ex4.py: Singular value decomposition of the Lauchli matrix ========================================================== This example illustrates the use of the SVD solver in slepc4py. It computes singular values and vectors of the Lauchli matrix, whose condition number depends on a parameter ``mu``. The full source code for this demo can be `downloaded here <../_static/ex4.py>`__. Initialization is similar to previous examples. :: try: range = xrange except: pass import sys, slepc4py slepc4py.init(sys.argv) from petsc4py import PETSc from slepc4py import SLEPc This example takes two command-line arguments, the matrix size ``n`` and the ``mu`` parameter. :: opts = PETSc.Options() n = opts.getInt('n', 30) mu = opts.getReal('mu', 1e-6) PETSc.Sys.Print( "Lauchli singular value decomposition, (%d x %d) mu=%g\n" % (n+1,n,mu) ) Create the matrix and fill its nonzero entries. Every MPI process will insert its locally owned part only. :: A = PETSc.Mat(); A.create() A.setSizes([n+1, n]) A.setFromOptions() rstart, rend = A.getOwnershipRange() for i in range(rstart, rend): if i==0: for j in range(n): A[0,j] = 1.0 else: A[i,i-1] = mu A.assemble() The singular value solver is similar to the eigensolver used in previous examples. In this case, we select the thick-restart Lanczos bidiagonalization method. :: S = SLEPc.SVD(); S.create() S.setOperator(A) S.setType(S.Type.TRLANCZOS) S.setFromOptions() S.solve() After solve, we print some informative data and extract the computed solution, showing the list of singular values and the corresponding residual errors. :: Print = PETSc.Sys.Print Print( "******************************" ) Print( "*** SLEPc Solution Results ***" ) Print( "******************************\n" ) svd_type = S.getType() Print( "Solution method: %s" % svd_type ) its = S.getIterationNumber() Print( "Number of iterations of the method: %d" % its ) nsv, ncv, mpd = S.getDimensions() Print( "Number of requested singular values: %d" % nsv ) tol, maxit = S.getTolerances() Print( "Stopping condition: tol=%.4g, maxit=%d" % (tol, maxit) ) nconv = S.getConverged() Print( "Number of converged approximate singular triplets %d" % nconv ) if nconv > 0: v, u = A.createVecs() Print() Print(" sigma residual norm ") Print("------------- ---------------") for i in range(nconv): sigma = S.getSingularTriplet(i, u, v) error = S.computeError(i) Print( " %6f %12g" % (sigma, error) ) Print()