Actual source code: nepopts.c

  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    NEP routines related to options that can be set via the command-line
 12:    or procedurally
 13: */

 15: #include <slepc/private/nepimpl.h>
 16: #include <petscdraw.h>

 18: /*@C
 19:    NEPMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type
 20:    indicated by the user.

 22:    Collective

 24:    Input Parameters:
 25: +  nep      - the nonlinear eigensolver context
 26: .  opt      - the command line option for this monitor
 27: .  name     - the monitor type one is seeking
 28: .  ctx      - an optional user context for the monitor, or `NULL`
 29: -  trackall - whether this monitor tracks all eigenvalues or not

 31:    Level: developer

 33: .seealso: [](ch:nep), `NEPMonitorSet()`, `NEPSetTrackAll()`
 34: @*/
 35: PetscErrorCode NEPMonitorSetFromOptions(NEP nep,const char opt[],const char name[],void *ctx,PetscBool trackall)
 36: {
 37:   PetscErrorCode       (*mfunc)(NEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*);
 38:   PetscErrorCode       (*cfunc)(PetscViewer,PetscViewerFormat,void*,PetscViewerAndFormat**);
 39:   PetscErrorCode       (*dfunc)(PetscViewerAndFormat**);
 40:   PetscViewerAndFormat *vf;
 41:   PetscViewer          viewer;
 42:   PetscViewerFormat    format;
 43:   PetscViewerType      vtype;
 44:   char                 key[PETSC_MAX_PATH_LEN];
 45:   PetscBool            flg;

 47:   PetscFunctionBegin;
 48:   PetscCall(PetscOptionsCreateViewer(PetscObjectComm((PetscObject)nep),((PetscObject)nep)->options,((PetscObject)nep)->prefix,opt,&viewer,&format,&flg));
 49:   if (!flg) PetscFunctionReturn(PETSC_SUCCESS);

 51:   PetscCall(PetscViewerGetType(viewer,&vtype));
 52:   PetscCall(SlepcMonitorMakeKey_Internal(name,vtype,format,key));
 53:   PetscCall(PetscFunctionListFind(NEPMonitorList,key,&mfunc));
 54:   PetscCheck(mfunc,PetscObjectComm((PetscObject)nep),PETSC_ERR_SUP,"Specified viewer and format not supported");
 55:   PetscCall(PetscFunctionListFind(NEPMonitorCreateList,key,&cfunc));
 56:   PetscCall(PetscFunctionListFind(NEPMonitorDestroyList,key,&dfunc));
 57:   if (!cfunc) cfunc = PetscViewerAndFormatCreate_Internal;
 58:   if (!dfunc) dfunc = PetscViewerAndFormatDestroy;

 60:   PetscCall((*cfunc)(viewer,format,ctx,&vf));
 61:   PetscCall(PetscViewerDestroy(&viewer));
 62:   PetscCall(NEPMonitorSet(nep,mfunc,vf,(PetscCtxDestroyFn*)dfunc));
 63:   if (trackall) PetscCall(NEPSetTrackAll(nep,PETSC_TRUE));
 64:   PetscFunctionReturn(PETSC_SUCCESS);
 65: }

 67: /*@
 68:    NEPSetFromOptions - Sets `NEP` options from the options database.
 69:    This routine must be called before `NEPSetUp()` if the user is to be
 70:    allowed to configure the solver.

 72:    Collective

 74:    Input Parameter:
 75: .  nep - the nonlinear eigensolver context

 77:    Note:
 78:    To see all options, run your program with the `-help` option.

 80:    Level: beginner

 82: .seealso: [](ch:nep), `NEPSetOptionsPrefix()`
 83: @*/
 84: PetscErrorCode NEPSetFromOptions(NEP nep)
 85: {
 86:   char            type[256];
 87:   PetscBool       set,flg,flg1,flg2,flg3,flg4,flg5,bval;
 88:   PetscReal       r;
 89:   PetscScalar     s;
 90:   PetscInt        i,j,k;
 91:   NEPRefine       refine;
 92:   NEPRefineScheme scheme;

 94:   PetscFunctionBegin;
 96:   PetscCall(NEPRegisterAll());
 97:   PetscObjectOptionsBegin((PetscObject)nep);
 98:     PetscCall(PetscOptionsFList("-nep_type","Nonlinear eigensolver method","NEPSetType",NEPList,(char*)(((PetscObject)nep)->type_name?((PetscObject)nep)->type_name:NEPRII),type,sizeof(type),&flg));
 99:     if (flg) PetscCall(NEPSetType(nep,type));
100:     else if (!((PetscObject)nep)->type_name) PetscCall(NEPSetType(nep,NEPRII));

102:     PetscCall(PetscOptionsBoolGroupBegin("-nep_general","General nonlinear eigenvalue problem","NEPSetProblemType",&flg));
103:     if (flg) PetscCall(NEPSetProblemType(nep,NEP_GENERAL));
104:     PetscCall(PetscOptionsBoolGroupEnd("-nep_rational","Rational eigenvalue problem","NEPSetProblemType",&flg));
105:     if (flg) PetscCall(NEPSetProblemType(nep,NEP_RATIONAL));

107:     refine = nep->refine;
108:     PetscCall(PetscOptionsEnum("-nep_refine","Iterative refinement method","NEPSetRefine",NEPRefineTypes,(PetscEnum)refine,(PetscEnum*)&refine,&flg1));
109:     i = nep->npart;
110:     PetscCall(PetscOptionsInt("-nep_refine_partitions","Number of partitions of the communicator for iterative refinement","NEPSetRefine",nep->npart,&i,&flg2));
111:     r = nep->rtol;
112:     PetscCall(PetscOptionsReal("-nep_refine_tol","Tolerance for iterative refinement","NEPSetRefine",nep->rtol==(PetscReal)PETSC_DETERMINE?SLEPC_DEFAULT_TOL/1000:nep->rtol,&r,&flg3));
113:     j = nep->rits;
114:     PetscCall(PetscOptionsInt("-nep_refine_its","Maximum number of iterations for iterative refinement","NEPSetRefine",nep->rits,&j,&flg4));
115:     scheme = nep->scheme;
116:     PetscCall(PetscOptionsEnum("-nep_refine_scheme","Scheme used for linear systems within iterative refinement","NEPSetRefine",NEPRefineSchemes,(PetscEnum)scheme,(PetscEnum*)&scheme,&flg5));
117:     if (flg1 || flg2 || flg3 || flg4 || flg5) PetscCall(NEPSetRefine(nep,refine,i,r,j,scheme));

119:     i = nep->max_it;
120:     PetscCall(PetscOptionsInt("-nep_max_it","Maximum number of iterations","NEPSetTolerances",nep->max_it,&i,&flg1));
121:     r = nep->tol;
122:     PetscCall(PetscOptionsReal("-nep_tol","Tolerance","NEPSetTolerances",SlepcDefaultTol(nep->tol),&r,&flg2));
123:     if (flg1 || flg2) PetscCall(NEPSetTolerances(nep,r,i));

125:     PetscCall(PetscOptionsBoolGroupBegin("-nep_conv_rel","Relative error convergence test","NEPSetConvergenceTest",&flg));
126:     if (flg) PetscCall(NEPSetConvergenceTest(nep,NEP_CONV_REL));
127:     PetscCall(PetscOptionsBoolGroup("-nep_conv_norm","Convergence test relative to the matrix norms","NEPSetConvergenceTest",&flg));
128:     if (flg) PetscCall(NEPSetConvergenceTest(nep,NEP_CONV_NORM));
129:     PetscCall(PetscOptionsBoolGroup("-nep_conv_abs","Absolute error convergence test","NEPSetConvergenceTest",&flg));
130:     if (flg) PetscCall(NEPSetConvergenceTest(nep,NEP_CONV_ABS));
131:     PetscCall(PetscOptionsBoolGroupEnd("-nep_conv_user","User-defined convergence test","NEPSetConvergenceTest",&flg));
132:     if (flg) PetscCall(NEPSetConvergenceTest(nep,NEP_CONV_USER));

134:     PetscCall(PetscOptionsBoolGroupBegin("-nep_stop_basic","Stop iteration if all eigenvalues converged or max_it reached","NEPSetStoppingTest",&flg));
135:     if (flg) PetscCall(NEPSetStoppingTest(nep,NEP_STOP_BASIC));
136:     PetscCall(PetscOptionsBoolGroupEnd("-nep_stop_user","User-defined stopping test","NEPSetStoppingTest",&flg));
137:     if (flg) PetscCall(NEPSetStoppingTest(nep,NEP_STOP_USER));

139:     i = nep->nev;
140:     PetscCall(PetscOptionsInt("-nep_nev","Number of eigenvalues to compute","NEPSetDimensions",nep->nev,&i,&flg1));
141:     j = nep->ncv;
142:     PetscCall(PetscOptionsInt("-nep_ncv","Number of basis vectors","NEPSetDimensions",nep->ncv,&j,&flg2));
143:     k = nep->mpd;
144:     PetscCall(PetscOptionsInt("-nep_mpd","Maximum dimension of projected problem","NEPSetDimensions",nep->mpd,&k,&flg3));
145:     if (flg1 || flg2 || flg3) PetscCall(NEPSetDimensions(nep,i,j,k));

147:     PetscCall(PetscOptionsBoolGroupBegin("-nep_largest_magnitude","Compute largest eigenvalues in magnitude","NEPSetWhichEigenpairs",&flg));
148:     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_LARGEST_MAGNITUDE));
149:     PetscCall(PetscOptionsBoolGroup("-nep_smallest_magnitude","Compute smallest eigenvalues in magnitude","NEPSetWhichEigenpairs",&flg));
150:     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_SMALLEST_MAGNITUDE));
151:     PetscCall(PetscOptionsBoolGroup("-nep_largest_real","Compute eigenvalues with largest real parts","NEPSetWhichEigenpairs",&flg));
152:     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_LARGEST_REAL));
153:     PetscCall(PetscOptionsBoolGroup("-nep_smallest_real","Compute eigenvalues with smallest real parts","NEPSetWhichEigenpairs",&flg));
154:     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_SMALLEST_REAL));
155:     PetscCall(PetscOptionsBoolGroup("-nep_largest_imaginary","Compute eigenvalues with largest imaginary parts","NEPSetWhichEigenpairs",&flg));
156:     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_LARGEST_IMAGINARY));
157:     PetscCall(PetscOptionsBoolGroup("-nep_smallest_imaginary","Compute eigenvalues with smallest imaginary parts","NEPSetWhichEigenpairs",&flg));
158:     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_SMALLEST_IMAGINARY));
159:     PetscCall(PetscOptionsBoolGroup("-nep_target_magnitude","Compute eigenvalues closest to target","NEPSetWhichEigenpairs",&flg));
160:     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_TARGET_MAGNITUDE));
161:     PetscCall(PetscOptionsBoolGroup("-nep_target_real","Compute eigenvalues with real parts closest to target","NEPSetWhichEigenpairs",&flg));
162:     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_TARGET_REAL));
163:     PetscCall(PetscOptionsBoolGroup("-nep_target_imaginary","Compute eigenvalues with imaginary parts closest to target","NEPSetWhichEigenpairs",&flg));
164:     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_TARGET_IMAGINARY));
165:     PetscCall(PetscOptionsBoolGroupEnd("-nep_all","Compute all eigenvalues in a region","NEPSetWhichEigenpairs",&flg));
166:     if (flg) PetscCall(NEPSetWhichEigenpairs(nep,NEP_ALL));

168:     PetscCall(PetscOptionsScalar("-nep_target","Value of the target","NEPSetTarget",nep->target,&s,&flg));
169:     if (flg) {
170:       if (nep->which!=NEP_TARGET_REAL && nep->which!=NEP_TARGET_IMAGINARY) PetscCall(NEPSetWhichEigenpairs(nep,NEP_TARGET_MAGNITUDE));
171:       PetscCall(NEPSetTarget(nep,s));
172:     }

174:     PetscCall(PetscOptionsBool("-nep_two_sided","Use two-sided variant (to compute left eigenvectors)","NEPSetTwoSided",nep->twosided,&bval,&flg));
175:     if (flg) PetscCall(NEPSetTwoSided(nep,bval));

177:     /* -----------------------------------------------------------------------*/
178:     /*
179:       Cancels all monitors hardwired into code before call to NEPSetFromOptions()
180:     */
181:     PetscCall(PetscOptionsBool("-nep_monitor_cancel","Remove any hardwired monitor routines","NEPMonitorCancel",PETSC_FALSE,&flg,&set));
182:     if (set && flg) PetscCall(NEPMonitorCancel(nep));
183:     PetscCall(NEPMonitorSetFromOptions(nep,"-nep_monitor","first_approximation",NULL,PETSC_FALSE));
184:     PetscCall(NEPMonitorSetFromOptions(nep,"-nep_monitor_all","all_approximations",NULL,PETSC_TRUE));
185:     PetscCall(NEPMonitorSetFromOptions(nep,"-nep_monitor_conv","convergence_history",NULL,PETSC_FALSE));

187:     /* -----------------------------------------------------------------------*/
188:     PetscCall(PetscOptionsName("-nep_view","Print detailed information on solver used","NEPView",&set));
189:     PetscCall(PetscOptionsName("-nep_view_vectors","View computed eigenvectors","NEPVectorsView",&set));
190:     PetscCall(PetscOptionsName("-nep_view_values","View computed eigenvalues","NEPValuesView",&set));
191:     PetscCall(PetscOptionsName("-nep_converged_reason","Print reason for convergence, and number of iterations","NEPConvergedReasonView",&set));
192:     PetscCall(PetscOptionsName("-nep_error_absolute","Print absolute errors of each eigenpair","NEPErrorView",&set));
193:     PetscCall(PetscOptionsName("-nep_error_relative","Print relative errors of each eigenpair","NEPErrorView",&set));

195:     PetscTryTypeMethod(nep,setfromoptions,PetscOptionsObject);
196:     PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)nep,PetscOptionsObject));
197:   PetscOptionsEnd();

199:   if (!nep->V) PetscCall(NEPGetBV(nep,&nep->V));
200:   PetscCall(BVSetFromOptions(nep->V));
201:   if (!nep->rg) PetscCall(NEPGetRG(nep,&nep->rg));
202:   PetscCall(RGSetFromOptions(nep->rg));
203:   if (nep->useds) {
204:     if (!nep->ds) PetscCall(NEPGetDS(nep,&nep->ds));
205:     PetscCall(NEPSetDSType(nep));
206:     PetscCall(DSSetFromOptions(nep->ds));
207:   }
208:   if (!nep->refineksp) PetscCall(NEPRefineGetKSP(nep,&nep->refineksp));
209:   PetscCall(KSPSetFromOptions(nep->refineksp));
210:   if (nep->fui==NEP_USER_INTERFACE_SPLIT) for (i=0;i<nep->nt;i++) PetscCall(FNSetFromOptions(nep->f[i]));
211:   PetscFunctionReturn(PETSC_SUCCESS);
212: }

214: /*@
215:    NEPGetTolerances - Gets the tolerance and maximum iteration count used
216:    by the `NEP` convergence tests.

218:    Not Collective

220:    Input Parameter:
221: .  nep - the nonlinear eigensolver context

223:    Output Parameters:
224: +  tol - the convergence tolerance
225: -  maxits - maximum number of iterations

227:    Notes:
228:    The user can specify `NULL` for any parameter that is not needed.

230:    Level: intermediate

232: .seealso: [](ch:nep), `NEPSetTolerances()`
233: @*/
234: PetscErrorCode NEPGetTolerances(NEP nep,PetscReal *tol,PetscInt *maxits)
235: {
236:   PetscFunctionBegin;
238:   if (tol)    *tol    = nep->tol;
239:   if (maxits) *maxits = nep->max_it;
240:   PetscFunctionReturn(PETSC_SUCCESS);
241: }

243: /*@
244:    NEPSetTolerances - Sets the tolerance and maximum iteration count used
245:    by the `NEP` convergence tests.

247:    Logically Collective

249:    Input Parameters:
250: +  nep    - the nonlinear eigensolver context
251: .  tol    - the convergence tolerance
252: -  maxits - maximum number of iterations to use

254:    Options Database Keys:
255: +  -nep_tol \<tol\>       - sets the convergence tolerance
256: -  -nep_max_it \<maxits\> - sets the maximum number of iterations allowed

258:    Note:
259:    Use `PETSC_CURRENT` to retain the current value of any of the parameters.
260:    Use `PETSC_DETERMINE` for either argument to assign a default value computed
261:    internally (may be different in each solver).
262:    For `maxits` use `PETSC_UNLIMITED` to indicate there is no upper bound on this value.

264:    Level: intermediate

266: .seealso: [](ch:nep), `NEPGetTolerances()`
267: @*/
268: PetscErrorCode NEPSetTolerances(NEP nep,PetscReal tol,PetscInt maxits)
269: {
270:   PetscFunctionBegin;
274:   if (tol == (PetscReal)PETSC_DETERMINE) {
275:     nep->tol   = PETSC_DETERMINE;
276:     nep->state = NEP_STATE_INITIAL;
277:   } else if (tol != (PetscReal)PETSC_CURRENT) {
278:     PetscCheck(tol>0.0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
279:     nep->tol = tol;
280:   }
281:   if (maxits == PETSC_DETERMINE) {
282:     nep->max_it = PETSC_DETERMINE;
283:     nep->state  = NEP_STATE_INITIAL;
284:   } else if (maxits == PETSC_UNLIMITED) {
285:     nep->max_it = PETSC_INT_MAX;
286:   } else if (maxits != PETSC_CURRENT) {
287:     PetscCheck(maxits>0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of maxits. Must be > 0");
288:     nep->max_it = maxits;
289:   }
290:   PetscFunctionReturn(PETSC_SUCCESS);
291: }

293: /*@
294:    NEPGetDimensions - Gets the number of eigenvalues to compute
295:    and the dimension of the subspace.

297:    Not Collective

299:    Input Parameter:
300: .  nep - the nonlinear eigensolver context

302:    Output Parameters:
303: +  nev - number of eigenvalues to compute
304: .  ncv - the maximum dimension of the subspace to be used by the solver
305: -  mpd - the maximum dimension allowed for the projected problem

307:    Note:
308:    The user can specify `NULL` for any parameter that is not needed.

310:    Level: intermediate

312: .seealso: [](ch:nep), `NEPSetDimensions()`
313: @*/
314: PetscErrorCode NEPGetDimensions(NEP nep,PetscInt *nev,PetscInt *ncv,PetscInt *mpd)
315: {
316:   PetscFunctionBegin;
318:   if (nev) *nev = nep->nev;
319:   if (ncv) *ncv = nep->ncv;
320:   if (mpd) *mpd = nep->mpd;
321:   PetscFunctionReturn(PETSC_SUCCESS);
322: }

324: /*@
325:    NEPSetDimensions - Sets the number of eigenvalues to compute
326:    and the dimension of the subspace.

328:    Logically Collective

330:    Input Parameters:
331: +  nep - the nonlinear eigensolver context
332: .  nev - number of eigenvalues to compute
333: .  ncv - the maximum dimension of the subspace to be used by the solver
334: -  mpd - the maximum dimension allowed for the projected problem

336:    Options Database Keys:
337: +  -nep_nev \<nev\> - sets the number of eigenvalues
338: .  -nep_ncv \<ncv\> - sets the dimension of the subspace
339: -  -nep_mpd \<mpd\> - sets the maximum projected dimension

341:    Notes:
342:    Use `PETSC_DETERMINE` for `ncv` and `mpd` to assign a reasonably good value, which is
343:    dependent on the solution method. For any of the arguments, use `PETSC_CURRENT`
344:    to preserve the current value.

346:    The parameters `ncv` and `mpd` are intimately related, so that the user is advised
347:    to set one of them at most. Normal usage is\:

349:     1. in cases where `nev` is small, the user sets `ncv` (a reasonable default is `2*nev`).
350:     2. in cases where `nev` is large, the user sets `mpd`.

352:    The value of `ncv` should always be between `nev` and `(nev+mpd)`, typically
353:    `ncv=nev+mpd`. If `nev` is not too large, `mpd=nev` is a reasonable choice, otherwise
354:    a smaller value should be used.

356:    Level: intermediate

358: .seealso: [](ch:nep), `NEPGetDimensions()`
359: @*/
360: PetscErrorCode NEPSetDimensions(NEP nep,PetscInt nev,PetscInt ncv,PetscInt mpd)
361: {
362:   PetscFunctionBegin;
367:   if (nev != PETSC_CURRENT) {
368:     PetscCheck(nev>0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of nev. Must be > 0");
369:     nep->nev = nev;
370:   }
371:   if (ncv == PETSC_DETERMINE) {
372:     nep->ncv = PETSC_DETERMINE;
373:   } else if (ncv != PETSC_CURRENT) {
374:     PetscCheck(ncv>0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of ncv. Must be > 0");
375:     nep->ncv = ncv;
376:   }
377:   if (mpd == PETSC_DETERMINE) {
378:     nep->mpd = PETSC_DETERMINE;
379:   } else if (mpd != PETSC_CURRENT) {
380:     PetscCheck(mpd>0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of mpd. Must be > 0");
381:     nep->mpd = mpd;
382:   }
383:   nep->state = NEP_STATE_INITIAL;
384:   PetscFunctionReturn(PETSC_SUCCESS);
385: }

387: /*@
388:    NEPSetWhichEigenpairs - Specifies which portion of the spectrum is
389:    to be sought.

391:    Logically Collective

393:    Input Parameters:
394: +  nep   - the nonlinear eigensolver context
395: -  which - the portion of the spectrum to be sought, see `NEPWhich` for possible values

397:    Options Database Keys:
398: +  -nep_largest_magnitude  - sets largest eigenvalues in magnitude
399: .  -nep_smallest_magnitude - sets smallest eigenvalues in magnitude
400: .  -nep_largest_real       - sets largest real parts
401: .  -nep_smallest_real      - sets smallest real parts
402: .  -nep_largest_imaginary  - sets largest imaginary parts
403: .  -nep_smallest_imaginary - sets smallest imaginary parts
404: .  -nep_target_magnitude   - sets eigenvalues closest to target
405: .  -nep_target_real        - sets real parts closest to target
406: .  -nep_target_imaginary   - sets imaginary parts closest to target
407: -  -nep_all                - sets all eigenvalues in a region

409:    Notes:
410:    Not all eigensolvers implemented in `NEP` account for all the possible values
411:    of `which`. Also, some values make sense only for certain types of
412:    problems. If SLEPc is compiled for real numbers `NEP_LARGEST_IMAGINARY`
413:    and `NEP_SMALLEST_IMAGINARY` use the absolute value of the imaginary part
414:    for eigenvalue selection.

416:    The target is a scalar value provided with `NEPSetTarget()`.

418:    The criterion `NEP_TARGET_IMAGINARY` is available only in case PETSc and
419:    SLEPc have been built with complex scalars.

421:    `NEP_ALL` is intended for use in the context of the `NEPCISS` solver for
422:    computing all eigenvalues in a region.

424:    Level: intermediate

426: .seealso: [](ch:nep), `NEPGetWhichEigenpairs()`, `NEPSetTarget()`, `NEPSetDimensions()`, `NEPSetEigenvalueComparison()`, `NEPWhich`
427: @*/
428: PetscErrorCode NEPSetWhichEigenpairs(NEP nep,NEPWhich which)
429: {
430:   PetscFunctionBegin;
433:   switch (which) {
434:     case NEP_LARGEST_MAGNITUDE:
435:     case NEP_SMALLEST_MAGNITUDE:
436:     case NEP_LARGEST_REAL:
437:     case NEP_SMALLEST_REAL:
438:     case NEP_LARGEST_IMAGINARY:
439:     case NEP_SMALLEST_IMAGINARY:
440:     case NEP_TARGET_MAGNITUDE:
441:     case NEP_TARGET_REAL:
442: #if defined(PETSC_USE_COMPLEX)
443:     case NEP_TARGET_IMAGINARY:
444: #endif
445:     case NEP_ALL:
446:     case NEP_WHICH_USER:
447:       if (nep->which != which) {
448:         nep->state = NEP_STATE_INITIAL;
449:         nep->which = which;
450:       }
451:       break;
452: #if !defined(PETSC_USE_COMPLEX)
453:     case NEP_TARGET_IMAGINARY:
454:       SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_SUP,"NEP_TARGET_IMAGINARY can be used only with complex scalars");
455: #endif
456:     default:
457:       SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'which' value");
458:   }
459:   PetscFunctionReturn(PETSC_SUCCESS);
460: }

462: /*@
463:     NEPGetWhichEigenpairs - Returns which portion of the spectrum is to be
464:     sought.

466:     Not Collective

468:     Input Parameter:
469: .   nep - the nonlinear eigensolver context

471:     Output Parameter:
472: .   which - the portion of the spectrum to be sought

474:     Level: intermediate

476: .seealso: [](ch:nep), `NEPSetWhichEigenpairs()`, `NEPWhich`
477: @*/
478: PetscErrorCode NEPGetWhichEigenpairs(NEP nep,NEPWhich *which)
479: {
480:   PetscFunctionBegin;
482:   PetscAssertPointer(which,2);
483:   *which = nep->which;
484:   PetscFunctionReturn(PETSC_SUCCESS);
485: }

487: /*@C
488:    NEPSetEigenvalueComparison - Specifies the eigenvalue comparison function
489:    when `NEPSetWhichEigenpairs()` is set to `NEP_WHICH_USER`.

491:    Logically Collective

493:    Input Parameters:
494: +  nep  - the nonlinear eigensolver context
495: .  comp - a pointer to the comparison function, see `SlepcEigenvalueComparisonFn` for the calling sequence
496: -  ctx  - a context pointer (the last parameter to the comparison function)

498:    Level: advanced

500: .seealso: [](ch:nep), `NEPSetWhichEigenpairs()`, `NEPWhich`
501: @*/
502: PetscErrorCode NEPSetEigenvalueComparison(NEP nep,SlepcEigenvalueComparisonFn *comp,void *ctx)
503: {
504:   PetscFunctionBegin;
506:   nep->sc->comparison    = comp;
507:   nep->sc->comparisonctx = ctx;
508:   nep->which             = NEP_WHICH_USER;
509:   PetscFunctionReturn(PETSC_SUCCESS);
510: }

512: /*@
513:    NEPSetProblemType - Specifies the type of the nonlinear eigenvalue problem.

515:    Logically Collective

517:    Input Parameters:
518: +  nep  - the nonlinear eigensolver context
519: -  type - a known type of nonlinear eigenvalue problem

521:    Options Database Keys:
522: +  -nep_general  - general problem with no particular structure
523: -  -nep_rational - a rational eigenvalue problem defined in split form with all $f_i$ rational

525:    Notes:
526:    See `NEPProblemType` for possible problem types.

528:    This function is used to provide a hint to the `NEP` solver to exploit certain
529:    properties of the nonlinear eigenproblem. This hint may be used or not,
530:    depending on the solver. By default, no particular structure is assumed.

532:    Level: intermediate

534: .seealso: [](ch:nep), `NEPSetType()`, `NEPGetProblemType()`, `NEPProblemType`
535: @*/
536: PetscErrorCode NEPSetProblemType(NEP nep,NEPProblemType type)
537: {
538:   PetscFunctionBegin;
541:   PetscCheck(type==NEP_GENERAL || type==NEP_RATIONAL,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_WRONG,"Unknown eigenvalue problem type");
542:   if (type != nep->problem_type) {
543:     nep->problem_type = type;
544:     nep->state = NEP_STATE_INITIAL;
545:   }
546:   PetscFunctionReturn(PETSC_SUCCESS);
547: }

549: /*@
550:    NEPGetProblemType - Gets the problem type from the `NEP` object.

552:    Not Collective

554:    Input Parameter:
555: .  nep - the nonlinear eigensolver context

557:    Output Parameter:
558: .  type - the problem type

560:    Level: intermediate

562: .seealso: [](ch:nep), `NEPSetProblemType()`, `NEPProblemType`
563: @*/
564: PetscErrorCode NEPGetProblemType(NEP nep,NEPProblemType *type)
565: {
566:   PetscFunctionBegin;
568:   PetscAssertPointer(type,2);
569:   *type = nep->problem_type;
570:   PetscFunctionReturn(PETSC_SUCCESS);
571: }

573: /*@
574:    NEPSetTwoSided - Sets the solver to use a two-sided variant so that left
575:    eigenvectors are also computed.

577:    Logically Collective

579:    Input Parameters:
580: +  nep      - the nonlinear eigensolver context
581: -  twosided - whether the two-sided variant is to be used or not

583:    Options Database Key:
584: .  -nep_two_sided - toggles the twosided flag

586:    Notes:
587:    If the user sets `twosided`=`PETSC_TRUE` then the solver uses a variant of
588:    the algorithm that computes both right and left eigenvectors. This is
589:    usually much more costly. This option is not available in all solvers,
590:    see table [](#tab:solversn).

592:    When using two-sided solvers, the problem matrices must have both the
593:    `MATOP_MULT` and `MATOP_MULT_TRANSPOSE` operations defined.

595:    Level: advanced

597: .seealso: [](ch:nep), `NEPGetTwoSided()`, `NEPGetLeftEigenvector()`
598: @*/
599: PetscErrorCode NEPSetTwoSided(NEP nep,PetscBool twosided)
600: {
601:   PetscFunctionBegin;
604:   if (twosided!=nep->twosided) {
605:     nep->twosided = twosided;
606:     nep->state    = NEP_STATE_INITIAL;
607:   }
608:   PetscFunctionReturn(PETSC_SUCCESS);
609: }

611: /*@
612:    NEPGetTwoSided - Returns the flag indicating whether a two-sided variant
613:    of the algorithm is being used or not.

615:    Not Collective

617:    Input Parameter:
618: .  nep - the nonlinear eigensolver context

620:    Output Parameter:
621: .  twosided - the returned flag

623:    Level: advanced

625: .seealso: [](ch:nep), `NEPSetTwoSided()`
626: @*/
627: PetscErrorCode NEPGetTwoSided(NEP nep,PetscBool *twosided)
628: {
629:   PetscFunctionBegin;
631:   PetscAssertPointer(twosided,2);
632:   *twosided = nep->twosided;
633:   PetscFunctionReturn(PETSC_SUCCESS);
634: }

636: /*@C
637:    NEPSetConvergenceTestFunction - Sets a function to compute the error estimate
638:    used in the convergence test.

640:    Logically Collective

642:    Input Parameters:
643: +  nep     - the nonlinear eigensolver context
644: .  conv    - convergence test function, see `NEPConvergenceTestFn` for the calling sequence
645: .  ctx     - context for private data for the convergence routine (may be `NULL`)
646: -  destroy - a routine for destroying the context (may be `NULL`), see `PetscCtxDestroyFn`
647:              for the calling sequence

649:    Notes:
650:    When this is called with a user-defined function, then the convergence
651:    criterion is set to `NEP_CONV_USER`, see `NEPSetConvergenceTest()`.

653:    If the error estimate returned by the convergence test function is less than
654:    the tolerance, then the eigenvalue is accepted as converged.

656:    Level: advanced

658: .seealso: [](ch:nep), `NEPSetConvergenceTest()`, `NEPSetTolerances()`
659: @*/
660: PetscErrorCode NEPSetConvergenceTestFunction(NEP nep,NEPConvergenceTestFn *conv,void *ctx,PetscCtxDestroyFn *destroy)
661: {
662:   PetscFunctionBegin;
664:   if (nep->convergeddestroy) PetscCall((*nep->convergeddestroy)(&nep->convergedctx));
665:   nep->convergeduser    = conv;
666:   nep->convergeddestroy = destroy;
667:   nep->convergedctx     = ctx;
668:   if (conv == NEPConvergedRelative) nep->conv = NEP_CONV_REL;
669:   else if (conv == NEPConvergedNorm) nep->conv = NEP_CONV_NORM;
670:   else if (conv == NEPConvergedAbsolute) nep->conv = NEP_CONV_ABS;
671:   else {
672:     nep->conv      = NEP_CONV_USER;
673:     nep->converged = nep->convergeduser;
674:   }
675:   PetscFunctionReturn(PETSC_SUCCESS);
676: }

678: /*@
679:    NEPSetConvergenceTest - Specifies how to compute the error estimate
680:    used in the convergence test.

682:    Logically Collective

684:    Input Parameters:
685: +  nep  - the nonlinear eigensolver context
686: -  conv - the type of convergence test, see `NEPConv` for possible values

688:    Options Database Keys:
689: +  -nep_conv_abs  - sets the absolute convergence test
690: .  -nep_conv_rel  - sets the convergence test relative to the eigenvalue
691: .  -nep_conv_norm - sets the convergence test relative to the matrix norms
692: -  -nep_conv_user - selects the user-defined convergence test

694:    Level: intermediate

696: .seealso: [](ch:nep), `NEPGetConvergenceTest()`, `NEPSetConvergenceTestFunction()`, `NEPSetStoppingTest()`, `NEPConv`
697: @*/
698: PetscErrorCode NEPSetConvergenceTest(NEP nep,NEPConv conv)
699: {
700:   PetscFunctionBegin;
703:   switch (conv) {
704:     case NEP_CONV_ABS:  nep->converged = NEPConvergedAbsolute; break;
705:     case NEP_CONV_REL:  nep->converged = NEPConvergedRelative; break;
706:     case NEP_CONV_NORM: nep->converged = NEPConvergedNorm; break;
707:     case NEP_CONV_USER:
708:       PetscCheck(nep->convergeduser,PetscObjectComm((PetscObject)nep),PETSC_ERR_ORDER,"Must call NEPSetConvergenceTestFunction() first");
709:       nep->converged = nep->convergeduser;
710:       break;
711:     default:
712:       SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'conv' value");
713:   }
714:   nep->conv = conv;
715:   PetscFunctionReturn(PETSC_SUCCESS);
716: }

718: /*@
719:    NEPGetConvergenceTest - Gets the method used to compute the error estimate
720:    used in the convergence test.

722:    Not Collective

724:    Input Parameter:
725: .  nep   - the nonlinear eigensolver context

727:    Output Parameter:
728: .  conv  - the type of convergence test

730:    Level: intermediate

732: .seealso: [](ch:nep), `NEPSetConvergenceTest()`, `NEPConv`
733: @*/
734: PetscErrorCode NEPGetConvergenceTest(NEP nep,NEPConv *conv)
735: {
736:   PetscFunctionBegin;
738:   PetscAssertPointer(conv,2);
739:   *conv = nep->conv;
740:   PetscFunctionReturn(PETSC_SUCCESS);
741: }

743: /*@C
744:    NEPSetStoppingTestFunction - Sets a function to decide when to stop the outer
745:    iteration of the eigensolver.

747:    Logically Collective

749:    Input Parameters:
750: +  nep     - the nonlinear eigensolver context
751: .  stop    - the stopping test function, see `NEPStoppingTestFn` for the calling sequence
752: .  ctx     - context for private data for the stopping routine (may be `NULL`)
753: -  destroy - a routine for destroying the context (may be `NULL`), see `PetscCtxDestroyFn`
754:              for the calling sequence

756:    Note:
757:    When implementing a function for this, normal usage is to first call the
758:    default routine `NEPStoppingBasic()` and then set `reason` to `NEP_CONVERGED_USER`
759:    if some user-defined conditions have been met. To let the eigensolver continue
760:    iterating, the result must be left as `NEP_CONVERGED_ITERATING`.

762:    Level: advanced

764: .seealso: [](ch:nep), `NEPSetStoppingTest()`, `NEPStoppingBasic()`
765: @*/
766: PetscErrorCode NEPSetStoppingTestFunction(NEP nep,NEPStoppingTestFn *stop,void *ctx,PetscCtxDestroyFn *destroy)
767: {
768:   PetscFunctionBegin;
770:   if (nep->stoppingdestroy) PetscCall((*nep->stoppingdestroy)(&nep->stoppingctx));
771:   nep->stoppinguser    = stop;
772:   nep->stoppingdestroy = destroy;
773:   nep->stoppingctx     = ctx;
774:   if (stop == NEPStoppingBasic) nep->stop = NEP_STOP_BASIC;
775:   else {
776:     nep->stop     = NEP_STOP_USER;
777:     nep->stopping = nep->stoppinguser;
778:   }
779:   PetscFunctionReturn(PETSC_SUCCESS);
780: }

782: /*@
783:    NEPSetStoppingTest - Specifies how to decide the termination of the outer
784:    loop of the eigensolver.

786:    Logically Collective

788:    Input Parameters:
789: +  nep  - the nonlinear eigensolver context
790: -  stop - the type of stopping test, see `NEPStop`

792:    Options Database Keys:
793: +  -nep_stop_basic - sets the default stopping test
794: -  -nep_stop_user  - selects the user-defined stopping test

796:    Level: advanced

798: .seealso: [](ch:nep), `NEPGetStoppingTest()`, `NEPSetStoppingTestFunction()`, `NEPSetConvergenceTest()`, `NEPStop`
799: @*/
800: PetscErrorCode NEPSetStoppingTest(NEP nep,NEPStop stop)
801: {
802:   PetscFunctionBegin;
805:   switch (stop) {
806:     case NEP_STOP_BASIC: nep->stopping = NEPStoppingBasic; break;
807:     case NEP_STOP_USER:
808:       PetscCheck(nep->stoppinguser,PetscObjectComm((PetscObject)nep),PETSC_ERR_ORDER,"Must call NEPSetStoppingTestFunction() first");
809:       nep->stopping = nep->stoppinguser;
810:       break;
811:     default:
812:       SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'stop' value");
813:   }
814:   nep->stop = stop;
815:   PetscFunctionReturn(PETSC_SUCCESS);
816: }

818: /*@
819:    NEPGetStoppingTest - Gets the method used to decide the termination of the outer
820:    loop of the eigensolver.

822:    Not Collective

824:    Input Parameter:
825: .  nep   - the nonlinear eigensolver context

827:    Output Parameter:
828: .  stop  - the type of stopping test

830:    Level: advanced

832: .seealso: [](ch:nep), `NEPSetStoppingTest()`, `NEPStop`
833: @*/
834: PetscErrorCode NEPGetStoppingTest(NEP nep,NEPStop *stop)
835: {
836:   PetscFunctionBegin;
838:   PetscAssertPointer(stop,2);
839:   *stop = nep->stop;
840:   PetscFunctionReturn(PETSC_SUCCESS);
841: }

843: /*@
844:    NEPSetTrackAll - Specifies if the solver must compute the residual of all
845:    approximate eigenpairs or not.

847:    Logically Collective

849:    Input Parameters:
850: +  nep      - the nonlinear eigensolver context
851: -  trackall - whether compute all residuals or not

853:    Notes:
854:    If the user sets `trackall`=`PETSC_TRUE` then the solver explicitly computes
855:    the residual for each eigenpair approximation. Computing the residual is
856:    usually an expensive operation and solvers commonly compute the associated
857:    residual to the first unconverged eigenpair.

859:    The option `-nep_monitor_all` automatically activates this option.

861:    Level: developer

863: .seealso: [](ch:nep), `NEPGetTrackAll()`
864: @*/
865: PetscErrorCode NEPSetTrackAll(NEP nep,PetscBool trackall)
866: {
867:   PetscFunctionBegin;
870:   nep->trackall = trackall;
871:   PetscFunctionReturn(PETSC_SUCCESS);
872: }

874: /*@
875:    NEPGetTrackAll - Returns the flag indicating whether all residual norms must
876:    be computed or not.

878:    Not Collective

880:    Input Parameter:
881: .  nep - the nonlinear eigensolver context

883:    Output Parameter:
884: .  trackall - the returned flag

886:    Level: developer

888: .seealso: [](ch:nep), `NEPSetTrackAll()`
889: @*/
890: PetscErrorCode NEPGetTrackAll(NEP nep,PetscBool *trackall)
891: {
892:   PetscFunctionBegin;
894:   PetscAssertPointer(trackall,2);
895:   *trackall = nep->trackall;
896:   PetscFunctionReturn(PETSC_SUCCESS);
897: }

899: /*@
900:    NEPSetRefine - Specifies the refinement type (and options) to be used
901:    after the solve.

903:    Logically Collective

905:    Input Parameters:
906: +  nep    - the nonlinear eigensolver context
907: .  refine - refinement type, see `NEPRefine` for possible values
908: .  npart  - number of partitions of the communicator
909: .  tol    - the convergence tolerance
910: .  its    - maximum number of refinement iterations
911: -  scheme - which scheme to be used for solving the involved linear systems, see `NEPRefineScheme`
912:             for possible values

914:    Options Database Keys:
915: +  -nep_refine \<refine\>           - set the refinement type, one of `none`,`simple`,`multiple`
916: .  -nep_refine_partitions \<npart\> - set the number of partitions
917: .  -nep_refine_tol \<tol\>          - set the tolerance
918: .  -nep_refine_its \<its\>          - set the number of iterations
919: -  -nep_refine_scheme \<scheme\>    - set the scheme for the linear solves, `schur`,`mbe`, or `explicit`

921:    Notes:
922:    This function configures the parameters of Newton iterative refinement,
923:    see section [](#sec:refine) for a discussion of the different strategies
924:    in the context of polynomial eigenproblems.

926:    By default, iterative refinement is disabled, since it may be very
927:    costly. There are two possible refinement strategies, simple and multiple.
928:    The simple approach performs iterative refinement on each of the
929:    converged eigenpairs individually, whereas the multiple strategy works
930:    with the invariant pair as a whole, refining all eigenpairs simultaneously.
931:    The latter may be required for the case of multiple eigenvalues.

933:    In some cases, especially when using direct solvers within the
934:    iterative refinement method, it may be helpful for improved scalability
935:    to split the communicator in several partitions. The `npart` parameter
936:    indicates how many partitions to use (defaults to 1).

938:    The `tol` and `its` parameters specify the stopping criterion. In the simple
939:    method, refinement continues until the residual of each eigenpair is
940:    below the tolerance (`tol` defaults to the `NEP` tolerance, but may be set to a
941:    different value). In contrast, the multiple method simply performs its
942:    refinement iterations (just one by default).

944:    The `scheme` argument is used to change the way in which linear systems are
945:    solved. Possible choices are explicit, mixed block elimination (MBE),
946:    and Schur complement.

948:    Use `PETSC_CURRENT` to retain the current value of `npart`, `tol` or `its`. Use
949:    `PETSC_DETERMINE` to assign a default value.

951:    Level: intermediate

953: .seealso: [](ch:nep), [](#sec:refine), `NEPGetRefine()`
954: @*/
955: PetscErrorCode NEPSetRefine(NEP nep,NEPRefine refine,PetscInt npart,PetscReal tol,PetscInt its,NEPRefineScheme scheme)
956: {
957:   PetscMPIInt    size;

959:   PetscFunctionBegin;
966:   nep->refine = refine;
967:   if (refine) {  /* process parameters only if not REFINE_NONE */
968:     if (npart!=nep->npart) {
969:       PetscCall(PetscSubcommDestroy(&nep->refinesubc));
970:       PetscCall(KSPDestroy(&nep->refineksp));
971:     }
972:     if (npart == PETSC_DETERMINE) {
973:       nep->npart = 1;
974:     } else if (npart != PETSC_CURRENT) {
975:       PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)nep),&size));
976:       PetscCheck(npart>0 && npart<=size,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of npart");
977:       nep->npart = npart;
978:     }
979:     if (tol == (PetscReal)PETSC_DETERMINE) {
980:       nep->rtol = PETSC_DETERMINE;
981:     } else if (tol != (PetscReal)PETSC_CURRENT) {
982:       PetscCheck(tol>0.0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
983:       nep->rtol = tol;
984:     }
985:     if (its==PETSC_DETERMINE) {
986:       nep->rits = PETSC_DETERMINE;
987:     } else if (its != PETSC_CURRENT) {
988:       PetscCheck(its>=0,PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of its. Must be >= 0");
989:       nep->rits = its;
990:     }
991:     nep->scheme = scheme;
992:   }
993:   nep->state = NEP_STATE_INITIAL;
994:   PetscFunctionReturn(PETSC_SUCCESS);
995: }

997: /*@
998:    NEPGetRefine - Gets the refinement strategy used by the `NEP` object, and the
999:    associated parameters.

1001:    Not Collective

1003:    Input Parameter:
1004: .  nep - the nonlinear eigensolver context

1006:    Output Parameters:
1007: +  refine - refinement type
1008: .  npart  - number of partitions of the communicator
1009: .  tol    - the convergence tolerance
1010: .  its    - maximum number of refinement iterations
1011: -  scheme - the scheme used for solving linear systems

1013:    Level: intermediate

1015:    Note:
1016:    The user can specify `NULL` for any parameter that is not needed.

1018: .seealso: [](ch:nep), `NEPSetRefine()`
1019: @*/
1020: PetscErrorCode NEPGetRefine(NEP nep,NEPRefine *refine,PetscInt *npart,PetscReal *tol,PetscInt *its,NEPRefineScheme *scheme)
1021: {
1022:   PetscFunctionBegin;
1024:   if (refine) *refine = nep->refine;
1025:   if (npart)  *npart  = nep->npart;
1026:   if (tol)    *tol    = nep->rtol;
1027:   if (its)    *its    = nep->rits;
1028:   if (scheme) *scheme = nep->scheme;
1029:   PetscFunctionReturn(PETSC_SUCCESS);
1030: }

1032: /*@
1033:    NEPSetOptionsPrefix - Sets the prefix used for searching for all
1034:    `NEP` options in the database.

1036:    Logically Collective

1038:    Input Parameters:
1039: +  nep    - the nonlinear eigensolver context
1040: -  prefix - the prefix string to prepend to all `NEP` option requests

1042:    Notes:
1043:    A hyphen (-) must NOT be given at the beginning of the prefix name.
1044:    The first character of all runtime options is AUTOMATICALLY the
1045:    hyphen.

1047:    For example, to distinguish between the runtime options for two
1048:    different `NEP` contexts, one could call
1049: .vb
1050:    NEPSetOptionsPrefix(nep1,"neig1_")
1051:    NEPSetOptionsPrefix(nep2,"neig2_")
1052: .ve

1054:    Level: advanced

1056: .seealso: [](ch:nep), `NEPAppendOptionsPrefix()`, `NEPGetOptionsPrefix()`
1057: @*/
1058: PetscErrorCode NEPSetOptionsPrefix(NEP nep,const char prefix[])
1059: {
1060:   PetscFunctionBegin;
1062:   if (!nep->V) PetscCall(NEPGetBV(nep,&nep->V));
1063:   PetscCall(BVSetOptionsPrefix(nep->V,prefix));
1064:   if (!nep->ds) PetscCall(NEPGetDS(nep,&nep->ds));
1065:   PetscCall(DSSetOptionsPrefix(nep->ds,prefix));
1066:   if (!nep->rg) PetscCall(NEPGetRG(nep,&nep->rg));
1067:   PetscCall(RGSetOptionsPrefix(nep->rg,prefix));
1068:   PetscCall(PetscObjectSetOptionsPrefix((PetscObject)nep,prefix));
1069:   PetscFunctionReturn(PETSC_SUCCESS);
1070: }

1072: /*@
1073:    NEPAppendOptionsPrefix - Appends to the prefix used for searching for all
1074:    `NEP` options in the database.

1076:    Logically Collective

1078:    Input Parameters:
1079: +  nep    - the nonlinear eigensolver context
1080: -  prefix - the prefix string to prepend to all `NEP` option requests

1082:    Notes:
1083:    A hyphen (-) must NOT be given at the beginning of the prefix name.
1084:    The first character of all runtime options is AUTOMATICALLY the hyphen.

1086:    Level: advanced

1088: .seealso: [](ch:nep), `NEPSetOptionsPrefix()`, `NEPGetOptionsPrefix()`
1089: @*/
1090: PetscErrorCode NEPAppendOptionsPrefix(NEP nep,const char prefix[])
1091: {
1092:   PetscFunctionBegin;
1094:   if (!nep->V) PetscCall(NEPGetBV(nep,&nep->V));
1095:   PetscCall(BVAppendOptionsPrefix(nep->V,prefix));
1096:   if (!nep->ds) PetscCall(NEPGetDS(nep,&nep->ds));
1097:   PetscCall(DSAppendOptionsPrefix(nep->ds,prefix));
1098:   if (!nep->rg) PetscCall(NEPGetRG(nep,&nep->rg));
1099:   PetscCall(RGAppendOptionsPrefix(nep->rg,prefix));
1100:   PetscCall(PetscObjectAppendOptionsPrefix((PetscObject)nep,prefix));
1101:   PetscFunctionReturn(PETSC_SUCCESS);
1102: }

1104: /*@
1105:    NEPGetOptionsPrefix - Gets the prefix used for searching for all
1106:    `NEP` options in the database.

1108:    Not Collective

1110:    Input Parameter:
1111: .  nep - the nonlinear eigensolver context

1113:    Output Parameter:
1114: .  prefix - pointer to the prefix string used is returned

1116:    Level: advanced

1118: .seealso: [](ch:nep), `NEPSetOptionsPrefix()`, `NEPAppendOptionsPrefix()`
1119: @*/
1120: PetscErrorCode NEPGetOptionsPrefix(NEP nep,const char *prefix[])
1121: {
1122:   PetscFunctionBegin;
1124:   PetscAssertPointer(prefix,2);
1125:   PetscCall(PetscObjectGetOptionsPrefix((PetscObject)nep,prefix));
1126:   PetscFunctionReturn(PETSC_SUCCESS);
1127: }