ex11.py: 2-D Laplacian eigenproblem solved with contour integral ================================================================ This example is similar to ``ex2.py``, but employs a contour integral solver. It illustrates how to define a region of the complex plane using an `RG` object. The full source code for this demo can be `downloaded here <../_static/ex11.py>`__. Initialization is similar to previous examples. :: try: range = xrange except: pass import sys, slepc4py slepc4py.init(sys.argv) from petsc4py import PETSc from slepc4py import SLEPc Print = PETSc.Sys.Print Build the finite-difference 2-D Laplacian matrix. :: def construct_operator(m, n): # Create matrix for 2D Laplacian operator A = PETSc.Mat().create() A.setSizes([m*n, m*n]) A.setFromOptions() # Fill matrix hx = 1.0/(m-1) # x grid spacing hy = 1.0/(n-1) # y grid spacing diagv = 2.0*hy/hx + 2.0*hx/hy offdx = -1.0*hy/hx offdy = -1.0*hx/hy Istart, Iend = A.getOwnershipRange() for I in range(Istart, Iend) : A[I,I] = diagv i = I//n # map row number to j = I - i*n # grid coordinates if i> 0 : J = I-n; A[I,J] = offdx if i< m-1: J = I+n; A[I,J] = offdx if j> 0 : J = I-1; A[I,J] = offdy if j< n-1: J = I+1; A[I,J] = offdy A.assemble() return A In the main function, first two command-line options are processed to set the grid dimensions. Then the matrix is built and passed to the solver object. In this case, the solver is configured to use the contour integral method. Next, the region of interest is defined, in this case an ellipse centered at the origin, with radius 0.2 and vertical scaling of 0.1. Finally, the solver is run. In this example, we illustrate how to print the solution using the solver method `errorView() `. :: def main(): opts = PETSc.Options() n = opts.getInt('n', 32) m = opts.getInt('m', 32) Print("2-D Laplacian Eigenproblem solved with contour integral, " "N=%d (%dx%d grid)\n" % (m*n, m, n)) A = construct_operator(m,n) E = SLEPc.EPS().create() E.setOperators(A) E.setProblemType(SLEPc.EPS.ProblemType.HEP) E.setType(SLEPc.EPS.Type.CISS) R = E.getRG() R.setType(SLEPc.RG.Type.ELLIPSE) R.setEllipseParameters(0.0,0.2,0.1) E.setFromOptions() E.solve() vw = PETSc.Viewer.STDOUT() vw.pushFormat(PETSc.Viewer.Format.ASCII_INFO_DETAIL) E.errorView(viewer=vw) vw.popFormat() if __name__ == '__main__': main()