
Scalable Library
for Eigenvalue Problem

Computations

SLEPc Technical Report STR-1
Available at http://slepc.upv.es

Orthogonalization Routines in SLEPc

V. Hernández
J. E. Román

A. Tomás
V. Vidal

Last update: June, 2007 (slepc 2.3.3)
Previous updates: slepc 2.3.0, slepc 2.3.2

About SLEPc Technical Reports: These reports are part of the documentation of slepc, the Scalable Library for

Eigenvalue Problem Computations. They are intended to complement the Users Guide by providing technical details

that normal users typically do not need to know but may be of interest for more advanced users.

http://slepc.upv.es

Orthogonalization Routines in SLEPc STR-1

Contents

1 Introduction 2

2 Gram-Schmidt Orthogonalization 2

3 Orthogonalization in slepc 7
3.1 User Options . 8
3.2 Developer Functions . 8
3.3 Optimizations for Enhanced Parallel Efficiency 9
3.4 Known Issues and Applicability . 9

1 Introduction

In most of the eigensolvers provided in slepc, it is necessary to build an orthonormal basis of the
subspace generated by a set of vectors, span{x1, x2, . . . , xn}, that is, to compute another set of
vectors qi so that ‖qi‖2 = 1, qTi qj = 0 if i 6= j, and span{q1, q2, . . . , qn} = span{x1, x2, . . . , xn}.
This is equivalent to computing the QR factorization

X =
[
Q Q0

] [R

0

]
= QR , (1)

where xi are the columns of X ∈ Rm×n, m ≥ n, Q ∈ Rm×n has orthonormal columns qi and
R ∈ Rn×n is upper triangular. This factorization is essentially unique except for a ±1 scaling
of the qi’s.

The QR factorization can be computed in a stable way by means of Givens rotations or
Householder reflectors (see [Golub and Van Loan, 1996, chap. 5] or [Björck, 1996] for back-
ground information). If the qi vectors are required explicitly (the so-called orthogonal basis
problem), an advantageous alternative is the Gram-Schmidt orthogonalization process, but in
this case numerical stability may become an important issue as explained in section 2. In the
context of Krylov-based eigensolvers, Gram-Schmidt is also the most natural method because
not all xi vectors are available at the beginning but are generated as the algorithm progresses.
Other benefits of Gram-Schmidt are discussed in [Stewart, 2004]. Anyway, Householder trans-
formations may still be used, see [Walker, 1988].

2 Gram-Schmidt Orthogonalization

The Gram-Schmidt algorithm orthonormalizes one vector at a time in the following way. As-
suming that the first j − 1 vectors have already been processed, the algorithm computes the
orthogonal projection of xj onto span{q1, q2, . . . , qj−1}. This projection is subtracted from
the original vector and the result is normalized to obtain qj so that span{q1, q2, . . . , qj} =

— 2 —

STR-1 Orthogonalization Routines in SLEPc

span{x1, x2, . . . , xj} and qj is orthogonal to q1, q2, . . . , qj−1 with unit norm. Algorithm 1 illus-
trates this process, where Qj−1 = [q1 q2 . . . qj−1] and rjj is always taken to be positive (it is
the 2-norm of qj before normalization). Note that this algorithm will break if rjj is zero, which
signals the fact that xj is linearly dependent with respect to x1, . . . , xj−1.

Algorithm 1 (QR Factorization via Gram-Schmidt)

Input: Matrix X
Output: Matrices Q and R as in Eq. (1)

r11 = ‖x1‖2
q1 = x1/r11
for j = 2, . . . , n

[qj , rj] = Gram-Schmidt (xj , Qj−1)
qj = qj/rjj

end

Algorithm 1 invokes the Gram-Schmidt procedure for orthogonalizing a vector with respect
to a set of vectors, which may come in different flavors. The most straightforward version
is referred to as classical Gram-Schmidt (CGS), see Algorithm 2. The effect is to compute
qi = (I − Qj−1Q

T
j−1)xj , that is, to project xj onto the orthogonal complement of the column

space of Qj−1. This is more apparent in the BLAS-2 version, Algorithm 3.

Algorithm 2 (Classical Gram-Schmidt, CGS)

Input: Vector xj to be orthogonalized against the columns of Qj−1
Output: Orthogonalized vector qj and coefficients rj

for i = 1, . . . , j − 1
rij = qTi xj
qj = qj − rijqi

end
rjj = ‖qj‖2

Algorithm 3 (CGS, BLAS-2 version)

Input: Vector xj to be orthogonalized against the columns of Qj−1
Output: Orthogonalized vector qj and coefficients rj

rj = QT
j−1xj

qj = xj −Qj−1rj
rjj = ‖qj‖2

Since the columns of Qj−1 are orthonormal, the projection (I − Qj−1Q
T
j−1) can also be

computed as (I − qj−1qTj−1) · · · (I − q1qT1). This formulation gives rise to the modified Gram-
Schmidt (MGS) method described in Algorithm 4. This algorithm is mathematically equivalent
to CGS but has better numerical properties as will be shown shortly.

— 3 —

Orthogonalization Routines in SLEPc STR-1

Algorithm 4 (Modified Gram-Schmidt, MGS)

Input: Vector xj to be orthogonalized against the columns of Qj−1
Output: Orthogonalized vector qj and coefficients rj

qj = xj
for i = 1, . . . , j − 1

rij = qTi qj
qj = qj − rijqi

end
rjj = ‖qj‖2

Rounding error analysis. In floating-point arithmetic, the above algorithms compute ma-
trices Q̄ and R̄, which may differ from Q and R significantly. In the case of MGS, these matrices
satisfy the following relation [Björck, 1967]

X + Ē = Q̄R̄ with ‖Ē‖2 ≤ c̄1u‖X‖2 , (2)

where u is the unit roundoff and c̄1 is a constant depending on m, n and the details of the
arithmetic. This equation shows that Q̄R̄ is a backward-stable factorization of X.

It has been shown that for eigenvalue computations, the loss of orthogonality of the computed
basis can affect the reliability of the computed eigenpairs, [Braconnier et al., 2000]. Björck also
analyzed the level of orthogonality of the computed vectors, Q̄. A more recent work, [Björck
and Paige, 1992], provided a better understanding of the process, showing the following result

‖I − Q̄T Q̄‖2 ≤
2c1uκ

1− (c+ c1)uκ
, (3)

where c and c1 are also constants and κ = σ1/σn is the spectral condition number of X. For
this, we assume the numerical full rank of matrix X, that is,

(c+ c1)uκ < 1 . (4)

A detailed description of the constants used in the above expressions can be found in [Giraud
and Langou, 2002]. Equation (3) assures that if X is well-conditioned then Q̄ is orthogonal to
machine precision, but if κ is large then the qi’s may lose orthogonality.

In the case of the CGS algorithm, loss of orthogonality is more likely to occur, as it has long
been experienced in practice. A recent theoretical result [Giraud et al., 2005] shows that

‖I − Q̄T Q̄‖2 ≤
c3uκ

2

1− c2uκ2
, (5)

that is, in CGS the level of orthogonality can be bounded in terms of the square of the condition
number, whereas in MGS it depends only linearly on κ.

— 4 —

STR-1 Orthogonalization Routines in SLEPc

Iterative Gram-Schmidt. The previous analysis shows that MGS is numerically superior
to CGS, but it may still provide poor orthogonality in many cases. Reorthogonalization was
proposed as a cure for this, [Rutishauser, 1967], [Abdelmalek, 1971]: once qj has been obtained
from xj , it is projected again onto the orthogonal complement of Qj−1 to get q′j . This solves
the numerical difficulties but doubles the computational cost, so the question is whether this
reorthogonalization in always necessary or not. Selective reorthogonalization tries to avoid
unnecessary work by using a criterion to decide when to reorthogonalize. The rationale is that
if the ratio ‖qj‖2/‖xj‖2 is small, then severe rounding errors have occurred in forming qj , so it
has a non-negligible component in R(Qj−1). In this case reorthogonalization is performed to
obtain q′j . If the ratio ‖q′j‖2/‖qj‖2 is small then the process should be repeated to get q′′j and
so on. These iterative Gram-Schmidt techniques are illustrated in Algorithms 5 and 6.

Algorithm 5 (Iterative CGS)

Input: Vector xj to be orthogonalized against the columns of Qj−1
Output: Orthogonalized vector qj and coefficients rj

qj = xj
rj = 0
repeat

h = QT
j−1qj

qj = qj −Qj−1h
rj = rj + h
rjj = ‖qj‖2

until <selective criterion is true>

Algorithm 6 (Iterative MGS)

Input: Vector xj to be orthogonalized against the columns of Qj−1
Output: Orthogonalized vector qj and coefficients rj

qj = xj
rj = 0
repeat

for i = 1, . . . , j − 1
hi = qTi qj
qj = qj − hiqi

end
rj = rj + h
rjj = ‖qj‖2

until <selective criterion is true>

Ruhe [1983] shows that, in these variants, the resulting rj corresponds to the solution of the
system of normal equations QT

j−1Qj−1rj = QT
j−1xj solved with a Gauss-Jacobi iteration (in the

case of Iterative CGS) or with a Gauss-Seidel iteration (Iterative MGS). The resulting accuracy
depends on the number of steps performed.

— 5 —

Orthogonalization Routines in SLEPc STR-1

Daniel et al. [1976] analyzed the Iterative CGS method from a numerical point of view and
proposed the following reorthogonalization criterion

‖q̃j‖2 + ω ‖QT
j−1q̃j‖2 ≤ θ ‖qj‖2 , (6)

where q̃j represents vector qj before the latest reorthogonalization, or, equivalently,

‖q̃j‖2 + ω ‖h‖2 ≤ θ ‖qj‖2 . (7)

The user-specified parameter θ > 1 allows control of the level of orthogonality (better for small
values of θ). Parameter ω depends on the computer arithmetic. Experiments carried out by the
authors show satisfactory results with ω = 0. If the ω term is omitted, then a simpler criterion
is obtained, which is equivalent to the one originally proposed by Rutishauser:

η ‖q̃j‖2 ≤ ‖qj‖2 , (8)

where η = 1/θ. A value of η = 1/
√

2 is generally used, as proposed in [Daniel et al., 1976] or
[Reichel and Gragg, 1990], although other values could be used as well. Hoffmann [1989] tested
a wide range of values, both with classical and modified versions. His analysis shows that a
value of η = 1/2 results in a level of orthogonality ‖I − Q̄T Q̄‖2 of the order of the machine
precision, for both CGS and MGS. Consequently, Algorithms 5 and 6 are equivalent from the
numerical point of view and Algorithm 5 could be preferred for efficiency reasons.

Giraud and Langou [2004] claim that criterion (8) may not be robust enough if only one
reorthogonalization is allowed, and propose a different one:∑j−1

k=1 |rkj | ≤ L ‖qj‖2 , (9)

showing that L < 1 is a necessary and sufficient condition to ensure robustness of selective
reorthogonalization. This result has been developed theoretically for MGS but experiments
indicate that it can also be safely applied in CGS.

A completely different reorthogonalization approach is proposed in [Giraud et al., 2004],
where after computing Q̄ with Algorithm 4, a rank-k update Q̄+ Fk is computed.

Considerations for ill-conditioned X. In the context of iterative Gram-Schmidt processes,
it is generally accepted that a single reorthogonalization step is sufficient in practice. This was
already suggested by the “twice is enough” algorithm described in [Parlett, 1980, §6.9] and
formally demonstrated later in [Giraud and Langou, 2002]. However, this statement can only
be applied in the case of not “too ill-conditioned” matrices.

In Krylov-based eigensolvers, the columns of X span a Krylov subspace

Km(A, v) = span{v,Av, . . . , Am−1v} , (10)

where vectors Akv usually tend to align in the direction of an eigenvector as k increases, thus
becoming more and more linearly dependent. As more vectors are added, the value of κ is likely
to grow until finally X becomes numerically rank deficient, which in the context of eigensolvers

— 6 —

STR-1 Orthogonalization Routines in SLEPc

means that a Ritz pair has converged to working accuracy. Hence, it is important to detect
the linear dependence condition, which can be assimilated to assumption (4), but it is also
necessary to take into consideration the “too ill-conditioned” case, whose limit is established by
Giraud and Langou [2002] one order of magnitude before numerical rank deficiency.

In this scenery, Gram-Schmidt implementations should be prepared for more than two or-
thogonalizations. A practical rule of thumb could be to allow for 4 or 5 iterations of Algorithms
5 or 6, then if no suitable qj has been generated linear dependence is acknowledged, [Bai et al.,
2000, §4.5.3].

Daniel et al. [1976] suggest to check if ‖qj‖2 ≤ σ ‖xj‖2, where σ > 0 is a parameter somewhat
smaller than the basic machine unit, and in that case, qj is indistinguishable from rounding
error and should be replaced by ‖qj‖2 el, where the l-th row of Qj−1 is that of minimal length.

Reichel and Gragg [1990] propose to detect linear dependence on the basis of the condition
number of matrix [Qj−1 xj], that is, to compute

σ1 =
√

1 + ‖QT
j−1xj‖2/‖xj‖2 , σn+1 =

√
1− ‖QT

j−1xj‖2/‖xj‖2 , (11)

and perform the orthogonalization only if σ1/σn+1 is below a certain threshold. To avoid severe
cancellation, σn+1 is computed from ‖qj‖2 = σ1σn+1.

3 Orthogonalization in slepc

slepc provides implementations of both CGS and MGS with iterative refinement (see Algo-
rithms 5 and 6 above). The selective refinement criterion used in slepc is similar to Eq. (8),
but modified in order to enhance parallel efficiency (see subsection 3.3).

With respect to the number of allowed reorthogonalizations (number of iterations in the
iterative refinement algorithm), the following possibilities are implemented in slepc:

• No reorthogonalization (never refine). This corresponds to plain CGS and MGS (Algo-
rithms 3 and 4), which are usually unreliable numerically, as explained above. In this case,
there is no way to check for linear dependence other than the norm of the final vector
being exactly zero (which is extremely unlikely in finite precision arithmetic).

• Iterative (this is the default). In this case, we adopt the “twice is enough” approach, but
allowing an extra refinement if the criterion is again satisfied, which could be useful for
treating the “too ill-conditioned” case described previously. For detecting linear depen-
dence, the practical rule proposed by Daniel et al. is used: either the iterative algorithm
converges to a sufficient level of orthogonality in a few steps or the termination crite-
rion may continually fail to be satisfied. Therefore, we consider that vector xj is linearly
dependent if the selective refinement criterion is still satisfied after the extra refinement
step. In our tests, other criteria such as the one based on (11) seem to be less robust.

• One reorthogonalization (always refine). This is usually referred to in the literature as
CGS2 and MGS2. In this case, linear dependence is checked by applying the selective
criterion to the vector before and after reorthogonalization.

— 7 —

Orthogonalization Routines in SLEPc STR-1

In slepc, Gram-Schmidt orthogonalization is implemented within the IP object, an abstract
representation of a vector inner product that can be defined in different ways. This object is not
manipulated directly by the application programmer, but managed internally by eigensolvers.
However, the user can still set some options as described below. In order to retrieve the IP

context, the programmer can use the following function

EPSGetIP(EPS eps,IP *ip);

3.1 User Options

The user is able to select the orthogonalization method to be used. This can be done procedu-
rally or via the command line. The following function provides all the possibilities:

IPSetOrthogonalization(IP ip,IPOrthogonalizationType type,

IPOrthogonalizationRefinementType refinement, PetscReal eta);

The argument type can be used to choose between CGS and MGS. The default is CGS since
MGS implies too much parallel overhead when using several processors. CGS is also preferred in
terms of sequential efficiency (Mflops/s rate). The argument refinement specifies if refinement
should be performed always (thus carrying out unnecessary work), never (i.e. the non-iterative
algorithms) or if needed (according to the selective refinement criterion mentioned above). In
the last case, the value of η can be provided via the last argument, eta. The default is to do
refinement if needed (i.e. with selective criterion) with a value of η equal to 1/

√
2 in both CGS

and MGS. Note that this is a rather conservative value and in many cases it is safe to relax it
(use a smaller one) thus reducing the flop count.

Alternatively, all these options can be specified in the command line with -eps_orthog_type

[cgs|mgs] for the algorithm, -eps_orthog_refinement [never|ifneeded|always] for the
refinement strategy, and -eps_orthog_eta for setting the value of η. The same command-line
options are available with -svd_ prefix.

3.2 Developer Functions

The following are developer functions related to the issues discussed in this report.

IPOrthogonalize(IP ip,int n,PetscTruth *which,Vec *V,Vec v,PetscScalar *H,

PetscReal *norm,PetscTruth *lindep,Vec work)

Given a vector v to be orthogonalized with respect to a set of vectors V , IPOrthogonalize
invokes the Gram-Schmidt orthogonalization procedure to provide a new vector v orthogonal
to working accuracy. Side products of this are the projection coefficients, returned in array H,
the norm of the vector and a flag, lindep, that is set in the case that linear dependence is
detected. The logical array which is used for the cases when not all the vectors in V are to be
considered for the orthogonalization.

IPQRDecomposition(IP ip,Vec *V,int m,int n,PetscScalar *R,int ldr,Vec work)

The above function implements Algorithm 1. Given a set of n-vectors in V, it computes the
Q and R factors, assuming that the leading m columns are already computed.

— 8 —

STR-1 Orthogonalization Routines in SLEPc

3.3 Optimizations for Enhanced Parallel Efficiency

slepc introduces several optimizations in its eigensolvers regarding the orthogonalization stage.
The objective of these optimizations is to reduce the overhead incurred when running the code
in parallel with many processors, that is, to have eigensolvers as scalable as possible.

The optimizations consist basically in merging together the communications associated to
different vector operations, so that some synchronization points in the algorithm can be elim-
inated. Three types of optimizations can be considered, as described below. Full details,
including numerical results and performance analysis, can be found in [Hernandez et al., 2007].

• Estimation of the norm. The main objective of this technique is to avoid the explicit
computation of the Euclidean norm of the resulting (orthogonalized) vector and, instead,
estimate it starting from the original norm (prior to the orthogonalization), by simply
applying the Pythagorean theorem.

• Delayed normalization. This technique can be applied in eigensolvers that compute a
sequence of orthonormal vectors, such as Arnoldi. The basic idea is to defer the nor-
malization of the j-th vector of the sequence (including the computation of the norm),
moving it from the end of step j to the first global reduction operation in step j + 1.

• Delayed refinement. This technique is quite similar to delayed normalization. In this case,
the refinement step is what is deferred from step j to step j + 1. This concept is only
applicable to Gram-Schmidt variants with unconditional refinement (without selective
criterion).

In slepc, the first optimization is always used, whereas the delayed variants of the algorithms
are not performed by default and have to be explicitly selected by the user. For instance, if
a delayed variant of the Arnoldi eigensolver is selected, then either delayed normalization (if
refinement is equal to never) or delayed refinement (if refinement is equal to always) is
carried out. For details on how to select the delayed variants, please consult the documentation
of each eigensolver (e.g. slepc Technical Report STR-4 for Arnoldi).

3.4 Known Issues and Applicability

The Gram-Schmidt algorithms described at the beginning of this document can be defined for
any inner product. In particular, when slepc is used to solve a generalized symmetric-definite
eigenvalue problem Ax = λBx, where B is a symmetric positive-definite matrix, then the
standard Euclidean inner product is replaced by the B-inner product

〈x, y〉B = xTB y . (12)

Note that in this case, slepc’s orthogonalization subroutines will perform a B-orthogonalization
instead of an orthogonalization. In other words, the resulting vectors satisfy

X = QR , QTBQ = I , (13)

to working accuracy. Note also that the error analysis presented previously would not be directly
applicable in this case.

— 9 —

Orthogonalization Routines in SLEPc STR-1

References

Abdelmalek, N. N. (1971). Roundoff Error Analysis for Gram–Schmidt Method and Solution of Linear
Least Squares Problems. BIT , 11:345–368.

Bai, Z., J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst (eds.) (2000). Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Björck, Å. (1967). Solving Linear Least Squares Problems by Gram–Schmidt Orthogonalization. BIT ,
7:1–21.

Björck, Å. (1996). Numerical Methods for Least Squares Problems. Society for Industrial and Applied
Mathematics, Philadelphia.

Björck, Å. and C. C. Paige (1992). Loss and Recapture of Orthogonality in the Modified Gram–Schmidt
Algorithm. SIAM J. Matrix Anal. Appl., 13:176–190.

Braconnier, T., P. Langlois, and J. C. Rioual (2000). The Influence of Orthogonality on the Arnoldi
Method. Linear Algebra Appl., 309(1–3):307–323.

Daniel, J. W., W. B. Gragg, L. Kaufman, and G. W. Stewart (1976). Reorthogonalization and Stable
Algorithms for Updating the Gram–Schmidt QR Factorization. Math. Comp., 30(136):772–795.

Giraud, L., S. Gratton, and J. Langou (2004). A Rank-k Update Procedure for Reorthogonalizing the
Orthogonal Factor from Modified Gram-Schmidt. SIAM J. Matrix Anal. Appl., 25(4):1163–1177.

Giraud, L. and J. Langou (2002). When Modified Gram-Schmidt Generates a Well-conditioned Set of
Vectors. IMA J. Numer. Anal., 22:521–528.

Giraud, L. and J. Langou (2004). A Robust Criterion for the Modified Gram–Schmidt Algorithm with
Selective Reorthogonalization. SIAM J. Sci. Comput., 25(2):417–441.

Giraud, L., J. Langou, M. Rozlozńık, and J. van den Eshof (2005). Rounding Error Analysis of the
Classical Gram–Schmidt Orthogonalization Process. Numer. Math., 101(1):87–100.

Golub, G. H. and C. F. Van Loan (1996). Matrix Computations. The Johns Hopkins University Press,
Baltimore, MD, third edition.

Hernandez, V., J. E. Roman, and A. Tomas (2007). Parallel Arnoldi Eigensolvers with Enhanced
Scalability via Global Communications Rearrangement. Parallel Comput., 33(7–8):521–540.

Hoffmann, W. (1989). Iterative Algorithms for Gram-Schmidt Orthogonalization. Computing ,
41(4):335–348.

Parlett, B. N. (1980). The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, NJ.
Reissued with revisions by SIAM, Philadelphia, 1998.

Reichel, L. and W. B. Gragg (1990). FORTRAN Subroutines for Updating the QR Decomposition.
ACM Trans. Math. Softw., 16:369–377.

— 10 —

STR-1 Orthogonalization Routines in SLEPc

Ruhe, A. (1983). Numerical Aspects of Gram–Schmidt Orthogonalization of Vectors. Linear Algebra
Appl., 52/53:591–601.

Rutishauser, H. (1967). Description of Algol 60. Handbook for Automatic Computation, Vol. 1a.
Springer-Verlag, Berlin.

Stewart, G. W. (2004). The Gram-Schmidt Algorithm and its Variations. Technical Report TR-2004-84,
Institute for Advanced Computer Studies, University of Maryland.

Walker, H. F. (1988). Implementation of the GMRES Method Using Householder Transformations.
SIAM J. Sci. Statist. Comput., 9:152–163.

— 11 —

	1 Introduction
	2 Gram-Schmidt Orthogonalization
	3 Orthogonalization in SLEPc
	3.1 User Options
	3.2 Developer Functions
	3.3 Optimizations for Enhanced Parallel Efficiency
	3.4 Known Issues and Applicability

