Actual source code: evsl.c

slepc-main 2025-01-19
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    This file implements a wrapper to eigensolvers in EVSL.
 12: */

 14: #include <slepc/private/epsimpl.h>
 15: #include <evsl.h>

 17: #define PetscCallEVSL(func, ...) do {                                                   \
 18:     PetscStackPushExternal(PetscStringize(func));                                                      \
 19:     int evsl_ierr_ = func(__VA_ARGS__);                                              \
 20:     PetscStackPop;                                                                             \
 21:     PetscCheck(!evsl_ierr_,PETSC_COMM_SELF,PETSC_ERR_LIB,"Error calling %s: error code %d",PetscStringize(func(__VA_ARGS__)),evsl_ierr_); \
 22:   } while (0)

 24: typedef struct {
 25:   PetscBool         initialized;
 26:   Mat               A;           /* problem matrix */
 27:   Vec               x,y;         /* auxiliary vectors */
 28:   PetscReal         *sli;        /* slice bounds */
 29:   PetscInt          nev;         /* approximate number of wanted eigenvalues in each slice */
 30:   PetscLayout       map;         /* used to distribute slices among MPI processes */
 31:   PetscBool         estimrange;  /* the filter range was not set by the user */
 32:   /* user parameters */
 33:   PetscInt          nslices;     /* number of slices */
 34:   PetscReal         lmin,lmax;   /* numerical range (min and max eigenvalue) */
 35:   EPSEVSLDOSMethod  dos;         /* DOS method, either KPM or Lanczos */
 36:   PetscInt          nvec;        /* number of sample vectors used for DOS */
 37:   PetscInt          deg;         /* polynomial degree used for DOS (KPM only) */
 38:   PetscInt          steps;       /* number of Lanczos steps used for DOS (Lanczos only) */
 39:   PetscInt          npoints;     /* number of sample points used for DOS (Lanczos only) */
 40:   PetscInt          max_deg;     /* maximum degree allowed for the polynomial */
 41:   PetscReal         thresh;      /* threshold for accepting polynomial */
 42:   EPSEVSLDamping    damping;     /* type of damping (for polynomial and for DOS-KPM) */
 43: } EPS_EVSL;

 45: static void AMatvec_EVSL(double *xa,double *ya,void *data)
 46: {
 47:   EPS_EVSL       *ctx = (EPS_EVSL*)data;
 48:   Vec            x = ctx->x,y = ctx->y;
 49:   Mat            A = ctx->A;

 51:   PetscFunctionBegin;
 52:   PetscCallAbort(PetscObjectComm((PetscObject)A),VecPlaceArray(x,(PetscScalar*)xa));
 53:   PetscCallAbort(PetscObjectComm((PetscObject)A),VecPlaceArray(y,(PetscScalar*)ya));
 54:   PetscCallAbort(PetscObjectComm((PetscObject)A),MatMult(A,x,y));
 55:   PetscCallAbort(PetscObjectComm((PetscObject)A),VecResetArray(x));
 56:   PetscCallAbort(PetscObjectComm((PetscObject)A),VecResetArray(y));
 57:   PetscFunctionReturnVoid();
 58: }

 60: static PetscErrorCode EPSSetUp_EVSL(EPS eps)
 61: {
 62:   EPS_EVSL       *ctx = (EPS_EVSL*)eps->data;
 63:   PetscMPIInt    size,rank;
 64:   PetscBool      isshift;
 65:   PetscScalar    *vinit;
 66:   PetscReal      *mu,ecount,xintv[4],*xdos,*ydos;
 67:   Vec            v0;
 68:   Mat            A;
 69:   PetscRandom    rnd;

 71:   PetscFunctionBegin;
 72:   EPSCheckStandard(eps);
 73:   EPSCheckHermitian(eps);
 74:   EPSCheckNotStructured(eps);
 75:   if (eps->nev==0) eps->nev = 1;
 76:   PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STSHIFT,&isshift));
 77:   PetscCheck(isshift,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver does not support spectral transformations");

 79:   if (ctx->initialized) EVSLFinish();
 80:   EVSLStart();
 81:   ctx->initialized=PETSC_TRUE;

 83:   /* get number of slices per process */
 84:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)eps),&size));
 85:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)eps),&rank));
 86:   if (!ctx->nslices) ctx->nslices = size;
 87:   PetscCall(PetscLayoutDestroy(&ctx->map));
 88:   PetscCall(PetscLayoutCreateFromSizes(PetscObjectComm((PetscObject)eps),PETSC_DECIDE,ctx->nslices,1,&ctx->map));

 90:   /* get matrix and prepare auxiliary vectors */
 91:   PetscCall(MatDestroy(&ctx->A));
 92:   PetscCall(STGetMatrix(eps->st,0,&A));
 93:   if (size==1) {
 94:     PetscCall(PetscObjectReference((PetscObject)A));
 95:     ctx->A = A;
 96:   } else PetscCall(MatCreateRedundantMatrix(A,0,PETSC_COMM_SELF,MAT_INITIAL_MATRIX,&ctx->A));
 97:   SetAMatvec(eps->n,&AMatvec_EVSL,(void*)ctx);
 98:   if (!ctx->x) PetscCall(MatCreateVecsEmpty(ctx->A,&ctx->x,&ctx->y));
 99:   EPSCheckUnsupported(eps,EPS_FEATURE_ARBITRARY | EPS_FEATURE_REGION | EPS_FEATURE_STOPPING);
100:   EPSCheckIgnored(eps,EPS_FEATURE_EXTRACTION | EPS_FEATURE_CONVERGENCE);

102:   if (!eps->which) eps->which=EPS_ALL;
103:   PetscCheck(eps->which==EPS_ALL && eps->inta!=eps->intb,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver requires setting an interval with EPSSetInterval()");

105:   /* estimate numerical range */
106:   if (ctx->estimrange || ctx->lmin == PETSC_MIN_REAL || ctx->lmax == PETSC_MAX_REAL) {
107:     PetscCall(MatCreateVecs(ctx->A,&v0,NULL));
108:     if (!eps->V) PetscCall(EPSGetBV(eps,&eps->V));
109:     PetscCall(BVGetRandomContext(eps->V,&rnd));
110:     PetscCall(VecSetRandom(v0,rnd));
111:     PetscCall(VecGetArray(v0,&vinit));
112:     PetscCallEVSL(LanTrbounds,50,200,eps->tol,vinit,1,&ctx->lmin,&ctx->lmax,NULL);
113:     PetscCall(VecRestoreArray(v0,&vinit));
114:     PetscCall(VecDestroy(&v0));
115:     ctx->estimrange = PETSC_TRUE;   /* estimate if called again with another matrix */
116:   }
117:   PetscCheck(ctx->lmin<=eps->inta && ctx->lmax>=eps->intb,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The requested interval [%g,%g] must be contained in the numerical range [%g,%g]",(double)eps->inta,(double)eps->intb,(double)ctx->lmin,(double)ctx->lmax);
118:   xintv[0] = eps->inta;
119:   xintv[1] = eps->intb;
120:   xintv[2] = ctx->lmin;
121:   xintv[3] = ctx->lmax;

123:   /* estimate number of eigenvalues in the interval */
124:   switch (ctx->dos) {
125:     case EPS_EVSL_DOS_KPM:
126:       PetscCall(PetscMalloc1(ctx->deg+1,&mu));
127:       if (!rank) PetscCallEVSL(kpmdos,ctx->deg,(int)ctx->damping,ctx->nvec,xintv,mu,&ecount);
128:       PetscCallMPI(MPI_Bcast(mu,ctx->deg+1,MPIU_REAL,0,PetscObjectComm((PetscObject)eps)));
129:       break;
130:     case EPS_EVSL_DOS_LANCZOS:
131:       PetscCall(PetscMalloc2(ctx->npoints,&xdos,ctx->npoints,&ydos));
132:       if (!rank) PetscCallEVSL(LanDos,ctx->nvec,PetscMin(ctx->steps,eps->n/2),ctx->npoints,xdos,ydos,&ecount,xintv);
133:       PetscCallMPI(MPI_Bcast(xdos,ctx->npoints,MPIU_REAL,0,PetscObjectComm((PetscObject)eps)));
134:       PetscCallMPI(MPI_Bcast(ydos,ctx->npoints,MPIU_REAL,0,PetscObjectComm((PetscObject)eps)));
135:       break;
136:     default:
137:       SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid DOS method");
138:   }
139:   PetscCallMPI(MPI_Bcast(&ecount,1,MPIU_REAL,0,PetscObjectComm((PetscObject)eps)));

141:   PetscCall(PetscInfo(eps,"Estimated eigenvalue count in the interval: %g\n",ecount));
142:   eps->ncv = (PetscInt)PetscCeilReal(1.5*ecount);

144:   /* slice the spectrum */
145:   PetscCall(PetscFree(ctx->sli));
146:   PetscCall(PetscMalloc1(ctx->nslices+1,&ctx->sli));
147:   if (ctx->dos == EPS_EVSL_DOS_KPM) {
148:     PetscCallEVSL(spslicer,ctx->sli,mu,ctx->deg,xintv,ctx->nslices,10*(PetscInt)ecount);
149:     PetscCall(PetscFree(mu));
150:   } else if (ctx->dos == EPS_EVSL_DOS_LANCZOS) {
151:     spslicer2(xdos,ydos,ctx->nslices,ctx->npoints,ctx->sli);
152:     PetscCall(PetscFree2(xdos,ydos));
153:   }

155:   /* approximate number of eigenvalues wanted in each slice */
156:   ctx->nev = (PetscInt)(1.0 + ecount/(PetscReal)ctx->nslices) + 2;

158:   if (eps->mpd!=PETSC_DETERMINE) PetscCall(PetscInfo(eps,"Warning: parameter mpd ignored\n"));
159:   if (eps->max_it==PETSC_DETERMINE) eps->max_it = 1;
160:   PetscCall(EPSAllocateSolution(eps,0));
161:   PetscFunctionReturn(PETSC_SUCCESS);
162: }

164: static PetscErrorCode EPSSolve_EVSL(EPS eps)
165: {
166:   EPS_EVSL       *ctx = (EPS_EVSL*)eps->data;
167:   PetscInt       i,j,k=0,sl,mlan,nevout,*ind,nevmax,rstart,rend,*nevloc,*disp,N;
168:   PetscReal      *res,xintv[4],*errest;
169:   PetscScalar    *lam,*X,*Y,*vinit,*eigr;
170:   PetscMPIInt    size,rank;
171:   PetscRandom    rnd;
172:   Vec            v,w,v0,x;
173:   VecScatter     vs;
174:   IS             is;
175:   polparams      pol;

177:   PetscFunctionBegin;
178:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)eps),&size));
179:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)eps),&rank));
180:   PetscCall(PetscLayoutGetRange(ctx->map,&rstart,&rend));
181:   nevmax = (rend-rstart)*ctx->nev;
182:   PetscCall(MatCreateVecs(ctx->A,&v0,NULL));
183:   PetscCall(BVGetRandomContext(eps->V,&rnd));
184:   PetscCall(VecSetRandom(v0,rnd));
185:   PetscCall(VecGetArray(v0,&vinit));
186:   PetscCall(PetscMalloc5(size,&nevloc,size+1,&disp,nevmax,&eigr,nevmax,&errest,nevmax*eps->n,&X));
187:   mlan = PetscMin(PetscMax(5*ctx->nev,300),eps->n);
188:   for (sl=rstart; sl<rend; sl++) {
189:     xintv[0] = ctx->sli[sl];
190:     xintv[1] = ctx->sli[sl+1];
191:     xintv[2] = ctx->lmin;
192:     xintv[3] = ctx->lmax;
193:     PetscCall(PetscInfo(ctx->A,"Subinterval %" PetscInt_FMT ": [%.4e, %.4e]\n",sl+1,xintv[0],xintv[1]));
194:     set_pol_def(&pol);
195:     pol.max_deg    = ctx->max_deg;
196:     pol.damping    = (int)ctx->damping;
197:     pol.thresh_int = ctx->thresh;
198:     find_pol(xintv,&pol);
199:     PetscCall(PetscInfo(ctx->A,"Polynomial [type = %" PetscInt_FMT "], deg %" PetscInt_FMT ", bar %e gam %e\n",pol.type,pol.deg,pol.bar,pol.gam));
200:     PetscCallEVSL(ChebLanNr,xintv,mlan,eps->tol,vinit,&pol,&nevout,&lam,&Y,&res,NULL);
201:     PetscCheck(k+nevout<=nevmax,PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"Too low estimation of eigenvalue count, try modifying the sampling parameters");
202:     free_pol(&pol);
203:     PetscCall(PetscInfo(ctx->A,"Computed %" PetscInt_FMT " eigenvalues\n",nevout));
204:     PetscCall(PetscMalloc1(nevout,&ind));
205:     sort_double(nevout,lam,ind);
206:     for (i=0;i<nevout;i++) {
207:       eigr[i+k]   = lam[i];
208:       errest[i+k] = res[ind[i]];
209:       PetscCall(PetscArraycpy(X+(i+k)*eps->n,Y+ind[i]*eps->n,eps->n));
210:     }
211:     k += nevout;
212:     if (lam) evsl_Free(lam);
213:     if (Y)   evsl_Free_device(Y);
214:     if (res) evsl_Free(res);
215:     PetscCall(PetscFree(ind));
216:   }
217:   PetscCall(VecRestoreArray(v0,&vinit));
218:   PetscCall(VecDestroy(&v0));

220:   /* gather eigenvalues computed by each MPI process */
221:   PetscCallMPI(MPI_Allgather(&k,1,MPIU_INT,nevloc,1,MPIU_INT,PetscObjectComm((PetscObject)eps)));
222:   eps->nev = nevloc[0];
223:   disp[0]  = 0;
224:   for (i=1;i<size;i++) {
225:     eps->nev += nevloc[i];
226:     disp[i]   = disp[i-1]+nevloc[i-1];
227:   }
228:   disp[size] = disp[size-1]+nevloc[size-1];
229:   PetscCheck(eps->nev<=eps->ncv,PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"Too low estimation of eigenvalue count, try modifying the sampling parameters");
230:   PetscCallMPI(MPI_Allgatherv(eigr,k,MPIU_SCALAR,eps->eigr,nevloc,disp,MPIU_SCALAR,PetscObjectComm((PetscObject)eps)));
231:   PetscCallMPI(MPI_Allgatherv(errest,k,MPIU_REAL,eps->errest,nevloc,disp,MPIU_REAL,PetscObjectComm((PetscObject)eps)));
232:   eps->nconv  = eps->nev;
233:   eps->its    = 1;
234:   eps->reason = EPS_CONVERGED_TOL;

236:   /* scatter computed eigenvectors and store them in eps->V */
237:   PetscCall(BVCreateVec(eps->V,&w));
238:   for (i=0;i<size;i++) {
239:     N = (rank==i)? eps->n: 0;
240:     PetscCall(VecCreateSeq(PETSC_COMM_SELF,N,&x));
241:     PetscCall(VecSetFromOptions(x));
242:     PetscCall(ISCreateStride(PETSC_COMM_SELF,N,0,1,&is));
243:     PetscCall(VecScatterCreate(x,is,w,is,&vs));
244:     PetscCall(ISDestroy(&is));
245:     for (j=disp[i];j<disp[i+1];j++) {
246:       PetscCall(BVGetColumn(eps->V,j,&v));
247:       if (rank==i) PetscCall(VecPlaceArray(x,X+(j-disp[i])*eps->n));
248:       PetscCall(VecScatterBegin(vs,x,v,INSERT_VALUES,SCATTER_FORWARD));
249:       PetscCall(VecScatterEnd(vs,x,v,INSERT_VALUES,SCATTER_FORWARD));
250:       if (rank==i) PetscCall(VecResetArray(x));
251:       PetscCall(BVRestoreColumn(eps->V,j,&v));
252:     }
253:     PetscCall(VecScatterDestroy(&vs));
254:     PetscCall(VecDestroy(&x));
255:   }
256:   PetscCall(VecDestroy(&w));
257:   PetscCall(PetscFree5(nevloc,disp,eigr,errest,X));
258:   PetscFunctionReturn(PETSC_SUCCESS);
259: }

261: static PetscErrorCode EPSEVSLSetSlices_EVSL(EPS eps,PetscInt nslices)
262: {
263:   EPS_EVSL *ctx = (EPS_EVSL*)eps->data;

265:   PetscFunctionBegin;
266:   if (nslices == PETSC_DECIDE || nslices == PETSC_DEFAULT) nslices = 0;
267:   else PetscCheck(nslices>0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Number of slices must be 1 at least");
268:   if (ctx->nslices != nslices) {
269:     ctx->nslices = nslices;
270:     eps->state   = EPS_STATE_INITIAL;
271:   }
272:   PetscFunctionReturn(PETSC_SUCCESS);
273: }

275: /*@
276:    EPSEVSLSetSlices - Set the number of slices in which the interval must be
277:    subdivided.

279:    Logically Collective

281:    Input Parameters:
282: +  eps     - the eigensolver context
283: -  nslices - the number of slices

285:    Options Database Key:
286: .  -eps_evsl_slices <n> - set the number of slices to n

288:    Notes:
289:    By default, one slice per MPI process is used. Depending on the number of
290:    eigenvalues, using more slices may be beneficial, but very narrow subintervals
291:    imply higher polynomial degree.

293:    Level: intermediate

295: .seealso: EPSEVSLGetSlices()
296: @*/
297: PetscErrorCode EPSEVSLSetSlices(EPS eps,PetscInt nslices)
298: {
299:   PetscFunctionBegin;
302:   PetscTryMethod(eps,"EPSEVSLSetSlices_C",(EPS,PetscInt),(eps,nslices));
303:   PetscFunctionReturn(PETSC_SUCCESS);
304: }

306: static PetscErrorCode EPSEVSLGetSlices_EVSL(EPS eps,PetscInt *nslices)
307: {
308:   EPS_EVSL *ctx = (EPS_EVSL*)eps->data;

310:   PetscFunctionBegin;
311:   *nslices = ctx->nslices;
312:   PetscFunctionReturn(PETSC_SUCCESS);
313: }

315: /*@
316:    EPSEVSLGetSlices - Gets the number of slices in which the interval must be
317:    subdivided.

319:    Not Collective

321:    Input Parameter:
322: .  eps - the eigensolver context

324:    Output Parameter:
325: .  nslices - the number of slices

327:    Level: intermediate

329: .seealso: EPSEVSLSetSlices()
330: @*/
331: PetscErrorCode EPSEVSLGetSlices(EPS eps,PetscInt *nslices)
332: {
333:   PetscFunctionBegin;
335:   PetscAssertPointer(nslices,2);
336:   PetscUseMethod(eps,"EPSEVSLGetSlices_C",(EPS,PetscInt*),(eps,nslices));
337:   PetscFunctionReturn(PETSC_SUCCESS);
338: }

340: static PetscErrorCode EPSEVSLSetRange_EVSL(EPS eps,PetscReal lmin,PetscReal lmax)
341: {
342:   EPS_EVSL *ctx = (EPS_EVSL*)eps->data;

344:   PetscFunctionBegin;
345:   PetscCheck(lmin<lmax,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"Badly defined interval, must be lmin<lmax");
346:   if (ctx->lmin != lmin || ctx->lmax != lmax) {
347:     ctx->lmin  = lmin;
348:     ctx->lmax  = lmax;
349:     eps->state = EPS_STATE_INITIAL;
350:   }
351:   PetscFunctionReturn(PETSC_SUCCESS);
352: }

354: /*@
355:    EPSEVSLSetRange - Defines the numerical range (or field of values) of the problem,
356:    that is, the interval containing all eigenvalues.

358:    Logically Collective

360:    Input Parameters:
361: +  eps  - the eigensolver context
362: .  lmin - left end of the interval
363: -  lmax - right end of the interval

365:    Options Database Key:
366: .  -eps_evsl_range <a,b> - set [a,b] as the numerical range

368:    Notes:
369:    The filter will be most effective if the numerical range is tight, that is, lmin
370:    and lmax are good approximations to the leftmost and rightmost eigenvalues,
371:    respectively. If not set by the user, an approximation is computed internally.

373:    The wanted computational interval specified via EPSSetInterval() must be
374:    contained in the numerical range.

376:    Level: intermediate

378: .seealso: EPSEVSLGetRange(), EPSSetInterval()
379: @*/
380: PetscErrorCode EPSEVSLSetRange(EPS eps,PetscReal lmin,PetscReal lmax)
381: {
382:   PetscFunctionBegin;
386:   PetscTryMethod(eps,"EPSEVSLSetRange_C",(EPS,PetscReal,PetscReal),(eps,lmin,lmax));
387:   PetscFunctionReturn(PETSC_SUCCESS);
388: }

390: static PetscErrorCode EPSEVSLGetRange_EVSL(EPS eps,PetscReal *lmin,PetscReal *lmax)
391: {
392:   EPS_EVSL *ctx = (EPS_EVSL*)eps->data;

394:   PetscFunctionBegin;
395:   if (lmin) *lmin = ctx->lmin;
396:   if (lmax) *lmax = ctx->lmax;
397:   PetscFunctionReturn(PETSC_SUCCESS);
398: }

400: /*@
401:    EPSEVSLGetRange - Gets the interval containing all eigenvalues.

403:    Not Collective

405:    Input Parameter:
406: .  eps - the eigensolver context

408:    Output Parameters:
409: +  lmin - left end of the interval
410: -  lmax - right end of the interval

412:    Level: intermediate

414: .seealso: EPSEVSLSetRange()
415: @*/
416: PetscErrorCode EPSEVSLGetRange(EPS eps,PetscReal *lmin,PetscReal *lmax)
417: {
418:   PetscFunctionBegin;
420:   PetscUseMethod(eps,"EPSEVSLGetRange_C",(EPS,PetscReal*,PetscReal*),(eps,lmin,lmax));
421:   PetscFunctionReturn(PETSC_SUCCESS);
422: }

424: static PetscErrorCode EPSEVSLSetDOSParameters_EVSL(EPS eps,EPSEVSLDOSMethod dos,PetscInt nvec,PetscInt deg,PetscInt steps,PetscInt npoints)
425: {
426:   EPS_EVSL *ctx = (EPS_EVSL*)eps->data;

428:   PetscFunctionBegin;
429:   ctx->dos = dos;
430:   if (nvec == PETSC_DETERMINE) ctx->nvec = 80;
431:   else if (nvec != PETSC_CURRENT) {
432:     PetscCheck(nvec>0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The nvec argument must be > 0");
433:     ctx->nvec = nvec;
434:   }
435:   switch (dos) {
436:     case EPS_EVSL_DOS_KPM:
437:       if (deg == PETSC_DETERMINE) ctx->deg = 300;
438:       else if (deg != PETSC_CURRENT) {
439:         PetscCheck(deg>0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The deg argument must be > 0");
440:         ctx->deg = deg;
441:       }
442:       break;
443:     case EPS_EVSL_DOS_LANCZOS:
444:       if (steps == PETSC_DETERMINE) ctx->steps = 40;
445:       else if (steps != PETSC_CURRENT) {
446:         PetscCheck(steps>0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The steps argument must be > 0");
447:         ctx->steps = steps;
448:       }
449:       if (npoints == PETSC_DETERMINE) ctx->npoints = 200;
450:       else if (npoints != PETSC_CURRENT) {
451:         PetscCheck(npoints>0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The npoints argument must be > 0");
452:         ctx->npoints = npoints;
453:       }
454:       break;
455:   }
456:   eps->state = EPS_STATE_INITIAL;
457:   PetscFunctionReturn(PETSC_SUCCESS);
458: }

460: /*@
461:    EPSEVSLSetDOSParameters - Defines the parameters used for computing the
462:    density of states (DOS) in the EVSL solver.

464:    Logically Collective

466:    Input Parameters:
467: +  eps     - the eigensolver context
468: .  dos     - DOS method, either KPM or Lanczos
469: .  nvec    - number of sample vectors
470: .  deg     - polynomial degree (KPM only)
471: .  steps   - number of Lanczos steps (Lanczos only)
472: -  npoints - number of sample points (Lanczos only)

474:    Options Database Keys:
475: +  -eps_evsl_dos_method <dos> - set the DOS method, either kpm or lanczos
476: .  -eps_evsl_dos_nvec <n> - set the number of sample vectors
477: .  -eps_evsl_dos_degree <n> - set the polynomial degree
478: .  -eps_evsl_dos_steps <n> - set the number of Lanczos steps
479: -  -eps_evsl_dos_npoints <n> - set the number of sample points

481:    Notes:
482:    The density of states (or spectral density) can be approximated with two
483:    methods, kernel polynomial method (KPM) or Lanczos. Some parameters for
484:    these methods can be set by the user with this function, with some of
485:    them being relevant for one of the methods only.

487:    For the integer argumens, you can use PETSC_CURRENT to keep the current
488:    value, and PETSC_DETERMINE to set them to a reasonable default.

490:    Level: intermediate

492: .seealso: EPSEVSLGetDOSParameters()
493: @*/
494: PetscErrorCode EPSEVSLSetDOSParameters(EPS eps,EPSEVSLDOSMethod dos,PetscInt nvec,PetscInt deg,PetscInt steps,PetscInt npoints)
495: {
496:   PetscFunctionBegin;
503:   PetscTryMethod(eps,"EPSEVSLSetDOSParameters_C",(EPS,EPSEVSLDOSMethod,PetscInt,PetscInt,PetscInt,PetscInt),(eps,dos,nvec,deg,steps,npoints));
504:   PetscFunctionReturn(PETSC_SUCCESS);
505: }

507: static PetscErrorCode EPSEVSLGetDOSParameters_EVSL(EPS eps,EPSEVSLDOSMethod *dos,PetscInt *nvec,PetscInt *deg,PetscInt *steps,PetscInt *npoints)
508: {
509:   EPS_EVSL *ctx = (EPS_EVSL*)eps->data;

511:   PetscFunctionBegin;
512:   if (dos)     *dos     = ctx->dos;
513:   if (nvec)    *nvec    = ctx->nvec;
514:   if (deg)     *deg     = ctx->deg;
515:   if (steps)   *steps   = ctx->steps;
516:   if (npoints) *npoints = ctx->npoints;
517:   PetscFunctionReturn(PETSC_SUCCESS);
518: }

520: /*@
521:    EPSEVSLGetDOSParameters - Gets the parameters used for computing the
522:    density of states (DOS) in the EVSL solver.

524:    Not Collective

526:    Input Parameter:
527: .  eps - the eigensolver context

529:    Output Parameters:
530: +  dos     - DOS method, either KPM or Lanczos
531: .  nvec    - number of sample vectors
532: .  deg     - polynomial degree (KPM only)
533: .  steps   - number of Lanczos steps (Lanczos only)
534: -  npoints - number of sample points (Lanczos only)

536:    Level: intermediate

538: .seealso: EPSEVSLSetDOSParameters()
539: @*/
540: PetscErrorCode EPSEVSLGetDOSParameters(EPS eps,EPSEVSLDOSMethod *dos,PetscInt *nvec,PetscInt *deg,PetscInt *steps,PetscInt *npoints)
541: {
542:   PetscFunctionBegin;
544:   PetscUseMethod(eps,"EPSEVSLGetDOSParameters_C",(EPS,EPSEVSLDOSMethod*,PetscInt*,PetscInt*,PetscInt*,PetscInt*),(eps,dos,nvec,deg,steps,npoints));
545:   PetscFunctionReturn(PETSC_SUCCESS);
546: }

548: static PetscErrorCode EPSEVSLSetPolParameters_EVSL(EPS eps,PetscInt max_deg,PetscReal thresh)
549: {
550:   EPS_EVSL *ctx = (EPS_EVSL*)eps->data;

552:   PetscFunctionBegin;
553:   if (max_deg == PETSC_DETERMINE) ctx->max_deg = 10000;
554:   else if (max_deg != PETSC_CURRENT) {
555:     PetscCheck(max_deg>2,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The max_deg argument must be > 2");
556:     ctx->max_deg = max_deg;
557:   }
558:   if (thresh == (PetscReal)PETSC_DETERMINE) ctx->thresh = 0.8;
559:   else if (thresh != (PetscReal)PETSC_CURRENT) {
560:     PetscCheck(thresh>0.0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The thresh argument must be > 0.0");
561:     ctx->thresh = thresh;
562:   }
563:   eps->state = EPS_STATE_INITIAL;
564:   PetscFunctionReturn(PETSC_SUCCESS);
565: }

567: /*@
568:    EPSEVSLSetPolParameters - Defines the parameters used for building the
569:    building the polynomial in the EVSL solver.

571:    Logically Collective

573:    Input Parameters:
574: +  eps     - the eigensolver context
575: .  max_deg - maximum degree allowed for the polynomial
576: -  thresh  - threshold for accepting polynomial

578:    Options Database Keys:
579: +  -eps_evsl_pol_max_deg <d> - set maximum polynomial degree
580: -  -eps_evsl_pol_thresh <t> - set the threshold

582:    Note:
583:    PETSC_CURRENT can be used to preserve the current value of any of the
584:    arguments, and PETSC_DETERMINE to set them to a default value.

586:    Level: intermediate

588: .seealso: EPSEVSLGetPolParameters()
589: @*/
590: PetscErrorCode EPSEVSLSetPolParameters(EPS eps,PetscInt max_deg,PetscReal thresh)
591: {
592:   PetscFunctionBegin;
596:   PetscTryMethod(eps,"EPSEVSLSetPolParameters_C",(EPS,PetscInt,PetscReal),(eps,max_deg,thresh));
597:   PetscFunctionReturn(PETSC_SUCCESS);
598: }

600: static PetscErrorCode EPSEVSLGetPolParameters_EVSL(EPS eps,PetscInt *max_deg,PetscReal *thresh)
601: {
602:   EPS_EVSL *ctx = (EPS_EVSL*)eps->data;

604:   PetscFunctionBegin;
605:   if (max_deg) *max_deg = ctx->max_deg;
606:   if (thresh)  *thresh  = ctx->thresh;
607:   PetscFunctionReturn(PETSC_SUCCESS);
608: }

610: /*@
611:    EPSEVSLGetPolParameters - Gets the parameters used for building the
612:    polynomial in the EVSL solver.

614:    Not Collective

616:    Input Parameter:
617: .  eps - the eigensolver context

619:    Output Parameters:
620: +  max_deg - the maximum degree of the polynomial
621: -  thresh  - the threshold

623:    Level: intermediate

625: .seealso: EPSEVSLSetPolParameters()
626: @*/
627: PetscErrorCode EPSEVSLGetPolParameters(EPS eps,PetscInt *max_deg,PetscReal *thresh)
628: {
629:   PetscFunctionBegin;
631:   PetscUseMethod(eps,"EPSEVSLGetPolParameters_C",(EPS,PetscInt*,PetscReal*),(eps,max_deg,thresh));
632:   PetscFunctionReturn(PETSC_SUCCESS);
633: }

635: static PetscErrorCode EPSEVSLSetDamping_EVSL(EPS eps,EPSEVSLDamping damping)
636: {
637:   EPS_EVSL *ctx = (EPS_EVSL*)eps->data;

639:   PetscFunctionBegin;
640:   if (ctx->damping != damping) {
641:     ctx->damping = damping;
642:     eps->state   = EPS_STATE_INITIAL;
643:   }
644:   PetscFunctionReturn(PETSC_SUCCESS);
645: }

647: /*@
648:    EPSEVSLSetDamping - Set the type of damping to be used in EVSL.

650:    Logically Collective

652:    Input Parameters:
653: +  eps     - the eigensolver context
654: -  damping - the type of damping

656:    Options Database Key:
657: .  -eps_evsl_damping <n> - set the type of damping

659:    Notes:
660:    Damping is applied when building the polynomial to be used when solving the
661:    eigenproblem, and also during estimation of DOS with the KPM method.

663:    Level: intermediate

665: .seealso: EPSEVSLGetDamping(), EPSEVSLSetDOSParameters()
666: @*/
667: PetscErrorCode EPSEVSLSetDamping(EPS eps,EPSEVSLDamping damping)
668: {
669:   PetscFunctionBegin;
672:   PetscTryMethod(eps,"EPSEVSLSetDamping_C",(EPS,EPSEVSLDamping),(eps,damping));
673:   PetscFunctionReturn(PETSC_SUCCESS);
674: }

676: static PetscErrorCode EPSEVSLGetDamping_EVSL(EPS eps,EPSEVSLDamping *damping)
677: {
678:   EPS_EVSL *ctx = (EPS_EVSL*)eps->data;

680:   PetscFunctionBegin;
681:   *damping = ctx->damping;
682:   PetscFunctionReturn(PETSC_SUCCESS);
683: }

685: /*@
686:    EPSEVSLGetDamping - Gets the type of damping.

688:    Not Collective

690:    Input Parameter:
691: .  eps - the eigensolver context

693:    Output Parameter:
694: .  damping - the type of damping

696:    Level: intermediate

698: .seealso: EPSEVSLSetDamping()
699: @*/
700: PetscErrorCode EPSEVSLGetDamping(EPS eps,EPSEVSLDamping *damping)
701: {
702:   PetscFunctionBegin;
704:   PetscAssertPointer(damping,2);
705:   PetscUseMethod(eps,"EPSEVSLGetDamping_C",(EPS,EPSEVSLDamping*),(eps,damping));
706:   PetscFunctionReturn(PETSC_SUCCESS);
707: }

709: static PetscErrorCode EPSView_EVSL(EPS eps,PetscViewer viewer)
710: {
711:   PetscBool      isascii;
712:   EPS_EVSL       *ctx = (EPS_EVSL*)eps->data;

714:   PetscFunctionBegin;
715:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
716:   if (isascii) {
717:     PetscCall(PetscViewerASCIIPrintf(viewer,"  numerical range = [%g,%g]\n",(double)ctx->lmin,(double)ctx->lmax));
718:     PetscCall(PetscViewerASCIIPrintf(viewer,"  number of slices = %" PetscInt_FMT "\n",ctx->nslices));
719:     PetscCall(PetscViewerASCIIPrintf(viewer,"  type of damping = %s\n",EPSEVSLDampings[ctx->damping]));
720:     PetscCall(PetscViewerASCIIPrintf(viewer,"  computing DOS with %s: nvec=%" PetscInt_FMT ", ",EPSEVSLDOSMethods[ctx->dos],ctx->nvec));
721:     PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_FALSE));
722:     switch (ctx->dos) {
723:       case EPS_EVSL_DOS_KPM:
724:         PetscCall(PetscViewerASCIIPrintf(viewer,"degree=%" PetscInt_FMT "\n",ctx->deg));
725:         break;
726:       case EPS_EVSL_DOS_LANCZOS:
727:         PetscCall(PetscViewerASCIIPrintf(viewer,"steps=%" PetscInt_FMT ", npoints=%" PetscInt_FMT "\n",ctx->steps,ctx->npoints));
728:         break;
729:     }
730:     PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_TRUE));
731:     PetscCall(PetscViewerASCIIPrintf(viewer,"  polynomial parameters: max degree = %" PetscInt_FMT ", threshold = %g\n",ctx->max_deg,(double)ctx->thresh));
732:   }
733:   PetscFunctionReturn(PETSC_SUCCESS);
734: }

736: static PetscErrorCode EPSSetFromOptions_EVSL(EPS eps,PetscOptionItems *PetscOptionsObject)
737: {
738:   PetscReal        array[2]={0,0},th;
739:   PetscInt         k,i1,i2,i3,i4;
740:   PetscBool        flg,flg1;
741:   EPSEVSLDOSMethod dos;
742:   EPSEVSLDamping   damping;
743:   EPS_EVSL         *ctx = (EPS_EVSL*)eps->data;

745:   PetscFunctionBegin;
746:   PetscOptionsHeadBegin(PetscOptionsObject,"EPS EVSL Options");

748:     k = 2;
749:     PetscCall(PetscOptionsRealArray("-eps_evsl_range","Interval containing all eigenvalues (two real values separated with a comma without spaces)","EPSEVSLSetRange",array,&k,&flg));
750:     if (flg) {
751:       PetscCheck(k>1,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_SIZ,"Must pass two values in -eps_evsl_range (comma-separated without spaces)");
752:       PetscCall(EPSEVSLSetRange(eps,array[0],array[1]));
753:     }

755:     PetscCall(PetscOptionsInt("-eps_evsl_slices","Number of slices","EPSEVSLSetSlices",ctx->nslices,&i1,&flg));
756:     if (flg) PetscCall(EPSEVSLSetSlices(eps,i1));

758:     PetscCall(PetscOptionsEnum("-eps_evsl_damping","Type of damping","EPSEVSLSetDamping",EPSEVSLDampings,(PetscEnum)ctx->damping,(PetscEnum*)&damping,&flg));
759:     if (flg) PetscCall(EPSEVSLSetDamping(eps,damping));

761:     PetscCall(EPSEVSLGetDOSParameters(eps,&dos,&i1,&i2,&i3,&i4));
762:     PetscCall(PetscOptionsEnum("-eps_evsl_dos_method","Method to compute the DOS","EPSEVSLSetDOSParameters",EPSEVSLDOSMethods,(PetscEnum)ctx->dos,(PetscEnum*)&dos,&flg));
763:     PetscCall(PetscOptionsInt("-eps_evsl_dos_nvec","Number of sample vectors for DOS","EPSEVSLSetDOSParameters",i1,&i1,&flg1));
764:     if (flg1) flg = PETSC_TRUE;
765:     PetscCall(PetscOptionsInt("-eps_evsl_dos_degree","Polynomial degree used for DOS","EPSEVSLSetDOSParameters",i2,&i2,&flg1));
766:     if (flg1) flg = PETSC_TRUE;
767:     PetscCall(PetscOptionsInt("-eps_evsl_dos_steps","Number of Lanczos steps in DOS","EPSEVSLSetDOSParameters",i3,&i3,&flg1));
768:     if (flg1) flg = PETSC_TRUE;
769:     PetscCall(PetscOptionsInt("-eps_evsl_dos_npoints","Number of sample points used for DOS","EPSEVSLSetDOSParameters",i4,&i4,&flg1));
770:     if (flg || flg1) PetscCall(EPSEVSLSetDOSParameters(eps,dos,i1,i2,i3,i4));

772:     PetscCall(EPSEVSLGetPolParameters(eps,&i1,&th));
773:     PetscCall(PetscOptionsInt("-eps_evsl_pol_max_deg","Maximum degree allowed for the polynomial","EPSEVSLSetPolParameters",i1,&i1,&flg));
774:     PetscCall(PetscOptionsReal("-eps_evsl_pol_threshold","Threshold for accepting polynomial","EPSEVSLSetPolParameters",th,&th,&flg1));
775:     if (flg || flg1) PetscCall(EPSEVSLSetPolParameters(eps,i1,th));

777:   PetscOptionsHeadEnd();
778:   PetscFunctionReturn(PETSC_SUCCESS);
779: }

781: static PetscErrorCode EPSDestroy_EVSL(EPS eps)
782: {
783:   EPS_EVSL       *ctx = (EPS_EVSL*)eps->data;

785:   PetscFunctionBegin;
786:   if (ctx->initialized) EVSLFinish();
787:   PetscCall(PetscLayoutDestroy(&ctx->map));
788:   PetscCall(PetscFree(ctx->sli));
789:   PetscCall(PetscFree(eps->data));
790:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetRange_C",NULL));
791:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetRange_C",NULL));
792:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetSlices_C",NULL));
793:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetSlices_C",NULL));
794:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetDOSParameters_C",NULL));
795:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetDOSParameters_C",NULL));
796:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetPolParameters_C",NULL));
797:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetPolParameters_C",NULL));
798:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetDamping_C",NULL));
799:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetDamping_C",NULL));
800:   PetscFunctionReturn(PETSC_SUCCESS);
801: }

803: static PetscErrorCode EPSReset_EVSL(EPS eps)
804: {
805:   EPS_EVSL       *ctx = (EPS_EVSL*)eps->data;

807:   PetscFunctionBegin;
808:   PetscCall(MatDestroy(&ctx->A));
809:   PetscCall(VecDestroy(&ctx->x));
810:   PetscCall(VecDestroy(&ctx->y));
811:   PetscFunctionReturn(PETSC_SUCCESS);
812: }

814: SLEPC_EXTERN PetscErrorCode EPSCreate_EVSL(EPS eps)
815: {
816:   EPS_EVSL       *ctx;

818:   PetscFunctionBegin;
819:   PetscCall(PetscNew(&ctx));
820:   eps->data = (void*)ctx;

822:   ctx->nslices = 0;
823:   ctx->lmin    = PETSC_MIN_REAL;
824:   ctx->lmax    = PETSC_MAX_REAL;
825:   ctx->dos     = EPS_EVSL_DOS_KPM;
826:   ctx->nvec    = 80;
827:   ctx->deg     = 300;
828:   ctx->steps   = 40;
829:   ctx->npoints = 200;
830:   ctx->max_deg = 10000;
831:   ctx->thresh  = 0.8;
832:   ctx->damping = EPS_EVSL_DAMPING_SIGMA;

834:   eps->categ = EPS_CATEGORY_OTHER;

836:   eps->ops->solve          = EPSSolve_EVSL;
837:   eps->ops->setup          = EPSSetUp_EVSL;
838:   eps->ops->setupsort      = EPSSetUpSort_Basic;
839:   eps->ops->setfromoptions = EPSSetFromOptions_EVSL;
840:   eps->ops->destroy        = EPSDestroy_EVSL;
841:   eps->ops->reset          = EPSReset_EVSL;
842:   eps->ops->view           = EPSView_EVSL;
843:   eps->ops->backtransform  = EPSBackTransform_Default;
844:   eps->ops->setdefaultst   = EPSSetDefaultST_NoFactor;

846:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetRange_C",EPSEVSLSetRange_EVSL));
847:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetRange_C",EPSEVSLGetRange_EVSL));
848:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetSlices_C",EPSEVSLSetSlices_EVSL));
849:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetSlices_C",EPSEVSLGetSlices_EVSL));
850:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetDOSParameters_C",EPSEVSLSetDOSParameters_EVSL));
851:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetDOSParameters_C",EPSEVSLGetDOSParameters_EVSL));
852:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetPolParameters_C",EPSEVSLSetPolParameters_EVSL));
853:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetPolParameters_C",EPSEVSLGetPolParameters_EVSL));
854:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetDamping_C",EPSEVSLSetDamping_EVSL));
855:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetDamping_C",EPSEVSLGetDamping_EVSL));
856:   PetscFunctionReturn(PETSC_SUCCESS);
857: }