prefix));
1555: PetscFunctionReturn(PETSC_SUCCESS);
1556: }
1558: /*@
1559: EPSGetOptionsPrefix - Gets the prefix used for searching for all
1560: EPS options in the database.
1562: Not Collective
1564: Input Parameters:
1565: . eps - the eigensolver context
1567: Output Parameters:
1568: . prefix - pointer to the prefix string used is returned
1570: Note:
1571: On the Fortran side, the user should pass in a string 'prefix' of
1572: sufficient length to hold the prefix.
1574: Level: advanced
1576: .seealso: EPSSetOptionsPrefix(), EPSAppendOptionsPrefix()
1577: @*/
1578: PetscErrorCode EPSGetOptionsPrefix(EPS eps,const char *prefix[])
1579: {
1580: PetscFunctionBegin;
1582: PetscAssertPointer(prefix,2);
1583: PetscCall(PetscObjectGetOptionsPrefix((PetscObject)eps,prefix));
1584: PetscFunctionReturn(PETSC_SUCCESS);
1585: }