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Abstract

This document describes SLEPc, the Scalable Library for Eigenvalue Problem Computations, a software package for
the solution of large sparse eigenproblems on parallel computers. It can be used for the solution of various types
of eigenvalue problems, including linear and nonlinear, as well as other related problems such as the singular value
decomposition (see a summary of supported problem classes in table SLEPc modules (page 4). SLEPc is a general
library in the sense that it covers both Hermitian and non-Hermitian problems, with either real or complex arithmetic.

The emphasis of the software is on methods and techniques appropriate for problems in which the associated matrices
are large and sparse, for example, those arising after the discretization of partial differential equations. Thus, most
of the methods offered by the library are projection methods, including different variants of Krylov and Davidson
iterations. In addition to its own solvers, SLEPc provides transparent access to some external software packages such
as ARPACK. These packages are optional and their installation is not required to use SLEPc, see sectionWrappers
to External Libraries (page 96) for details. Apart from the solvers, SLEPc also provides built-in support for some
operations commonly used in the context of eigenvalue computations, such as preconditioning or the shift-and-invert
spectral transformation.

SLEPc is built on top of PETSc, the Portable, Extensible Toolkit for Scientific Computation [Balay et al., 2025].
It can be considered an extension of PETSc providing all the functionality necessary for the solution of eigenvalue
problems. This means that PETSc must be previously installed in order to use SLEPc. PETSc users will find SLEPc
very easy to use, since it enforces the same programming paradigm. Those readers that are not acquainted with
PETSc are highly recommended to familiarize with it before proceeding with SLEPc.

How to Get SLEPc

All the information related to SLEPc can be found at the following web site:

https://slepc.upv.es.

The distribution file is available for download at this site. Other information is provided there, such as installation
instructions and contact information. Instructions for installing the software can also be found in section Installation
(page 3).

PETSc can be downloaded from https://petsc.org. PETSc is supported, and information on contacting support can
be found at that site.

Additional Documentation

This manual provides a general description of SLEPc. In addition, manual pages for individual routines are included
in the distribution file in hypertext format, and are also available on-line at https://slepc.upv.es/documentation. These
manual pages provide hyperlinked access to the source code and enable easy movement among related topics. Finally,
there are also several hands-on exercises available, which are intended for learning the basic concepts easily.

How to Read this Manual

Users that are already familiar with PETSc can read chapter Getting Started (page 1) very fast. Section Eigenvalue
Problems (page 13) provides a brief overview of eigenproblems and the general concepts used by eigensolvers, so
it can be skipped by experienced users. Chapters EPS: Eigenvalue Problem Solver (page 13)–MFN: Matrix Func-
tion (page 83) describe the main SLEPc functionality. Some of them include an advanced usage section that can
be skipped at a first reading. Finally, chapter Additional Information (page 87) contains less important, additional
information.

SLEPc Technical Reports

The information contained in this manual is complemented by a set of Technical Reports, which provide technical
details that normal users typically do not need to know but may be useful for experts in order to identify the particular
method implemented in SLEPc. These reports are not included in the SLEPc distribution file but can be accessed
via the SLEPc web site.
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• Valencian Regional Government, grant no. GV06/091, PI: José E. Román.
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License and Copyright

Starting from version 3.8, SLEPc is released under a 2-clause BSD license (see LICENSE file).

Copyright 2002–2025 Universitat Politècnica de València, Spain

Supported Problem Classes

The following table provides an overview of the functionality offered by SLEPc, organized by problem classes.

Table 1: SLEPc modules

Problem class Model equation Mod-
ule

Chapter

Linear eigenvalue problem Ax = λx, Ax = λBx EPS EPS: Eigenvalue Problem Solver (page 13)
Quadratic eigenvalue
problem

(K + λC + λ2M)x = 0 – –

Polynomial eigenvalue
problem

(A0+λA1+· · ·+λdAd)x =
0

PEP PEP: Polynomial Eigenvalue Problems
(page 63)

Nonlinear eigenvalue
problem

T (λ)x = 0 NEP NEP: Nonlinear Eigenvalue Problems
(page 75)

Singular value decomposi-
tion

Av = σu SVD SVD: Singular Value Decomposition
(page 49)

Matrix function (action of) y = f(A)v MFN MFN: Matrix Function (page 83)
Linear matrix equation AXE +DXB = C LME See Notes (page 4)

In order to solve a given problem, one should create a solver object corresponding to the solver class (module) that
better fits the problem (the less general one; e.g., we do not recommend using NEP to solve a linear eigenproblem).

Notes

• Most users are typically interested in linear eigenproblems only.

• In each problem class theremay exist several subclasses (problem types in SLEPc terminology), for instance
symmetric-definite generalized eigenproblem in EPS.

• The solver class (module) is named after the problem class. For historical reasons, the one for linear
eigenvalue problems is called EPS rather than LEP.

• In addition to the SVD shown in the table, the SVD module also supports other related problems such as
the GSVD and the HSVD.

• In previous SLEPc versions there was a QEP module for quadratic eigenproblems. It has been replaced by
PEP.

• For the action of amatrix function (MFN), in SLEPc we focus onmethods that are closely related tomethods
for eigenvalue problems.
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• The solver class LME is still experimental and it is not covered in this manual yet.
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CΗАРΤЕR 1

Getting Started

SLEPc, the Scalable Library for Eigenvalue Problem Computations, is a software library for the solution of large
sparse eigenvalue problems on parallel computers.

Together with linear systems of equations, eigenvalue problems are a very important class of linear algebra prob-
lems. The need for the numerical solution of these problems arises in many situations in science and engineering, in
problems associated with stability and vibration analysis in practical applications. These are usually formulated as
large sparse eigenproblems.

Computing eigenvalues is essentially more difficult than solving linear systems of equations. This has resulted in a
very active research activity in the area of computational methods for eigenvalue problems in the last years, with many
remarkable achievements. However, these state-of-the-art methods and algorithms are not easily transferred to the
scientific community, and, apart from a few exceptions, most user still rely on simpler, well-established techniques.

The reasons for this situation are diverse. First, new methods are increasingly complex and difficult to implement and
therefore robust implementations must be provided by computational specialists, for example as software libraries.
The development of such libraries requires to invest a lot of effort but sometimes they do not reach normal users due
to a lack of awareness.

In the case of eigenproblems, using libraries is not straightforward. It is usually recommended that the user under-
stands how the underlying algorithm works and typically the problem is successfully solved only after several cycles
of testing and parameter tuning. Methods are often specific for a certain class of eigenproblems and this leads to an
explosion of available algorithms from which the user has to choose. Not all these algorithms are available in the
form of software libraries, even less frequently with parallel capabilities.

Another difficulty resides in how to represent the operator matrix. Unlike in dense methods, there is no widely
accepted standard for basic sparse operations in the spirit of BLAS. This is due to the fact that sparse storage is more
complicated, admitting of more variation, and therefore less standardized. For this reason, sparse libraries have an
added level of complexity. This holds even more so in the case of parallel distributed-memory programming, where
the data of the problem have to be distributed across the available processors.

The first implementations of algorithms for sparse matrices required a prescribed storage format for the sparse matrix,
which is an obvious limitation. An alternative way of matrix representation is by means of a user-provided subroutine
for the matrix-vector product. Apart from being format-independent, this approach allows the solution of problems
in which the matrix is not available explicitly. The drawback is the restriction to a fixed-prototype subroutine.

A better solution for the matrix representation problem is the well-known reverse communication interface, a tech-
nique that allows the development of iterative methods disregarding the implementation details of various operations.
Whenever the iterative method subroutine needs the results of one of the operations, it returns control to the user’s
subroutine that called it. The user’s subroutine then invokes the module that performs the operation. The iterative
method subroutine is invoked again with the results of the operation.

1
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Several libraries with any of the interface schemes mentioned above are publicly available. For a survey of such
software see the SLEPc Technical Report Hernandez et al. [2009], “A Survey of Software for Sparse Eigenvalue
Problems”, and references therein. Some of the most recent libraries are even prepared for parallel execution (some
of them can be used from within SLEPc, see section Wrappers to External Libraries (page 96)). However, they
still lack some flexibility or require too much programming effort from the user, especially in the case that the
eigensolution requires to employ advanced techniques such as spectral transformations or preconditioning.

A further obstacle appears when these libraries have to be used in the context of large software projects carried out
by inter-disciplinary teams. In this scenery, libraries must be able to interoperate with already existing software and
with other libraries. In order to cope with the complexity associated with such projects, libraries must be designed
carefully in order to overcome hurdles such as different storage formats or programming languages. In the case of
parallel software, care must be taken also to achieve portability to a wide range of platforms with good performance
and still retain flexibility and usability.

1.1 SLEPc and PETSc

The SLEPc library is an attempt to provide a solution to the situation described in the previous paragraphs. It
is intended to be a general library for the solution of eigenvalue problems that arise in different contexts, covering
standard and generalized problems, both Hermitian and non-Hermitian, with either real or complex arithmetic. Issues
such as usability, portability, efficiency and interoperability are addressed, and special emphasis is put on flexibility,
providing data-structure neutral implementations and multitude of run-time options. SLEPc offers a growing number
of eigensolvers as well as interfaces to integrate well-established eigenvalue packages such as ARPACK. In addition
to the linear eigenvalue problem, SLEPc also includes other solver classes for nonlinear eigenproblems, SVD and the
computation of the action of a matrix function.

SLEPc is based on PETSc, the Portable, Extensible Toolkit for Scientific Computation [Balay et al., 2025], and,
therefore, a large percentage of the software complexity is avoided since many PETSc developments are leveraged,
including matrix storage formats and linear solvers, to name a few. SLEPc focuses on high level features for eigen-
problems, structured around a few object classes as described below.

PETSc uses modern programming paradigms to ease the development of large-scale scientific application codes in
Fortran, C, and C++ and provides a powerful set of tools for the numerical solution of partial differential equations
and related problems on high-performance computers. Its approach is to encapsulate mathematical algorithms using
object-oriented programming techniques, which allow to manage the complexity of efficient numerical message-
passing codes. All the PETSc software is free and used around the world in a variety of application areas.

The design philosophy is not to try to completely conceal parallelism from the application programmer. Rather, the
user initiates a combination of sequential and parallel phases of computations, but the library handles the detailed
message passing required during the coordination of computations. Some of the design principles are described in
[Balay et al., 1997].

PETSc is built around a variety of data structures and algorithmic objects. The application programmer works
directly with these objects rather than concentrating on the underlying data structures. Each component manipulates
a particular family of objects (for instance, vectors) and the operations one would like to perform on the objects.
The three basic abstract data objects are index sets, vectors and matrices. Built on top of this foundation are various
classes of solver objects, which encapsulate virtually all information regarding the solution procedure for a particular
class of problems, including the local state and various options such as convergence tolerances, etc.

SLEPc can be considered an extension of PETSc providing all the functionality necessary for the solution of eigen-
value problems. Figure Numerical components of PETSc and SLEPc (page 3) shows a diagram of all the different
objects included in PETSc (on the left) and those added by SLEPc (on the right). PETSc is a prerequisite for SLEPc
and users should be familiar with basic concepts such as vectors and matrices in order to use SLEPc. Therefore,
together with this manual we recommend to use the PETSc Users Manual [Balay et al., 2025].

Each of these components consists of an abstract interface (simply a set of calling sequences) and one or more
implementations using particular data structures. Both PETSc and SLEPc are written in C, which lacks direct support
for object-oriented programming. However, it is still possible to take advantage of the three basic principles of
object-oriented programming to manage the complexity of such large packages. PETSc uses data encapsulation in
both vector and matrix data objects. Application code accesses data through function calls. Also, all the operations
are supported through polymorphism. The user calls a generic interface routine, which then selects the underlying
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Fig. 1: Numerical components of PETSc and SLEPc

routine that handles the particular data structure. Finally, PETSc also uses inheritance in its design. All the objects
are derived from an abstract base object. From this fundamental object, an abstract base object is defined for each
PETSc object (Mat2, Vec3 and so on), which in turn has a variety of instantiations that, for example, implement
different matrix storage formats.

PETSc/SLEPc provide clean and effective codes for the various phases of solving PDEs, with a uniform approach
for each class of problems. This design enables easy comparison and use of different algorithms (for example, to
experiment with different Krylov subspace methods, preconditioners, or eigensolvers). Hence, PETSc, together with
SLEPc, provides a rich environment for modeling scientific applications as well as for rapid algorithm design and
prototyping.

Options can be specified by means of calls to subroutines in the source code and also as command-line arguments.
Runtime options allow the user to test different tolerances, for example, without having to recompile the program.
Also, since PETSc provides a uniform interface to all of its linear solvers —the Conjugate Gradient, GMRES, etc.—
and a large family of preconditioners —block Jacobi, overlapping additive Schwarz, etc.—, one can compare several
combinations of method and preconditioner by simply specifying them at execution time. SLEPc shares this good
property.

The components enable easy customization and extension of both algorithms and implementations. This approach
promotes code reuse and flexibility, and separates the issues of parallelism from the choice of algorithms. The PETSc
infrastructure creates a foundation for building large-scale applications.

1.2 Installation

This section describes SLEPc’s installation procedure. Previously to the installation of SLEPc, the system must have
an appropriate version of PETSc installed. Compatible versions of PETSc and SLEPc are those with coincident
major and minor version number, the third number (patch level) being irrelevant for this. For instance, SLEPc 3.24.0
may be built with PETSc 3.24.0. Also note that, if using git repositories, both PETSc and SLEPc must be either
release versions or development versions, so make sure you select the appropriate branch in both repositories (git
checkout release or git checkout main).

The installation process for SLEPc is very similar to PETSc, with two stages: configuration and compilation. SLEPc’s
configuration is much simpler becausemost of the configuration information is taken from PETSc, including compiler
options and scalar type (real or complex). See section Configuration Options (page 4) for a discussion of options that
are most relevant for SLEPc. Several configurations can coexist in the same directory tree, so that for instance one
can have SLEPc libraries compiled with real scalars as well as with complex scalars. This is explained in section

2 https://petsc.org/release/manualpages/Mat/Mat/
3 https://petsc.org/release/manualpages/Vec/Vec/
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Installing Multiple Configurations in a Single Directory Tree (page 5). Also, system-based installation is also possible
with the --prefix option, as discussed in section Prefix-based Installation (page 6).

1.2.1 Standard Installation

The basic steps for the installation are described next. Note that prior to these steps, optional packages must have
been installed. If any of these packages is installed afterwards, reconfiguration and recompilation is necessary. Refer
to sections Configuration Options (page 4) andWrappers to External Libraries (page 96) for details about installation
of some of these packages.

1. Unbundle the distribution file with

tar xzf slepc-3.24.0.tar.gz

or an equivalent command. This will create a directory and unpack the software there.

2. Set the environment variable SLEPC_DIR to the full path of the SLEPc home directory. For example, under
the bash shell:

export SLEPC_DIR=/home/username/slepc-3.24.0

In addition, the variables PETSC_DIR and PETSC_ARCH must also be set appropriately, e.g.

export PETSC_DIR=/home/username/petsc-3.24.0
export PETSC_ARCH=arch-darwin-c-debug

The rationale for PETSC_ARCH is explained in section Installing Multiple Configurations in a Single Directory
Tree (page 5) (see section Prefix-based Installation (page 6) for a case in which PETSC_ARCH is not required).

3. Change to the SLEPc directory and run the configuration script:

$ cd $SLEPC_DIR
$ ./configure

4. If the configuration was successful, build the libraries:

$ make

5. After the compilation, try running some test examples with

$ make check

Examine the output for any obvious errors or problems.

1.2.2 Configuration Options

Several options are available in SLEPc’s configuration script. To see all available options, type ./configure
--help.

In SLEPc, configure options have the following purposes:

• Specify a directory for prefix-based installation, as explained in section Prefix-based Installation (page 6).

• Enable external eigensolver packages. For example, to use ARPACK, specify the following options (with the
appropriate paths):

$ ./configure --with-arpack-dir=/usr/software/ARPACK

Some of the external packages also support the --download-xxxx option. Section Wrappers to External
Libraries (page 96) provides more details related to use of external libraries.

Additionally, PETSc’s configuration script provides a very long list of options that are relevant to SLEPc. Here is a
list of options that may be useful. Note that these are options of PETSc that apply to both PETSc and SLEPc, in
such a way that it is not possible to, e.g., build PETSc without debugging and SLEPc with debugging.
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• Add --with-scalar-type=complex to build complex scalar versions of all libraries. See below a note
related to complex scalars.

• Build single precision versions with --with-precision=single. In most applications, this
can achieve a significant reduction of memory requirements, and a moderate reduction of comput-
ing time. Also, quadruple precision (128-bit floating-point representation) is also available using
--with-precision=__float128 on systems with GNU compilers (gcc-4.6 or later).

• Enable use from Fortran. By default, PETSc’s configure looks for an appropriate Fortran compiler. If not
required, this can be disabled: --with-fc=0. If required but not correctly detected, the compiler to be
used can be specified with a configure option. It is also possible to configure with a Fortran compiler but do
not build Fortran interfaces of PETSc and SLEPc, with --with-fortran-bindings=0.

• If not detected, use --with-blas-lapack-lib to specify the location of BLAS and LAPACK. If
SLEPc’s configure complains about some missing LAPACK subroutines, reconfigure PETSc with option
--download-f2cblaslapack.

• Enable external libraries that provide direct linear solvers or preconditioners, such as MUMPS, hypre, or
SuperLU; for example, --download-mumps. These are especially relevant for SLEPc in the case that a
spectral transformation is used, see chapter ST: Spectral Transformation (page 35).

• Add --with-64-bit-indices=1 to use 8 byte integers (long long) for indexing in vectors and
matrices. This is only needed when working with over roughly 2 billion unknowns.

• Build static libraries, --with-shared-libraries=0. This is generally not recommended, since shared
libraries produce smaller executables and the run time overhead is small.

• Error-checking code can be disabled with --with-debugging=0, but this is only recommended in pro-
duction runs of well-tested applications.

• Enable GPU computing setting --with-cuda=1 or --with-hip=1; see section GPU Computing
(page 89) for details.

• The option --with-mpi=0 allows building PETSc and SLEPc without MPI support (only sequential).

Note about complex scalar versions: PETSc supports the use of complex scalars by defining the data type Petsc-
Scalar4 either as a real or complex number. This implies that two different versions of the PETSc libraries can be
built separately, one for real numbers and one for complex numbers, but they cannot be used at the same time. SLEPc
inherits this property. In SLEPc it is not possible to completely separate real numbers and complex numbers because
the solution of non-symmetric real-valued eigenvalue problems may be complex. SLEPc has been designed trying
to provide a uniform interface to manage all the possible cases. However, there are slight differences between the
interface in each of the two versions. In this manual, differences are clearly identified.

1.2.3 Installing Multiple Configurations in a Single Directory Tree

Often, it is necessary to build two (or more) versions of the libraries that differ in a few configuration options. For
instance, versions for real and complex scalars, or versions for double and single precision, or versions with debugging
and optimized. In a standard installation, this is handled by building all versions in the same directory tree, as
explained below, so that source code is not replicated unnecessarily. In contrast, in prefix-based installation where
source code is not present, the issue of multiple configurations is handled differently, as explained in section Prefix-
based Installation (page 6).

In a standard installation, the different configurations are identified by a unique name that is assigned to the environ-
ment variable PETSC_ARCH. Let us illustrate how to set up PETSc with two configurations. First, set a value of
PETSC_ARCH and proceed with the installation of the first one:

$ cd $PETSC_DIR
$ export PETSC_ARCH=arch-linux-gnu-c-debug-real
$ ./configure --with-scalar-type=real
$ make all

4 https://petsc.org/release/manualpages/Sys/PetscScalar/
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Note that if PETSC_ARCH is not given a value, PETSc suggests one for us. After this, a subdirectory named
$PETSC_ARCH is created within $PETSC_DIR, that stores all information associated with that configuration, in-
cluding the built libraries, configuration files, automatically generated source files, and log files. For the second
configuration, proceed similarly:

$ cd $PETSC_DIR
$ export PETSC_ARCH=arch-linux-gnu-c-debug-complex
$ ./configure --with-scalar-type=complex
$ make all

The value of PETSC_ARCH in this case must be different than the previous one. It is better to set the value of
PETSC_ARCH explicitly, because the name suggested by configure may coincide with an existing value, thus
overwriting a previous configuration. After successful installation of the second configuration, two $PETSC_ARCH
directories exist within $PETSC_DIR, and the user can easily choose to build his/her application with either con-
figuration by simply changing the value of PETSC_ARCH.

The configuration of two versions of SLEPc in the same directory tree is very similar. The only important restriction
is that the value of PETSC_ARCH used in SLEPc must exactly match an existing PETSc configuration, that is, a
directory $PETSC_DIR/$PETSC_ARCH must exist.

1.2.4 Prefix-based Installation

Both PETSc and SLEPc allow for prefix-based installation. This consists in specifying a directory to which the files
generated during the building process are to be copied.

In PETSc, if an installation directory has been specified during configuration (with option --prefix in step con-
figuration (page 4) of section Standard Installation (page 4)), then after building the libraries the relevant files are
copied to that directory by typing

$ make install

This is useful for building as a regular user and then copying the libraries and include files to the system directories
as root.

To be more precise, suppose that the configuration was done with --prefix=/opt/petsc-x.
x-linux-gnu-c-debug. Then, make install will create directory /opt/petsc-x.
x-linux-gnu-c-debug if it does not exist, and several subdirectories containing the libraries, the configuration
files, and the header files. Note that the source code files are not copied, nor the documentation, so the size of the
installed directory will be much smaller than the original one. For that reason, it is no longer necessary to allow for
several configurations to share a directory tree. In other words, in a prefix-based installation, variable PETSC_ARCH
loses significance and must be unset. To maintain several configurations, one should specify different prefix
directories, typically with a name that informs about the configuration options used.

In order to prepare a prefix-based installation of SLEPc that uses a prefix-based installation of PETSc, start by setting
the appropriate value of PETSC_DIR. Then, run SLEPc’s configure with a prefix directory.

export PETSC_DIR=/opt/petsc-3.24.0-linux-gnu-c-debug
unset PETSC_ARCH
cd $SLEPC_DIR
./configure --prefix=/opt/slepc-3.24.0-linux-gnu-c-debug
make
make install
export SLEPC_DIR=/opt/slepc-3.24.0-linux-gnu-c-debug

Note that the variable PETSC_ARCH has been unset before SLEPc’s configure. SLEPc will use a temporary arch
name during the build (this temporary arch is named installed-arch-xxx, where the arch-xxx string rep-
resents the configuration of the installed PETSc version). Although it is not a common case, it is also possible to
configure SLEPc without prefix, in which case the PETSC_ARCH variable must still be empty and the arch di-
rectory installed-xxx is picked automatically (it is hardwired in file $SLEPC_DIR/lib/slepc/conf/
slepcvariables). The combination PETSc without prefix and SLEPc with prefix is also allowed, in which case
PETSC_ARCH should not be unset.

6 Chapter 1. Getting Started
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1.3 Running SLEPc Programs

Before using SLEPc, the user must first set the environment variable SLEPC_DIR, indicating the full path of the
directory containing SLEPc. For example, under the bash shell, a command of the form

export SLEPC_DIR=/software/slepc-3.24.0

can be placed in the user’s .bashrc file. The SLEPC_DIR directory can be either a standard installation SLEPc
directory, or a prefix-based installation directory, see section Prefix-based Installation (page 6). In addition, the user
must set the environment variables required by PETSc, that is, PETSC_DIR, to indicate the full path of the PETSc
directory, and PETSC_ARCH to specify a particular architecture and set of options. Note that PETSC_ARCH should
not be set in the case of prefix-based installations.

All PETSc programs use the MPI (Message Passing Interface) standard for message-passing communication [MPI
Forum, 1994]. Thus, to execute SLEPc programs, users must know the procedure for launching MPI jobs on their
selected computer system(s). Usually, the mpiexec command can be used to initiate a program as in the following
example that uses eight processes:

$ mpiexec -n 8 slepc_program [command-line options]

Note that MPI may be deactivated during configuration of PETSc, if one wants to run only serial programs in a
laptop, for example.

All PETSc-compliant programs support the use of the -h or -help option as well as the -v or -version option.
In the case of SLEPc programs, specific information for SLEPc is also displayed.

1.4 Writing SLEPc Programs

Most SLEPc programs begin with a call to SlepcInitialize

SlepcInitialize(int *argc,char ***argv,char *file,char *help);

which initializes SLEPc, PETSc and MPI. This subroutine is very similar to PetscInitialize5, and the arguments have
the same meaning. In fact, internally SlepcInitialize calls PetscInitialize6.

After this initialization, SLEPc programs can use communicators defined by PETSc. In most cases users can employ
the communicator PETSC_COMM_WORLD7 to indicate all processes in a given run and PETSC_COMM_SELF8

to indicate a single process. MPI provides routines for generating new communicators consisting of subsets of pro-
cesses, though most users rarely need to use these features. SLEPc users need not program much message passing
directly with MPI, but they must be familiar with the basic concepts of message passing and distributed memory
computing.

All SLEPc programs should call SlepcFinalize as their final (or nearly final) statement

SlepcFinalize();

This routine handles operations to be executed at the conclusion of the program, and calls PetscFinalize9 if
SlepcInitialize began PETSc.

Note to Fortran Programmers: In this manual all the examples and calling sequences are given for the C/C++
programming languages. However, Fortran programmers can use most of the functionality of SLEPc and PETSc
from Fortran, with only minor differences in the user interface. For instance, the two functions mentioned above
have their corresponding Fortran equivalent:

5 https://petsc.org/release/manualpages/Sys/PetscInitialize/
6 https://petsc.org/release/manualpages/Sys/PetscInitialize/
7 https://petsc.org/release/manualpages/Sys/PETSC_COMM_WORLD/
8 https://petsc.org/release/manualpages/Sys/PETSC_COMM_SELF/
9 https://petsc.org/release/manualpages/Sys/PetscFinalize/
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call SlepcInitialize(file,ierr)
call SlepcFinalize(ierr)

Section Fortran Interface (page 101) provides a summary of the differences between using SLEPc from Fortran and
C/C++, as well as a complete Fortran example.

1.4.1 Simple SLEPc Example

A simple example is listed next that solves an eigenvalue problem associated with the one-dimensional Laplacian oper-
ator discretized with finite differences. This example can be found in ${SLEPC_DIR}/src/eps/tutorials/
ex1.c. Following the code we highlight a few of the most important parts of this example.

/*
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SLEPc - Scalable Library for Eigenvalue Problem Computations
Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

This file is part of SLEPc.
SLEPc is distributed under a 2-clause BSD license (see LICENSE).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

*/

static char help[] = "Standard symmetric eigenproblem corresponding to the␣
↪→Laplacian operator in 1 dimension.\n\n"
"The command line options are:\n"
" -n <n>, where <n> = number of grid subdivisions = matrix dimension.\n\n";

#include <slepceps.h>

int main(int argc,char **argv)
{

Mat A; /* problem matrix */
EPS eps; /* eigenproblem solver context */
EPSType type;
PetscReal error,tol,re,im;
PetscScalar kr,ki;
Vec xr,xi;
PetscInt n=30,i,Istart,Iend,nev,maxit,its,nconv;

PetscFunctionBeginUser;
PetscCall(SlepcInitialize(&argc,&argv,NULL,help));

PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n1-D Laplacian Eigenproblem, n=%"␣

↪→PetscInt_FMT "\n\n",n));

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Compute the operator matrix that defines the eigensystem, Ax=kx
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n));
PetscCall(MatSetFromOptions(A));

PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
for (i=Istart;i<Iend;i++) {
if (i>0) PetscCall(MatSetValue(A,i,i-1,-1.0,INSERT_VALUES));
if (i<n-1) PetscCall(MatSetValue(A,i,i+1,-1.0,INSERT_VALUES));
PetscCall(MatSetValue(A,i,i,2.0,INSERT_VALUES));

}

(continues on next page)
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(continued from previous page)

PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));

PetscCall(MatCreateVecs(A,NULL,&xr));
PetscCall(MatCreateVecs(A,NULL,&xi));

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Create the eigensolver and set various options

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/*

Create eigensolver context
*/
PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));

/*
Set operators. In this case, it is a standard eigenvalue problem

*/
PetscCall(EPSSetOperators(eps,A,NULL));
PetscCall(EPSSetProblemType(eps,EPS_HEP));

/*
Set solver parameters at runtime

*/
PetscCall(EPSSetFromOptions(eps));

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solve the eigensystem

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

PetscCall(EPSSolve(eps));
/*

Optional: Get some information from the solver and display it
*/
PetscCall(EPSGetIterationNumber(eps,&its));
PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of iterations of the method: %"␣

↪→PetscInt_FMT "\n",its));
PetscCall(EPSGetType(eps,&type));
PetscCall(PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type));
PetscCall(EPSGetDimensions(eps,&nev,NULL,NULL));
PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %"␣

↪→PetscInt_FMT "\n",nev));
PetscCall(EPSGetTolerances(eps,&tol,&maxit));
PetscCall(PetscPrintf(PETSC_COMM_WORLD," Stopping condition: tol=%.4g, maxit=%"␣

↪→PetscInt_FMT "\n",(double)tol,maxit));

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Display solution and clean up

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/*

Get number of converged approximate eigenpairs
*/
PetscCall(EPSGetConverged(eps,&nconv));
PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of converged eigenpairs: %"␣

↪→PetscInt_FMT "\n\n",nconv));

if (nconv>0) {
/*

Display eigenvalues and relative errors
*/
PetscCall(PetscPrintf(PETSC_COMM_WORLD,

" k ||Ax-kx||/||kx||\n"

(continues on next page)
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(continued from previous page)

" ----------------- ------------------\n"));

for (i=0;i<nconv;i++) {
/*

Get converged eigenpairs: i-th eigenvalue is stored in kr (real part) and
ki (imaginary part)

*/
PetscCall(EPSGetEigenpair(eps,i,&kr,&ki,xr,xi));
/*

Compute the relative error associated to each eigenpair
*/
PetscCall(EPSComputeError(eps,i,EPS_ERROR_RELATIVE,&error));

#if defined(PETSC_USE_COMPLEX)
re = PetscRealPart(kr);
im = PetscImaginaryPart(kr);

#else
re = kr;
im = ki;

#endif
if (im!=0.0) PetscCall(PetscPrintf(PETSC_COMM_WORLD," %9f%+9fi %12g\n",

↪→(double)re,(double)im,(double)error));
else PetscCall(PetscPrintf(PETSC_COMM_WORLD," %12f %12g\n",

↪→(double)re,(double)error));
}
PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n"));

}

/*
Free work space

*/
PetscCall(EPSDestroy(&eps));
PetscCall(MatDestroy(&A));
PetscCall(VecDestroy(&xr));
PetscCall(VecDestroy(&xi));
PetscCall(SlepcFinalize());
return 0;

}

Include Files.

The C/C++ include files for SLEPc should be used via statements such as

#include <slepceps.h>

where slepceps.h is the include file for the EPS component. Each SLEPc program must specify an include file
that corresponds to the highest level SLEPc objects needed within the program; all of the required lower level include
files are automatically included within the higher level files. For example, slepceps.h includes slepcst.h
(spectral transformations), and slepcsys.h (base SLEPc file). Some PETSc header files are included as well,
such as PETScksp.h. The SLEPc include files are located in the directory ${SLEPC_DIR}/include.

10 Chapter 1. Getting Started
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The Options Database.

All the PETSc functionality related to the options database is available in SLEPc. This allows the user to input
control data at run time very easily. In this example, the call PetscOptionsGetInt10(NULL,NULL,"-n",&n,
NULL) checks whether the user has provided a command line option to set the value of n, the problem dimension.
If so, the variable n is set accordingly; otherwise, n remains unchanged.

Vectors and Matrices.

Usage of matrices and vectors in SLEPc is exactly the same as in PETSc. The user can create a new parallel or
sequential matrix, A, which has M global rows and N global columns, with

MatCreate(MPI_Comm comm,Mat *A);
MatSetSizes(Mat A,PetscInt m,PetscInt n,PetscInt M,PetscInt N);
MatSetFromOptions(Mat A);

where the matrix format can be specified at runtime. The example creates a matrix, sets the nonzero values with
MatSetValues11 and then assembles it.

Eigensolvers.

Usage of eigensolvers is very similar to other kinds of solvers provided by PETSc. After creating the matrix (or
matrices) that define the problem, Ax = kx (or Ax = kBx), the user can then use EPS to solve the system with the
following sequence of commands: EPSCreate EPSSetOperators EPSSetProblemType EPSSetFro-
mOptions EPSSolve EPSDestroy EPSGetConverged EPSGetEigenpair

EPSCreate(MPI_Comm comm,EPS *eps);
EPSSetOperators(EPS eps,Mat A,Mat B);
EPSSetProblemType(EPS eps,EPSProblemType type);
EPSSetFromOptions(EPS eps);
EPSSolve(EPS eps);
EPSGetConverged(EPS eps,PetscInt *nconv);
EPSGetEigenpair(EPS eps,PetscInt i,PetscScalar *kr,PetscScalar *ki,Vec xr,Vec xi);
EPSDestroy(EPS *eps);

The user first creates the EPS context and sets the operators associated with the eigensystem as well as the problem
type. The user then sets various options for customized solution, solves the problem, retrieves the solution, and finally
destroys the EPS context. Chapter EPS: Eigenvalue Problem Solver (page 13) describes in detail the EPS package,
including the options database that enables the user to customize the solution process at runtime by selecting the
solution algorithm and also specifying the convergence tolerance, the number of eigenvalues, the dimension of the
subspace, etc.

Spectral Transformation.

In the example program shown above there is no explicit reference to spectral transformations. However, an ST object
is handled internally so that the user is able to request different transformations such as shift-and-invert. Chapter ST:
Spectral Transformation (page 35) describes the ST package in detail.

10 https://petsc.org/release/manualpages/Sys/PetscOptionsGetInt/
11 https://petsc.org/release/manualpages/Mat/MatSetValues/
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Error Checking.

All SLEPc routines return an integer indicating whether an error has occurred during the call. The error code is
set to be nonzero if an error has been detected; otherwise, it is zero. The PETSc macro PetscCall12(...) checks
the return value and calls the PETSc error handler upon error detection. PetscCall13(...) should be used in all
subroutine calls to enable a complete error traceback. See the PETSc documentation for full details.

1.4.2 Writing Application Codes with SLEPc

Several example programs demonstrate the software usage and can serve as templates for developing custom appli-
cations. They are scattered throughout the SLEPc directory tree, in particular in the tutorials directories under
each class subdirectory.

To write a new application program using SLEPc, we suggest the following procedure:

1. Install and test SLEPc according to the instructions given in the documentation.

2. Copy the SLEPc example that corresponds to the class of problem of interest (e.g., singular value decompo-
sition).

3. Create a makefile as explained below, compile and run the example program.

4. Use the example program as a starting point for developing a custom code.

Application program makefiles can be set up very easily just by including one file from the SLEPc makefile system.
All the necessary PETSc definitions are loaded automatically. The following sample makefile illustrates how to build
C and Fortran programs:

default: ex1

include ${SLEPC_DIR}/lib/slepc/conf/slepc_common

ex1: ex1.o
-${CLINKER} -o ex1 ex1.o ${SLEPC_EPS_LIB}
${RM} ex1.o

ex1f: ex1f.o
-${FLINKER} -o ex1f ex1f.o ${SLEPC_EPS_LIB}
${RM} ex1f.o

12 https://petsc.org/release/manualpages/Sys/PetscCall/
13 https://petsc.org/release/manualpages/Sys/PetscCall/
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CΗАРΤЕR 2

EPS: Eigenvalue Problem Solver

The Eigenvalue Problem Solver (EPS) is the main object provided by SLEPc. It is used to specify a linear eigenvalue
problem, either in standard or generalized form, and provides uniform and efficient access to all of the linear eigen-
solvers included in the package. Conceptually, the level of abstraction occupied by EPS is similar to other solvers in
PETSc such as KSP15 for solving linear systems of equations.

2.1 Eigenvalue Problems

In this section, we briefly present some basic concepts about eigenvalue problems as well as general techniques used
to solve them. The description is not intended to be exhaustive. The objective is simply to define terms that will
be referred to throughout the rest of the manual. Readers who are familiar with the terminology and the solution
approach can skip this section. For a more comprehensive description, we refer the reader to monographs such as
[Stewart, 2001], [Bai et al., 2000], [Saad, 1992] or [Parlett, 1980]. A historical perspective of the topic can be found
in [Golub and van der Vorst, 2000]. See also the SLEPc technical reports.

In the standard formulation, the linear eigenvalue problem consists in the determination of λ ∈ C for which the
equation

Ax = λx (2.1)

has nontrivial solution, whereA ∈ Cn×n and x ∈ Cn. The scalar λ and the vector x are called eigenvalue and (right)
eigenvector, respectively. Note that they can be complex even when the matrix is real. If λ is an eigenvalue of A
then λ̄ is an eigenvalue of its conjugate transpose, A∗, or equivalently

y∗A = λ y∗, (2.2)

where y is called the left eigenvector.

In many applications, the problem is formulated as

Ax = λBx, (2.3)

where B ∈ Cn×n, which is known as the generalized eigenvalue problem. Usually, this problem is solved by
reformulating it in standard form, for example B−1Ax = λx if B is non-singular.

SLEPc focuses on the solution of problems in which the matrices are large and sparse. Hence, only methods that
preserve sparsity are considered. Thesemethods obtain the solution from the information generated by the application
of the operator to various vectors (the operator is a simple function of matrices A and B), that is, matrices are only

15 https://petsc.org/release/manualpages/KSP/KSP/
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used in matrix-vector products. This not only maintains sparsity but allows the solution of problems in which matrices
are not available explicitly.

In practical analyses, from the n possible solutions, typically only a few eigenpairs (λ, x) are considered relevant,
either in the extremities of the spectrum, in an interval, or in a region of the complex plane. Depending on the
application, either eigenvalues or eigenvectors (or both) are required. In some cases, left eigenvectors are also of
interest.

2.1.1 Projection Methods.

Most eigensolvers provided by SLEPc perform a Rayleigh-Ritz projection for extracting the spectral approximations,
that is, they project the problem onto a low-dimensional subspace that is built appropriately. Suppose that an orthog-
onal basis of this subspace is given by Vj = [v1, v2, . . . , vj ]. If the solutions of the projected (reduced) problem
Bjs = θs (i.e., V T

j AVj = Bj) are assumed to be (θi, si), i = 1, 2, . . . , j, then the approximate eigenpairs (λ̃i, x̃i)
of the original problem (Ritz value and Ritz vector) are obtained as

λ̃i = θi, (2.4)

x̃i = Vjsi. (2.5)

Starting from this general idea, eigensolvers differ from each other in which subspace is used, how it is built and other
technicalities aimed at improving convergence, reducing storage requirements, etc.

The subspace

Km(A, v) ≡ span
{
v,Av,A2v, . . . , Am−1v

}
, (2.6)

is called the m-th Krylov subspace corresponding to A and v. Methods that use subspaces of this kind to carry out
the projection are called Krylov methods. One example of such methods is the Arnoldi algorithm: starting with v1,
∥v1∥2 = 1, the Arnoldi basis generation process can be expressed by the recurrence

vj+1hj+1,j = wj = Avj −
j∑

i=1

hi,jvi, (2.7)

where hi,j are the scalar coefficients obtained in the Gram-Schmidt orthogonalization of Avj with respect to vi,
i = 1, 2, . . . , j, and hj+1,j = ∥wj∥2. Then, the columns of Vj span the Krylov subspace Kj(A, v1) and Ax = λx
is projected intoHjs = θs, whereHj is an upper Hessenberg matrix with elements hi,j , which are 0 for i ≥ j + 2.
The related Lanczos algorithms obtain a projected matrix that is tridiagonal.

A generalization to the above methods are the block Krylov strategies, in which the starting vector v1 is replaced
by a full rank n × p matrix V1, which allows for better convergence properties when there are multiple eigenvalues
and can provide better data management on some computer architectures. Block tridiagonal and block Hessenberg
matrices are then obtained as projections.

It is generally assumed (and observed) that the Lanczos and Arnoldi algorithms find solutions at the extremities of the
spectrum. Their convergence pattern, however, is strongly related to the eigenvalue distribution. Slow convergence
may be experienced in the presence of tightly clustered eigenvalues. The maximum allowable j may be reached
without having achieved convergence for all desired solutions. Then, restarting is usually a useful technique and
different strategies exist for that purpose. However, convergence can still be very slow and acceleration strategies
must be applied. Usually, these techniques consist in computing eigenpairs of a transformed operator and then
recovering the solution of the original problem. The aim of these transformations is twofold. On one hand, they
make it possible to obtain eigenvalues other than those lying in the periphery of the spectrum. On the other hand, the
separation of the eigenvalues of interest is improved in the transformed spectrum thus leading to faster convergence.
The most commonly used spectral transformation is called shift-and-invert, which works with operator (A−σI)−1.
It allows the computation of eigenvalues closest to σ with very good separation properties. When using this approach,
a linear system of equations, (A− σI)y = x, must be solved in each iteration of the eigenvalue process.

14 Chapter 2. EPS: Eigenvalue Problem Solver
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2.1.2 Preconditioned Eigensolvers

In many applications, Krylov eigensolvers perform very well because Krylov subspaces are optimal in a certain theo-
retical sense. However, these methods may not be appropriate in some situations such as the computation of interior
eigenvalues. The spectral transformation mentioned above may not be a viable solution or it may be too costly. For
these reasons, other types of eigensolvers such as Davidson and Jacobi-Davidson rely on a different way of expanding
the subspace. Instead of satisfying the Krylov relation, these methods compute the new basis vector by the so-called
correction equation. The resulting subspace may be richer in the direction of the desired eigenvectors. These solvers
may be competitive especially for computing interior eigenvalues. From a practical point of view, the correction
equation may be seen as a cheap replacement for the shift-and-invert system of equations, (A−σI)y = x. By cheap
we mean that it may be solved inaccurately without compromising robustness, via a preconditioned iterative linear
solver. For this reason, these are known as preconditioned eigensolvers.

2.1.3 Related Problems

In many applications such as the analysis of damped vibrating systems the problem to be solved is a polynomial
eigenvalue problem (PEP), or more generally a nonlinear eigenvalue problem (NEP). For these, the reader is referred
to chapters PEP: Polynomial Eigenvalue Problems (page 63) and NEP: Nonlinear Eigenvalue Problems (page 75). An-
other linear algebra problem that is very closely related to the eigenvalue problem is the singular value decomposition
(SVD), see chapter SVD: Singular Value Decomposition (page 49).

2.2 Basic Usage

The EPS module in SLEPc is used in a similar way as PETSc modules such as KSP16. All the information related
to an eigenvalue problem is handled via a context variable. The usual object management functions are available
(EPSCreate, EPSDestroy, EPSView, EPSSetFromOptions). In addition, the EPS object provides func-
tions for setting several parameters such as the number of eigenvalues to compute, the dimension of the subspace,
the portion of the spectrum of interest, the requested tolerance or the maximum number of iterations allowed.

The solution of the problem is obtained in several steps. First of all, the matrices associated with the eigenprob-
lem are specified via EPSSetOperators and EPSSetProblemType is used to specify the type of problem.
Then, a call to EPSSolve is done that invokes the subroutine for the selected eigensolver. EPSGetConverged
can be used afterwards to determine how many of the requested eigenpairs have converged to working accuracy.
EPSGetEigenpair is finally used to retrieve the eigenvalues and eigenvectors.

In order to illustrate the basic functionality of the EPS package, a simple example is shown in figure Example code
for basic solution with EPS (page 15). The example code implements the solution of a simple standard eigenvalue
problem. Code for setting up the matrix A is not shown and error-checking code is omitted.

Listing 1: Example code for basic solution with EPS

1 EPS eps; /* eigensolver context */
2 Mat A; /* matrix of Ax=kx */
3 Vec xr, xi; /* eigenvector, x */
4 PetscScalar kr, ki; /* eigenvalue, k */
5 PetscInt j, nconv;
6 PetscReal error;
7

8 EPSCreate( PETSC_COMM_WORLD, &eps );
9 EPSSetOperators( eps, A, NULL );
10 EPSSetProblemType( eps, EPS_NHEP );
11 EPSSetFromOptions( eps );
12 EPSSolve( eps );
13 EPSGetConverged( eps, &nconv );
14 for (j=0; j<nconv; j++) {
15 EPSGetEigenpair( eps, j, &kr, &ki, xr, xi );

(continues on next page)

16 https://petsc.org/release/manualpages/KSP/KSP/
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(continued from previous page)

16 EPSComputeError( eps, j, EPS_ERROR_RELATIVE, &error );
17 }
18 EPSDestroy( &eps );

All the operations of the program are done over a single EPS object. This solver context is created in line 8 of
Example code for basic solution with EPS (page 15) with the command EPSCreate

EPSCreate(MPI_Comm comm,EPS *eps);

Here comm is the MPI communicator, and eps is the newly formed solver context. The communicator indicates
which processes are involved in the EPS object. Most of the EPS operations are collective, meaning that all the
processes collaborate to perform the operation in parallel.

Before actually solving an eigenvalue problem with EPS, the user must specify the matrices associated with the
problem, as in line 9 of Example code for basic solution with EPS (page 15), with the following routine EPSSetOp-
erators

EPSSetOperators(EPS eps,Mat A,Mat B);

The example specifies a standard eigenproblem. In the case of a generalized problem, it would be necessary also to
provide matrixB as the third argument to the call. The matrices specified in this call can be in any PETSc format. In
particular, EPS allows the user to solve matrix-free problems by specifying matrices created via MatCreateShell17.
A more detailed discussion of this issue is given in section Supported Matrix Types (page 88).

After setting the problem matrices, the problem type is set with EPSSetProblemType. This is not strictly nec-
essary since if this step is skipped then the problem type is assumed to be non-symmetric. More details are given
in section Defining the Problem (page 17). At this point, the value of the different options could optionally be set
by means of a function call such as EPSSetTolerances (explained later in this chapter). After this, a call to
EPSSetFromOptions should be made as in line 11 of Example code for basic solution with EPS (page 15), EPS-
SetFromOptions

EPSSetFromOptions(EPS eps);

The effect of this call is that options specified at runtime in the command line are passed to the EPS object appropri-
ately. In this way, the user can easily experiment with different combinations of options without having to recompile.
All the available options as well as the associated function calls are described later in this chapter.

Line 12 launches the solution algorithm, simply with the command EPSSolve

EPSSolve(EPS eps);

The subroutine that is actually invoked depends on which solver has been selected by the user.

After the call to EPSSolve has finished, all the data associated with the solution of the eigenproblem are kept
internally. This information can be retrieved with different function calls, as in lines 13 to 17 of Example code for
basic solution with EPS (page 15). This part is described in detail in section Retrieving the Solution (page 23).

Once the EPS context is no longer needed, it should be destroyed with the command EPSDestroy

EPSDestroy(EPS *eps);

The above procedure is sufficient for general use of the EPS package. As in the case of the KSP18 solver, the user
can optionally explicitly call EPSSetUp

EPSSetUp(EPS eps);

before calling EPSSolve to perform any setup required for the eigensolver.

17 https://petsc.org/release/manualpages/Mat/MatCreateShell/
18 https://petsc.org/release/manualpages/KSP/KSP/
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Internally, the EPS object works with an ST object (spectral transformation, described in chapter ST: Spectral Trans-
formation (page 35). To allow application programmers to set any of the spectral transformation options directly
within the code, the following routine is provided to extract the ST context, EPSGetST

EPSGetST(EPS eps,ST *st);

With the command EPSView

EPSView(EPS eps,PetscViewer viewer);

it is possible to examine the actual values of the different settings of the EPS object, including also those related to
the associated ST object. This is useful for making sure that the solver is using the settings that the user wants.

2.3 Defining the Problem

SLEPc is able to cope with different kinds of problems. Currently supported problem types are listed in table Problem
types considered in EPS. (page 17). An eigenproblem is generalized (Ax = λBx) if the user has specified twomatrices
(see EPSSetOperators above), otherwise it is standard (Ax = λx). A standard eigenproblem is Hermitian if
matrixA is Hermitian (i.e.,A = A∗) or, equivalently in the case of real matrices, if matrixA is symmetric (i.e.,A =
AT ). A generalized eigenproblem is Hermitian if matrixA is Hermitian (symmetric) andB is Hermitian (symmetric)
and positive (semi-)definite. If B is not positive (semi-)definite then the problem cannot be considered Hermitian
but symmetry can still be exploited to some extent in some solvers (problem type EPS_GHIEP). A special case of
generalized non-Hermitian problem is when A is non-Hermitian butB is Hermitian and positive (semi-)definite, see
section Preserving the Symmetry in Generalized Eigenproblems (page 43) and Purification of Eigenvectors (page 44)
for discussion. The last entries in table Problem types considered in EPS. (page 17), separated by a line, correspond
to structured eigenvalue problems, which are discussed in section Structured Eigenvalue Problems (page 33).

Table 1: Problem types considered in EPS.

Problem Type EPSProblemType Command line key

Hermitian EPS_HEP -eps_hermitian
Non-Hermitian EPS_NHEP -eps_non_hermitian
Generalized Hermitian EPS_GHEP -eps_gen_hermitian
Generalized Hermitian indefinite EPS_GHIEP -eps_gen_indefinite
Generalized Non-Hermitian EPS_GNHEP -eps_gen_non_hermitian
GNHEP with positive (semi-)definite B EPS_PGNHEP -eps_pos_gen_non_hermitian
Bethe-Salpeter EPS_BSE -eps_bse
Hamiltonian EPS_HAMILT -eps_hamiltonian

The problem type can be specified at run time with the corresponding command line key or, more usually, within the
program with the function EPSSetProblemType

EPSSetProblemType(EPS eps,EPSProblemType type);

By default, SLEPc assumes that the problem is non-Hermitian. Some eigensolvers are able to exploit symmetry, that
is, they compute a solution for Hermitian problems with less storage and/or computational cost than other methods
that ignore this property. Also, symmetric solvers may be more accurate. On the other hand, some eigensolvers in
SLEPc only have a symmetric version and will abort if the problem is non-Hermitian. In the case of generalized
eigenproblems some considerations apply regarding symmetry, especially in the case of singular B. This topic is
covered in section Preserving the Symmetry in Generalized Eigenproblems (page 43) and Purification of Eigenvectors
(page 44). Similarly, if your eigenproblem has a particular algebraic structure listed in table Problem types considered
in EPS. (page 17), solving it with a structured eigensolver as discussed in section Structured Eigenvalue Problems
(page 33) will result in more accuracy and better efficiency. For all these reasons, the user is strongly recommended
to always specify the problem type in the source code.

The characteristics of the problem can be determined with the functions EPSIsGeneralized EPSIsHermi-
tian EPSIsPositive EPSIsStructured

2.3. Defining the Problem 17
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EPSIsGeneralized(EPS eps,PetscBool *gen);
EPSIsHermitian(EPS eps,PetscBool *her);
EPSIsPositive(EPS eps,PetscBool *pos);
EPSIsStructured(EPS eps,PetscBool *stru);

The user can specify how many eigenvalues (and eigenvectors) to compute. The default is to compute only one. The
function EPSSetDimensions

EPSSetDimensions(EPS eps,PetscInt nev,PetscInt ncv,PetscInt mpd);

allows the specification of the number of eigenvalues to compute, nev. The next argument can be set to prescribe
the number of column vectors to be used by the solution algorithm, ncv, that is, the largest dimension of the working
subspace. The last argument has to do with a more advanced usage, as explained in section Computing a Large Portion
of the Spectrum (page 31). These parameters can also be set at run time with the options -eps_nev, -eps_ncv
and -eps_mpd. For example, the command line

$ ./program -eps_nev 10 -eps_ncv 24

requests 10 eigenvalues and instructs to use 24 column vectors. Note that ncvmust be at least equal to nev, although
in general it is recommended (depending on the method) to work with a larger subspace, for instance ncv ≥ 2 ·nev
or even more. The case that the user requests a relatively large number of eigenpairs is discussed in section Computing
a Large Portion of the Spectrum (page 31).

Instead of specifying the number of wanted eigenvalues nev, it is also possible to specify a threshold with EPS-
SetThreshold

EPSSetThreshold(EPS eps,PetscReal thres,PetscBool rel);

This usage is discussed in section Using a threshold to specify wanted singular values (page 56) for the case of SVD.
For details about the differences in case of EPS, we refer to the manual page of EPSSetThreshold.

2.3.1 Eigenvalues of Interest

For the selection of the portion of the spectrum of interest, there are several alternatives. In real symmetric problems,
one may want to compute the largest or smallest eigenvalues in magnitude, or the leftmost or rightmost ones, or even
all eigenvalues in a given interval. In other problems, in which the eigenvalues can be complex, then one can select
eigenvalues depending on the magnitude, or the real part or even the imaginary part. Sometimes the eigenvalues of
interest are those closest to a given target value, τ , measuring the distance either in the ordinary way or along the real
(or imaginary) axis. In some other cases, wanted eigenvalues must be found in a given region of the complex plane.
Table Available possibilities for selection of the eigenvalues of interest. (page 19) summarizes all the possibilities
available for the function EPSSetWhichEigenpairs

EPSSetWhichEigenpairs(EPS eps,EPSWhich which);

which can also be specified at the command line. This criterion is used both for configuring how the eigensolver seeks
eigenvalues (note that not all these possibilities are available for all the solvers) and also for sorting the computed
values. The default is to compute the largest magnitude eigenvalues, except for those solvers in which this option is
not available. There is another exception related to the use of some spectral transformations, see chapter ST: Spectral
Transformation (page 35).

For the sorting criteria relative to a target value, the following function must be called in order to specify such value
τ : EPSSetTarget

EPSSetTarget(EPS eps,PetscScalar target);

or, alternatively, with the command-line key-eps_target. Note that, since the target is defined as a PetscScalar19,
complex values of τ are allowed only in the case of complex scalar builds of the SLEPc library.

19 https://petsc.org/release/manualpages/Sys/PetscScalar/
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The use of a target value makes sense if the eigenvalues of interest are located in the interior of the spectrum. Since
these eigenvalues are usually more difficult to compute, the eigensolver by itself may not be able to obtain them, and
additional tools are normally required. There are two possibilities for this:

• To use harmonic extraction (see section Computing Interior Eigenvalues with Harmonic Extraction (page 32)),
a variant of some solvers that allows a better approximation of interior eigenvalues without changing the way
the subspace is built.

• To use a spectral transformation such as shift-and-invert (see chapter ST: Spectral Transformation (page 35)),
where the subspace is built from a transformed problem (usually much more costly).

The special case of computing all eigenvalues in an interval is discussed in the next chapter (sections Polynomial
Filtering (page 40) and Spectrum Slicing (page 45)), since it is related also to spectral transformations. In this case,
instead of a target value the user has to specify the computational interval with EPSSetInterval

EPSSetInterval(EPS eps,PetscScalar a,PetscScalar b);

which is equivalent to -eps_interval a,b.

Table 2: Available possibilities for selection of the eigenvalues of interest.

EPSWhich Command line key Sorting criterion

EPS_LARGEST_MAGNITUDE -eps_largest_magnitude Largest |λ|
EPS_SMALLEST_MAGNITUDE -eps_smallest_magnitude Smallest |λ|
EPS_LARGEST_REAL -eps_largest_real Largest Re(λ)
EPS_SMALLEST_REAL -eps_smallest_real Smallest Re(λ)
EPS_LARGEST_IMAGINARY -eps_largest_imaginary Largest Im(λ)28

EPS_SMALLEST_IMAGINARY -eps_smallest_imaginary Smallest Im(λ)28

EPS_TARGET_MAGNITUDE -eps_target_magnitude Smallest |λ− τ |
EPS_TARGET_REAL -eps_target_real Smallest |Re(λ− τ)|
EPS_TARGET_IMAGINARY -eps_target_imaginary Smallest |Im(λ− τ)|
EPS_ALL -eps_all All λ ∈ [a, b] or λ ∈ Ω
EPS_WHICH_USER user-defined

There is also support for specifying a region of the complex plane so that the eigensolver finds eigenvalues within
that region only. This possibility is described in section Specifying a Region for Filtering (page 30). If all eigenvalues
inside the region are required, then a contour-integral method must be used, as described in Maeda et al. [2016].

Finally, we mention the possibility of defining an arbitrary sorting criterion by means of EPS_WHICH_USER in
combination with EPSSetEigenvalueComparison.

The selection criteria discussed above are based solely on the eigenvalue. In some special situations, it is necessary
to establish a user-defined criterion that also makes use of the eigenvector when deciding which are the most wanted
eigenpairs. For these cases, use EPSSetArbitrarySelection.

2.3.2 Left Eigenvectors.

In addition to right eigenvectors, some solvers are able to compute also left eigenvectors, as defined in equation (2.2).
The algorithmic variants that compute both left and right eigenvectors are usually called two-sided. By default, SLEPc
computes right eigenvectors only. To compute also left eigenvectors, the user should set a flag by calling the following
function before EPSSolve. EPSSetTwoSided

EPSSetTwoSided(EPS eps,PetscBool twosided);

Note that in some problems such as Hermitian or generalized Hermitian, the left eigenvector can be obtained trivially
from the right eigenvector. In other cases such as non-Hermitian problems (either standard or generalized), the user

28 If SLEPc is compiled for real scalars, then the absolute value of the imaginary part, ∥Im(λ)∥, is used for eigenvalue selection and sorting.

2.3. Defining the Problem 19



, Release 3.24.0

must set the two-sided flag before the solver starts to compute, and this is restricted to just a few solvers, see table
Supported problem types for all eigensolvers available in SLEPc. (page 22).

2.4 Selecting the Eigensolver

The available methods for solving the eigenvalue problems are the following:

• Basic methods (not recommended except for simple problems):

– Power Iteration with deflation. When combined with shift-and-invert (see chapter ST: Spectral Trans-
formation (page 35)), it is equivalent to the inverse iteration. Also, this solver embeds the Rayleigh
Quotient iteration (RQI) by allowing variable shifts. Additionally, it provides the nonlinear inverse iter-
ation method for the case that the problem matrix is a nonlinear operator (for this advanced usage, see
EPSPowerSetNonlinear).

– Subspace Iteration with Rayleigh-Ritz projection and locking.

– Arnoldi method with explicit restart and deflation.

– Lanczos with explicit restart, deflation, and different reorthogonalization strategies.

• Krylov-Schur, a variation of Arnoldi with a very effective restarting technique. In the case of symmetric
problems, this is equivalent to the thick-restart Lanczos method.

• Generalized Davidson, a simple iteration based on subspace expansion with the preconditioned residual.

• Jacobi-Davidson, a preconditioned eigensolver with an effective correction equation.

• RQCG, a basic conjugate gradient iteration for the minimization of the Rayleigh quotient.

• LOBPCG, the locally-optimal block preconditioned conjugate gradient.

• CISS, a contour-integral solver that allows computing all eigenvalues in a given region.

• Lyapunov inverse iteration, to compute rightmost eigenvalues.
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Table 3: Eigenvalue solvers available in the EPS module.

Method EPSType Options Database Name Default

Power / Inverse / RQI EPSPOWER power

Subspace Iteration EPSSUBSPACE subspace

Arnoldi EPSARNOLDI arnoldi

Lanczos EPSLANCZOS lanczos

Krylov-Schur EPSKRYLOVSCHUR krylovschur ⋆
Generalized Davidson EPSGD gd

Jacobi-Davidson EPSJD jd

Rayleigh quotient CG EPSRQCG rqcg

LOBPCG EPSLOBPCG lobpcg

Contour integral SS EPSCISS ciss

Lyapunov Inverse Iteration EPSLYAPII lyapii

LAPACK solver EPSLAPACK lapack

Wrapper to ARPACK EPSARPACK arpack

Wrapper to PRIMME EPSPRIMME primme

Wrapper to EVSL EPSEVSL evsl

Wrapper to BLOPEX EPSBLOPEX blopex

Wrapper to ScaLAPACK EPSSCALAPACK scalapack

Wrapper to ELPA EPSELPA elpa

Wrapper to ELEMENTAL EPSELEMENTAL elemental

Wrapper to CHASE EPSCHASE chase

Wrapper to FEAST EPSFEAST feast

The default solver is Krylov-Schur. A detailed description of the implemented algorithms is provided in the SLEPc
Technical Reports. In addition to these methods, SLEPc also provides wrappers to external packages such as
ARPACK, or PRIMME. A complete list of these interfaces can be found in section Wrappers to External Libraries
(page 96). Note that some of these packages (LAPACK, ScaLAPACK, ELPA, ELEMENTAL) perform dense com-
putations and hence return the full eigendecomposition (furthermore, take into account that LAPACK is a sequential
library so the corresponding solver should be used only for debugging purposes with small problem sizes).

The solution method can be specified procedurally or via the command line. The application programmer can set it
by means of the command EPSSetType

EPSSetType(EPS eps,EPSType method);

while the user writes the options database command -eps_type followed by the name of the method (see table

2.4. Selecting the Eigensolver 21



, Release 3.24.0

Eigenvalue solvers available in the EPS module. (page 21)).

Not all the methods can be used for all problem types. Table Supported problem types for all eigensolvers available in
SLEPc. (page 22) summarizes the scope of each eigensolver by listing which portion of the spectrum can be selected
(as defined in table Available possibilities for selection of the eigenvalues of interest. (page 19)) and which problem
types are supported (as defined in table Problem types considered in EPS. (page 17)). Note that the structured problem
types are not considered here, see section Structured Eigenvalue Problems (page 33). The table also indicates whether
the solvers are available or not in the complex version of SLEPc, and if they have a two-sided variant.

Table 4: Supported problem types for all eigensolvers available in SLEPc.

Method Portion of spectrum Problem type Real/complex Two-sided

power Largest |λ| any both yes
subspace Largest |λ| any both

arnoldi any any both

lanczos any EPS_HEP, EPS_GHEP both

krylovschur any any both yes
gd any any both

jd any any both

rqcg Smallest Re(λ) EPS_HEP, EPS_GHEP both

lobpcg Smallest Re(λ) EPS_HEP, EPS_GHEP both

ciss All λ in region any both

lyapii Largest Re(λ) any both

lapack any any both yes
arpack any any both

primme Largest and smallest Re(λ) EPS_HEP, EPS_GHEP both

evsl All λ in interval EPS_HEP real

blopex Smallest Re(λ) EPS_HEP, EPS_GHEP both

scalapack All λ EPS_HEP, EPS_GHEP both

elpa All λ EPS_HEP, EPS_GHEP both

elemental All λ EPS_HEP, EPS_GHEP both

chase Smallest Re(λ) EPS_HEP both

feast All Re(λ) in an interval any both
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2.5 Retrieving the Solution

Once the call to EPSSolve is complete, all the data associated with the solution of the eigenproblem are kept
internally in the EPS object. This information can be obtained by the calling program by means of a set of functions
described in this section.

As explained below, the number of computed solutions depends on the convergence and, therefore, it may be different
from the number of solutions requested by the user. So the first task is to find out how many solutions are available,
with EPSGetConverged

EPSGetConverged(EPS eps,PetscInt *nconv);

Usually, the number of converged solutions, nconv, will be equal to nev, but in general it can be a number ranging
from 0 to ncv (here, nev and ncv are the arguments of function EPSSetDimensions).

2.5.1 The Computed Solution

The user may be interested in the eigenvalues, or the eigenvectors, or both. The function EPSGetEigenpair

EPSGetEigenpair(EPS eps,PetscInt j,PetscScalar *kr,PetscScalar *ki, Vec xr,Vec xi);

returns the j-th computed eigenvalue/eigenvector pair. Typically, this function is called inside a loop for each value
of j from 0 to nconv–1. Note that eigenvalues are ordered according to the same criterion specified with func-
tion EPSSetWhichEigenpairs for selecting the portion of the spectrum of interest. The meaning of the last 4
arguments depends on whether SLEPc has been compiled for real or complex scalars, as detailed below. The eigen-
vectors are normalized so that they have a unit 2-norm, except for problem type EPS_GHEP in which case returned
eigenvectors have a unit B-norm.

In case they are available, the left eigenvectors can be extracted with EPSGetLeftEigenvector

EPSGetLeftEigenvector(EPS eps,PetscInt j,Vec yr,Vec yi);

Real SLEPc

In this case, all Mat20 and Vec21 objects are real. The computed approximate solution returned by the function EPS-
GetEigenpair is stored in the following way: kr and ki contain the real and imaginary parts of the eigenvalue,
respectively, and xr and xi contain the associated eigenvector. Two cases can be distinguished:

• When ki is zero, it means that the j-th eigenvalue is a real number. In this case, kr is the eigenvalue and xr
is the corresponding eigenvector. The vector xi is set to all zeros.

• If ki is different from zero, then the j-th eigenvalue is a complex number and, therefore, it is part of a complex
conjugate pair. Thus, the j-th eigenvalue is kr+ i·ki. With respect to the eigenvector, xr stores the real part
of the eigenvector and xi the imaginary part, that is, the j-th eigenvector is xr+ i·xi. The (j + 1)-th
eigenvalue (and eigenvector) will be the corresponding complex conjugate and will be returned when function
EPSGetEigenpair is invoked with index j+1. Note that the sign of the imaginary part is returned correctly
in all cases (users need not change signs).

20 https://petsc.org/release/manualpages/Mat/Mat/
21 https://petsc.org/release/manualpages/Vec/Vec/

2.5. Retrieving the Solution 23

https://petsc.org/release/manualpages/Mat/Mat/
https://petsc.org/release/manualpages/Vec/Vec/


, Release 3.24.0

Complex SLEPc

In this case, all Mat22 and Vec23 objects are complex. The computed solution returned by function EPSGetEigen-
pair is the following: kr contains the (complex) eigenvalue and xr contains the corresponding (complex) eigen-
vector. In this case, ki and xi are not used (set to all zeros).

2.5.2 Reliability of the Computed Solution

In this subsection, we discuss how a-posteriori error bounds can be obtained in order to assess the accuracy of the
computed solutions. These bounds are based on the so-called residual vector, defined as

r = Ax̃− λ̃x̃, (2.8)

or r = Ax̃ − λ̃Bx̃ in the case of a generalized problem, where λ̃ and x̃ represent any of the nconv computed
eigenpairs delivered by EPSGetEigenpair (note that this function returns a normalized x̃).

In the case of Hermitian problems, it is possible to demonstrate the following property (see for example [Saad, 1992,
ch. 3]):

|λ− λ̃| ≤ ∥r∥2, (2.9)

where λ is an exact eigenvalue. Therefore, the 2-norm of the residual vector can be used as a bound for the absolute
error in the eigenvalue.

In the case of non-Hermitian problems, the situation is worse because no simple relation such as equation (2.9) is
available. This means that in this case the residual norms may still give an indication of the actual error but the user
should be aware that they may sometimes be completely wrong, especially in the case of highly non-normal matrices.
A better bound would involve also the residual norm of the left eigenvector.

With respect to eigenvectors, we have a similar scenario in the sense that bounds for the error may be established in
the Hermitian case only, for example the following one:

sin θ(x, x̃) ≤ ∥r∥2
δ

, (2.10)

where θ(x, x̃) is the angle between the computed and exact eigenvectors, and δ is the distance from λ̃ to the rest
of the spectrum. This bound is not provided by SLEPc because δ is not available. The above expression is given
here simply to warn the user about the fact that accuracy of eigenvectors may be deficient in the case of clustered
eigenvalues.

In the case of non-Hermitian problems, SLEPc provides the alternative of retrieving an orthonormal basis of an in-
variant subspace instead of getting individual eigenvectors. This is done with function EPSGetInvariantSub-
space

EPSGetInvariantSubspace(EPS eps,Vec v[]);

This is sufficient in some applications and is safer from the numerical point of view.

Computation of Bounds

It is sometimes useful to compute error bounds based on the norm of the residual rj , to assess the accuracy of
the computed solution. The bound can be made in absolute terms, as in equation (2.9), or alternatively the error
can be expressed relative to the eigenvalue or to the matrix norms. For this, the following function can be used:
EPSComputeError

EPSComputeError(EPS eps,PetscInt j,EPSErrorType type,PetscReal *error);

22 https://petsc.org/release/manualpages/Mat/Mat/
23 https://petsc.org/release/manualpages/Vec/Vec/
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The types of errors that can be computed are summarized in table Available expressions for computing error bounds.
(page 25). The way in which the error is computed is unrelated to the error estimation used internally in the solver
for convergence checking, as described below. Also note that in the case of two-sided eigensolvers, the error bounds
are based on max{∥ℓj∥, ∥rj∥}, where the left residual ℓj is defined as ℓj = A∗ỹ − ¯̃

λỹ.

Table 5: Available expressions for computing error bounds.

Error type EPSErrorType Command line key Error bound

Absolute error EPS_ERROR_ABSOLUTE -eps_error_absolute |r|
Relative error EPS_ERROR_RELATIVE -eps_error_relative |r|/|λ|
Backward error EPS_ERROR_BACKWARD -eps_error_backward |r|/(|A|+ |λ||B|)

2.5.3 Controlling and Monitoring Convergence

All the eigensolvers provided by SLEPc are iterative in nature, meaning that the solutions are (usually) improved at
each iteration until they are sufficiently accurate, that is, until convergence is achieved. The number of iterations
required by the process can be obtained with the function EPSGetIterationNumber

EPSGetIterationNumber(EPS eps,PetscInt *its);

which returns in argument its either the iteration number at which convergence was successfully reached, or the
iteration at which a problem was detected.

The user specifies when a solution should be considered sufficiently accurate bymeans of a tolerance. An approximate
eigenvalue is considered to be converged if the error estimate associated with it is below the specified tolerance. The
default value of the tolerance is 10−8 and can be changed at run time with -eps_tol <tol> or inside the program
with the function EPSSetTolerances

EPSSetTolerances(EPS eps,PetscReal tol,PetscInt max_it);

The third parameter of this function allows the programmer to modify the maximum number of iterations allowed
to the solution algorithm, which can also be set via -eps_max_it <its>.

Convergence Check

The error estimates used for the convergence test are based on the residual norm, as discussed in section Reliability of
the Computed Solution (page 24). Most eigensolvers explicitly compute the residual of the relevant eigenpairs during
the iteration, but Krylov solvers use a cheap formula instead, allowing to track many eigenpairs simultaneously. When
using a spectral transformation, this formula may give too optimistic bounds (corresponding to the residual of the
transformed problem, not the original problem). In such cases, the users can force the computation of the residual
with EPSSetTrueResidual

EPSSetTrueResidual(EPS eps,PetscBool trueres);

or with -eps_true_residual.

Table 6: Available possibilities for the convergence criterion.

Convergence criterion EPSConv Command line key Error bound

Absolute EPS_CONV_ABS -eps_conv_abs |r|
Relative to eigenvalue EPS_CONV_REL -eps_conv_rel |r|/|λ|
Relative to matrix norms EPS_CONV_NORM -eps_conv_norm |r|/(|A|+ |λ||B|)
User-defined EPS_CONV_USER -eps_conv_user user function

From the residual norm, the error bound can be computed in different ways, see table Available possibilities for the
convergence criterion. (page 25). This can be set via the corresponding command-line switch or with EPSSetCon-
vergenceTest
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EPSSetConvergenceTest(EPS eps,EPSConv conv);

The default is to use the criterion relative to the eigenvalue (note: for computing eigenvalues close to the
origin this criterion will likely give very poor accuracy, so the user is advised to use EPS_CONV_ABS
in that case). Finally, a custom convergence criterion may be established by specifying a user function
(EPSSetConvergenceTestFunction).

Error estimates used internally by eigensolvers for checking convergence may be different from the error bounds
provided by EPSComputeError. At the end of the solution process, error estimates are available via EPS-
GetErrorEstimate

EPSGetErrorEstimate(EPS eps,PetscInt j,PetscReal *errest);

By default, the eigensolver will stop iterating when the current number of eigenpairs satisfying the convergence test
is equal to (or greater than) the number of requested eigenpairs (or if the maximum number of iterations has been
reached). However, it is also possible to provide a user-defined stopping test that may decide to quit earlier, see
EPSSetStoppingTest.

Monitors

Error estimates can be displayed during execution of the solution algorithm, as a way of monitoring convergence.
There are several such monitors available. The user can activate them via the options database (see examples below),
or within the code with EPSMonitorSet. By default, the solvers run silently without displaying information about
the iteration. Also, application programmers can provide their own routines to perform the monitoring by using the
function EPSMonitorSet.

Themost basic monitor prints one approximate eigenvalue together with its associated error estimate in each iteration.
The shown eigenvalue is the first unconverged one.

$ ./ex9 -eps_nev 1 -eps_tol 1e-6 -eps_monitor

1 EPS nconv=0 first unconverged value (error) -0.0695109+2.10989i (2.
↪→38956768e-01)

2 EPS nconv=0 first unconverged value (error) -0.0231046+2.14902i (1.
↪→09212525e-01)

3 EPS nconv=0 first unconverged value (error) -0.000633399+2.14178i (2.
↪→67086904e-02)

4 EPS nconv=0 first unconverged value (error) 9.89074e-05+2.13924i (6.
↪→62097793e-03)

5 EPS nconv=0 first unconverged value (error) -0.000149404+2.13976i (1.
↪→53444214e-02)

6 EPS nconv=0 first unconverged value (error) 0.000183676+2.13939i (2.
↪→85521004e-03)

7 EPS nconv=0 first unconverged value (error) 0.000192479+2.13938i (9.
↪→97563492e-04)

8 EPS nconv=0 first unconverged value (error) 0.000192534+2.13938i (1.
↪→77259863e-04)

9 EPS nconv=0 first unconverged value (error) 0.000192557+2.13938i (2.
↪→82539990e-05)

10 EPS nconv=0 first unconverged value (error) 0.000192559+2.13938i (2.
↪→51440008e-06)

11 EPS nconv=2 first unconverged value (error) -0.671923+2.52712i (8.92724972e-
↪→05)

Graphical monitoring (in an X display) is also available with -eps_monitor draw::draw_lg. FigureMonitor
(page 27) shows the result of the following sample command line:

$ ./ex9 -n 200 -eps_nev 12 -eps_tol 1e-12 -eps_monitor draw::draw_lg -draw_pause .2

Again, only the error estimate of one eigenvalue is drawn. The spikes in the last part of the plot indicate convergence
of one eigenvalue and switching to the next.
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Fig. 1: Default convergence monitor.

The two previously mentioned monitors have an alternative version (*_all) that processes all eigenvalues instead
of just the first one. FigureMonitor-all (page 27) corresponds to the same example but with -eps_monitor_all
draw::draw_lg. Note that these variants have a side effect: they force the computation of all error estimates
even if the method would not normally do so.

Fig. 2: Simultaneous convergence monitor for all eigenvalues.

A less verbosemonitor is-eps_monitor_conv, which simply displays the iteration number at which convergence
takes place. Note that several monitors can be used at the same time.

$ ./ex9 -n 200 -eps_nev 8 -eps_tol 1e-12 -eps_monitor_conv

79 EPS converged value (error) #0 4.64001e-06+2.13951i (8.26091148e-13)
79 EPS converged value (error) #1 4.64001e-06-2.13951i (8.26091148e-13)
93 EPS converged value (error) #2 -0.674926+2.52867i (6.85260521e-13)
93 EPS converged value (error) #3 -0.674926-2.52867i (6.85260521e-13)
94 EPS converged value (error) #4 -1.79963+3.03259i (5.48825386e-13)
94 EPS converged value (error) #5 -1.79963-3.03259i (5.48825386e-13)
98 EPS converged value (error) #6 -3.37383+3.55626i (2.74909207e-13)
98 EPS converged value (error) #7 -3.37383-3.55626i (2.74909207e-13)
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2.5.4 Viewing the Solution

The computed solution (eigenvalues and eigenvectors) can be viewed in different ways, exploiting the flexibility of
PetscViewer24s. The API functions for this are EPSValuesView and EPSVectorsView. We next illustrate
their usage via the command line.

The command-line option -eps_view_values shows the computed eigenvalues on the standard output at the
end of EPSSolve. It admits an argument to specify PetscViewer25 options, for instance the following will create a
Matlab command file myeigenvalues.m to load the eigenvalues in Matlab:

$ ./ex1 -n 120 -eps_nev 8 -eps_view_values :myeigenvalues.m:ascii_matlab

Lambda_EPS_0xb430f0_0 = [
3.9993259306070224e+00
3.9973041767976509e+00
3.9939361013742269e+00
3.9892239746533216e+00
3.9831709729353331e+00
3.9757811763634532e+00
3.9670595661733632e+00
3.9570120213355646e+00
];

One particular instance of this option is -eps_view_values draw, that will plot the computed approximations
of the eigenvalues on an X window. See Figure Eigenvalues (page 28) for an example.

Fig. 3: Eigenvalues plot.

Similarly, eigenvectors may be viewed with -eps_view_vectors, either in text form, in Matlab format, in
binary format, or as a draw. All eigenvectors are viewed, one after the other. As an example, the next line will dump
eigenvectors to the binary file evec.bin:

$ ./ex1 -n 120 -eps_nev 8 -eps_view_vectors binary:evec.bin

Twomore related functions are available: EPSErrorView and EPSConvergedReasonView. These will show
computed errors and the converged reason (plus number of iterations), respectively. Again, we illustrate its use via
the command line. The option -eps_error_relative will show eigenvalues whose relative error are below
the tolerance. The different types of errors have their corresponding options, see table Available expressions for
computing error bounds. (page 25). A more detailed output can be obtained as follows:

24 https://petsc.org/release/manualpages/Viewer/PetscViewer/
25 https://petsc.org/release/manualpages/Viewer/PetscViewer/
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$ ./ex1 -n 120 -eps_nev 8 -eps_error_relative ::ascii_info_detail
---------------------- --------------------

k ||Ax-kx||/||kx||
---------------------- --------------------

3.999326 1.26221e-09
3.997304 3.82982e-10
3.993936 2.76971e-09
3.989224 4.94104e-10
3.983171 6.19307e-10
3.975781 5.9628e-10
3.967060 2.32347e-09
3.957012 6.12436e-09

---------------------- --------------------

Finally, the option for showing the converged reason is:

$ ./ex1 -n 120 -eps_nev 8 -eps_converged_reason
Linear eigensolve converged (8 eigenpairs) due to CONVERGED_TOL; iterations␣

↪→14

2.6 Advanced Usage

This section includes the description of advanced features of the eigensolver object. Default settings are appropriate
for most applications and modification is unnecessary for normal usage.

2.6.1 Initial Guesses

In this subsection, we consider the possibility of providing initial guesses so that the eigensolver can exploit this
information to get the answer faster.

Most of the algorithms implemented in EPS iteratively build and improve a basis of a certain subspace, which will
eventually become an eigenspace corresponding to the wanted eigenvalues. In some solvers such as those of Krylov
type, this basis is constructed starting from an initial vector, v1, whereas in other solvers such as those of Davidson
type, an arbitrary subspace can be used to start the method. By default, EPS initializes the starting vector or the initial
subspace randomly. This default is a reasonable choice. However, it is also possible to supply an initial subspace with
the command EPSSetInitialSpace

EPSSetInitialSpace(EPS eps,PetscInt n,Vec is[]);

In some cases, a suitable initial space can accelerate convergence significantly, for instance when the eigenvalue
calculation is one of a sequence of closely related problems, where the eigenspace of one problem is fed as the initial
guess for the next problem.

Note that if the eigensolver supports only a single initial vector, but several guesses are provided, then all except the
first one will be discarded. One could still build a vector that is rich in the directions of all guesses, by taking a linear
combination of them, but this is less effective than using a solver that considers all guesses as a subspace.
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2.6.2 Dealing with Deflation Subspaces

In some applications, when solving an eigenvalue problem the user wishes to use a priori knowledge about the solution.
This is the case when an invariant subspace has already been computed (e.g., in a previous EPSSolve call) or when
a basis of the null-space is known.

Consider the following example. Given a graph G, with vertex set V and edges E, the Laplacian matrix of G is a
sparse symmetric positive semidefinite matrix L with elements

lij =

 d(vi) if i = j
−1 if eij ∈ E
0 otherwise

(2.11)

where d(vi) is the degree of vertex vi. This matrix is singular since all row sums are equal to zero. The constant
vector is an eigenvector with zero eigenvalue, and if the graph is connected then all other eigenvalues are positive.
The so-called Fiedler vector is the eigenvector associated with the smallest nonzero eigenvalue and can be used in
heuristics for a number of graph manipulations such as partitioning. One possible way of computing this vector with
SLEPc is to instruct the eigensolver to search for the smallest eigenvalue (with EPSSetWhichEigenpairs or
by using a spectral transformation as described in next chapter) but preventing it from computing the already known
eigenvalue. For this, the user must provide a basis for the invariant subspace (in this case just vector [1, 1, . . . , 1]T )
so that the eigensolver can deflate this subspace. This process is very similar to what eigensolvers normally do with
invariant subspaces associated with eigenvalues as they converge. In other words, when a deflation space has been
specified, the eigensolver works with the restriction of the problem to the orthogonal complement of this subspace.

The following function can be used to provide the EPS object with some basis vectors corresponding to a subspace
that should be deflated during the solution process. EPSSetDeflationSpace

EPSSetDeflationSpace(EPS eps,PetscInt n,Vec defl[])

The value n indicates how many vectors are passed in argument defl.

The deflation space can be any subspace but typically it is most useful in the case of an invariant subspace or a null-
space. In any case, SLEPc internally checks to see if all (or part of) the provided subspace is a null-space of the
associated linear system (see section Solution of Linear Systems (page 41)). In this case, this null-space is attached
to the coefficient matrix of the linear solver (see PETSc’s function MatSetNullSpace26) to enable the solution of
singular systems. In practice, this allows the computation of eigenvalues of singular pencils (i.e., when A and B
share a common null-space).

2.6.3 Orthogonalization

Internally, eigensolvers in EPS often need to orthogonalize a vector against a set of vectors (for instance, when
building an orthonormal basis of a Krylov subspace). This operation is carried out typically by a Gram-Schmidt
orthogonalization procedure. The user is able to adjust several options related to this algorithm, although the default
behavior is good for most cases, and we strongly suggest not to change any of these settings. This topic is covered in
detail in Hernandez et al. [2007].

2.6.4 Specifying a Region for Filtering

Some solvers inEPS (and other solver classes as well) can take into consideration a user-defined region of the complex
plane, e.g., an ellipse. A region can be used for two purposes:

• To instruct the eigensolver to compute all eigenvalues lying in that region. This is available only in eigensolvers
based on the contour integral technique (EPSCISS).

• To filter out eigenvalues outside the region. In this way, eigenvalues lying inside the region get higher priority
during the iteration and are more likely to be returned as computed solutions.

Regions are specified by means of an RG object. This object is handled internally in the EPS solver, as other auxiliary
objects, and can be extracted with EPSGetRG

26 https://petsc.org/release/manualpages/Mat/MatSetNullSpace/
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EPSGetRG(EPS eps,RG *rg);

to set the options that define the region. These options can also be set in the command line. The following example
computes largest magnitude eigenvalues, but restricting to an ellipse of radius 0.5 centered at the origin (with vertical
scale 0.1):

$ ./ex1 -rg_type ellipse -rg_ellipse_center 0 -rg_ellipse_radius 0.5
-rg_ellipse_vscale 0.1

If one wants to use the region to specify where eigenvalues should not be computed, then the region must be the
complement of the specified one. The next command line computes the smallest eigenvalues not contained in the
ellipse:

$ ./ex1 -eps_smallest_magnitude -rg_type ellipse -rg_ellipse_center 0
-rg_ellipse_radius 0.5 -rg_ellipse_vscale 0.1 -rg_complement

Additional details of the RG class can be found in section Auxiliary Classes (page 90).

2.6.5 Computing a Large Portion of the Spectrum

Wenow consider the case when the user requests a relatively large number of eigenpairs (the related case of computing
all eigenvalues in a given interval is addressed in section Spectrum Slicing (page 45)). To fix ideas, suppose that the
problem size (the dimension of the matrix, denoted as n), is in the order of 100,000’s, and the user wants nev to be
approximately 5,000 (recall the notation of EPSSetDimensions in section Defining the Problem (page 17)).

The first comment is that for such large values of nev, the rule of thumb suggested in section Defining the Problem
(page 17) for selecting the value of ncv (ncv ≥ 2 · nev) may be inappropriate. For small values of nev, this rule
of thumb is intended to provide the solver with a sufficiently large subspace. But for large values of nev, it may be
enough setting ncv to be slightly larger than nev.

The second thing to take into account has to do with costs, both in terms of storage and in terms of computational
effort. This issue is dependent on the particular eigensolver used, but generally speaking the user can simplify to the
following points:

1. It is necessary to store a basis of the subspace, that is, ncv vectors of length n.

2. A considerable part of the computation is devoted to orthogonalization of the basis vectors, whose cost is
roughly of order ncv2 · n.

3. Within the eigensolution process, a projected eigenproblem of order ncv is built. At least one dense matrix
of this dimension has to be stored.

4. Solving the projected eigenproblem has a computational cost of order ncv3. Typically, such problems need
to be solved many times within the eigensolver iteration.

It is clear that a large value of ncv implies a high storage requirement (points 1 and 3, especially point 1), and a
high computational cost (points 2 and 4, especially point 2). However, in a scenario of such big eigenproblems, it is
customary to solve the problem in parallel with many processors. In that case, it turns out that the basis vectors are
stored in a distributed way and the associated operations are parallelized, so that points 1 and 2 become benign as
long as sufficient processors are used. Then points 3 and 4 become really critical since in the current SLEPc version
the projected eigenproblem (and its associated operations) are not treated in parallel. In conclusion, the user must be
aware that using a large ncv value introduces a serial step in the computation with high cost, that cannot be amortized
by increasing the number of processors.

From SLEPc 3.0.0, another parameter mpd has been introduced to alleviate this problem. The name mpd stands
for maximum projected dimension. The idea is to bound the size of the projected eigenproblem so that steps 3
and 4 work with a dimension of mpd at most, while steps 1 and 2 still work with a bigger dimension, up to ncv.
Suppose we want to compute nev=5000. Setting ncv=10000 or even ncv=6000 would be prohibitively expensive,
for the reasons explained above. But if we set e.g. mpd=600 then the overhead of steps 3 and 4 will be considerably
diminished. Of course, this reduces the potential of approximation at each outer iteration of the algorithm, but with
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more iterations the same result should be obtained. The benefits will be specially noticeable in the setting of parallel
computation with many processors.

Note that it is not necessary to set both ncv and mpd. For instance, one can do

$ ./program -eps_nev 5000 -eps_mpd 600

2.6.6 Computing Interior Eigenvalues with Harmonic Extraction

The standard Rayleigh-Ritz projection procedure described in section Eigenvalue Problems (page 13) is most appro-
priate for approximating eigenvalues located at the periphery of the spectrum, especially those of largest magnitude.
Most eigensolvers in SLEPc are restarted, meaning that the projection is carried out repeatedly with increasingly
good subspaces. An effective restarting mechanism, such as that implemented in Krylov-Schur, improves the sub-
space by realizing a filtering effect that tries to eliminate components in the direction of unwanted eigenvectors. In
that way, it is possible to compute eigenvalues located anywhere in the spectrum, even in its interior.

Even though in theory eigensolvers could be able to approximate interior eigenvalues with a standard extraction
technique, in practice convergence difficulties may arise that prevent success. The problem comes from the property
that Ritz values (the approximate eigenvalues provided by the standard projection procedure) converge from the
interior to the periphery of the spectrum. That is, the Ritz values that stabilize first are those in the periphery, so
convergence of interior ones requires the previous convergence of all eigenvalues between them and the periphery.
Furthermore, this convergence behaviour usually implies that restarting is carried out with bad approximations, so
the restart is ineffective and global convergence is severely damaged.

Harmonic projection is a variation that uses a target value, τ , around which the user wants to compute eigenvalues
(see, e.g., [Morgan and Zeng, 2006]). The theory establishes that harmonic Ritz values converge in such a way
that eigenvalues closest to the target stabilize first, and also that no unconverged value is ever close to the target, so
restarting is safe in this case. As a conclusion, eigensolvers with harmonic extraction may be effective in computing
interior eigenvalues. Whether it works or not in practical cases depends on the particular distribution of the spectrum.

In order to use harmonic extraction in SLEPc, it is necessary to indicate it explicitly, and provide the target value
as described in section Defining the Problem (page 17) (default is τ = 0). The type of extraction can be set with:
EPSSetExtraction

EPSSetExtraction(EPS eps,EPSExtraction extr);

Available possibilities are EPS_RITZ for standard projection and EPS_HARMONIC for harmonic projection (other
alternatives such as refined extraction are still experimental).

A command line example would be:

$ ./ex5 -m 45 -eps_harmonic -eps_target 0.8 -eps_ncv 60

The example computes the eigenvalue closest to τ = 0.8 of a real non-symmetric matrix of order 1035. Note that
ncv has been set to a larger value than would be necessary for computing the largest magnitude eigenvalues. In
general, users should expect a much slower convergence when computing interior eigenvalues compared to extreme
eigenvalues. Increasing the value of ncv may help.

Currently, harmonic extraction is available in the default EPS solver, that is, Krylov-Schur, and also in Arnoldi, GD,
and JD.
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2.6.7 Balancing for Non-Hermitian Problems

In problems where the matrix has a large norm, ∥A∥2, the roundoff errors introduced by the eigensolver may be large.
The goal of balancing is to apply a simple similarity transformation, DAD−1, that keeps the eigenvalues unaltered
but reduces the matrix norm, thus enhancing the accuracy of the computed eigenpairs. Obviously, this makes sense
only in the non-Hermitian case. The matrix D is chosen to be diagonal, so balancing amounts to scaling the matrix
rows and columns appropriately.

In SLEPc, the matrixDAD−1 is not formed explicitly. Instead, the operators of table Operators used in each spectral
transformation mode. (page 37) are preceded by a multiplication by D−1 and followed by a multiplication by D.
This allows for balancing in the case of problems with an implicit matrix.

A simple and effective Krylov balancing technique, described in [Chen and Demmel, 2000], is implemented in
SLEPc. The user calls the following subroutine to activate it. EPSSetBalance

EPSSetBalance(EPS eps,EPSBalance bal,PetscInt its,PetscReal cutoff);

Two variants are available, one-sided and two-sided, and there is also the possibility for the user to provide a pre-
computed D matrix.

2.6.8 Structured Eigenvalue Problems

Structured eigenvalue problems are those whose defining matrices are structured, i.e., their n2 entries depend on less
than n2 parameters. Symmetry is the most obvious structure, and it is supported in SLEPc solvers via the EPS_HEP
and EPS_GHEP problem types, see table Problem types considered in EPS. (page 17). The last entries listed in table
Problem types considered in EPS. (page 17) address other types of structured eigenproblems, which are discussed in
this subsection. Preserving the algebraic structure can help preserve physically relevant symmetries in the eigenvalues
of the matrix and may improve the accuracy and efficiency of the eigensolver. For example, in quadratic eigenvalue
problems arising from gyroscopic systems (see section Quadratic Eigenvalue Problems (page 63)), eigenvalues appear
in quadruples {λ,−λ, λ̄,−λ̄}, i.e., the spectrum is symmetric with respect to both the real and imaginary axes. This
problem can be linearized to a 2n×2n skew-Hamiltonian/Hamiltonian pencil with the same eigenvalues. A structure-
preserving eigensolver will give a more accurate answer because it enforces the structure throughout the computation.

Unless otherwise stated, the structured eigenproblems discussed below are only supported in the default EPS solver,
Krylov-Schur. The idea is that the user creates the structured matrix with a helper function such as MatCreateBSE
(see below), and then selects the appropriate problem type with EPSSetProblemType, in this case EPS_BSE.
This will instruct the solver to exploit the problem structure. Alternatively, one can solve the problem as EPS_NHEP,
in which case the solver will neglect the structure.

Bethe-Salpeter

One structured eigenproblem that has raised interest recently is related to the Bethe–Salpeter equation, which is
relevant in many state-of-the-art computational physics codes. For instance, in the Yambo software [Sangalli et al.,
2019] it is used to evaluate optical properties. It is commonly formulated as an eigenvalue problem with a block-
structured matrix,

H =

[
R C
−CH −RT

]
, (2.12)

where R is Hermitian and C is complex symmetric. For a good enough approximation of the optical absorption
spectrum, it is sufficient to compute a few eigenvalues with a customized version of Krylov-Schur. In this problem,
eigenvalues are real and come in pairs {λ,−λ}. The eigenvalues of interest are those with the smallest magnitude,
which in this case lie in the middle of the spectrum. Usually, both right and left eigenvectors are required, but the
left eigenvectors can be obtained inexpensively once the corresponding right ones are known.

The helper function to generate the matrixH of equation (2.12) from the blocks R and C is MatCreateBSE, and
the associated problem type is EPS_BSE (or -eps_bse from the command line). It is possible to select a few
variants of the solver with the function EPSKrylovSchurSetBSEType.

Further details about the implementation of the SLEPc solvers for the BSE can be found in [Alvarruiz et al., 2025].
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Hamiltonian

The Hamiltonian structure is relevant in many applications, particularly in control theory. A (complex) Hamiltonian
matrix has the block structure

H =

[
A B
C −A∗

]
, (2.13)

where A, B and C are either real with B = BT , C = CT , or complex with B = B∗, C = C∗. In the real case,
eigenvalues appear in pairs {λ,−λ} and for complex eigenvalues in quadruples {λ,−λ, λ̄,−λ̄}. For a complex
Hamiltonian matrix, if λ is an eigenvalue, then −λ̄ is also an eigenvalue. A structure-preserving eigensolver has
been implemented in EPS (in Krylov-Schur), which is activated by selecting the EPS_HAMILT problem type (or
-eps_hamiltonian from the command line). Note that matrixH (2.13)must be created with the helper function
MatCreateHamiltonian in order to use this solver.

Warning: The structure-preserving eigensolver for Hamiltonian eigenvalue problems should be considered
experimental. Depending on the problem, it may become numerically unstable after some iterations, in which
case the solver will abort, returning less eigenvalues than requested.
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ST: Spectral Transformation

The Spectral Transformation (ST) is the object that encapsulates the functionality required for acceleration techniques
based on the transformation of the spectrum. Most eigensolvers in EPS work by applying an operator to a set
of vectors and this operator can adopt different forms. The ST object handles all the different possibilities in a
uniform way, so that the solver can proceed without knowing which transformation has been selected. The spectral
transformation can be specified at run time, as well as related options such as which linear solver to use.

Despite being a rather unrelated concept, ST is also used to handle the preconditioners and correction-equation
solvers used in preconditioned eigensolvers such as GD and JD.

The description in this chapter focuses on the use of ST in the context of EPS. For usage within other solver classes,
we will provide further details, e.g., shift-and-invert for polynomial eigenproblems in section Spectral Transformation
(page 70).

3.1 General Description

Spectral transformations are powerful tools for adjusting the way in which eigensolvers behave when coping with a
problem. The general strategy consists in transforming the original problem into a new one in which eigenvalues are
mapped to a new position while eigenvectors remain unchanged. These transformations can be used with several
goals in mind:

• Compute internal eigenvalues. In some applications, the eigenpairs of interest are not the extreme ones (largest
magnitude, rightmost, leftmost), but those contained in a certain interval or those closest to a certain value of
the complex plane.

• Accelerate convergence. Convergence properties typically depend on how close the eigenvalues are from each
other. With some spectral transformations, difficult eigenvalue distributions can be remapped in a more fa-
vorable way in terms of convergence.

• Handle some special situations. For instance, in generalized problems when matrix B is singular, it may be
necessary to use a spectral transformation.

SLEPc separates spectral transformations from solution methods so that any combination of them can be specified by
the user. To achieve this, most eigensolvers contained inEPS are implemented in such a way that they are independent
of which transformation has been selected by the user (the exception are preconditioned solvers, see below). That
is, the solver algorithm has to work with a generic operator, whose actual form depends on the transformation used.
After convergence, eigenvalues are transformed back appropriately.

For technical details of the transformations described in this chapter, the interested user is referred to [Ericsson and
Ruhe, 1980], [Scott, 1982], [Nour-Omid et al., 1987], and [Meerbergen et al., 1994].
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3.1.1 Preconditioners

As explained in the previous chapter, EPS contains preconditioned eigensolvers such as GD or JD. These solvers
either apply a preconditioner at a certain step of the computation, or need to solve a correction equation with a
preconditioned linear solver. One of the main goals of these solvers is to achieve a similar effect as an inverse-based
spectral transformation such as shift-and-invert, but with less computational cost. For this reason, a “preconditioner”
spectral transformation has been included in the ST object. However, this is just a convenient way of organizing the
functionality, since this fake spectral transform cannot be used with non-preconditioned eigensolvers, and conversely
preconditioned eigensolvers cannot be used with conventional spectral transformations.

3.2 Basic Usage

The ST module is the analog of some PETSc modules such as PC29. The user does not usually need to create a
stand-alone ST object explicitly. Instead, every EPS object internally sets up an associated ST. Therefore, the usual
object management methods such as STCreate, STDestroy, STView, STSetFromOptions, are not usually
called by the user.

Although the ST context is hidden inside the EPS object, the user still has control over all the options, by means of the
command line, or also inside the program. To allow application programmers to set any of the spectral transformation
options directly within the code, the following routine is provided to extract the ST context from the EPS object,
EPSGetST

EPSGetST(EPS eps,ST *st);

After this, one is able to set any options associated with the ST object. For example, to set the value of the shift, the
following function is available STSetShift

STSetShift(ST st,PetscScalar shift);

This can also be done with the command line option -st_shift <shift>. Note that the argument shift is
defined as a PetscScalar30, and this means that complex shifts are not allowed unless the complex version of SLEPc
is used.

Other object operations are available, which are not usually called by the user. The most important of such functions
are STApply, which applies the operator to a vector, and STSetUp, which prepares all the necessary data structures
before the solution process starts. The term “operator” refers to one of A, B−1A, A − σI , … depending on which
kind of spectral transformation is being used.

3.3 Available Transformations

This section describes the spectral transformations that are provided in SLEPc. As in the case of eigensolvers, the
spectral transformation to be used can be specified procedurally or via the command line. The application program-
mer can set it by means of the command STSetType

STSetType(ST st,STType type);

where type can be one of STSHIFT, STSINVERT, STCAYLEY, STPRECOND, STFILTER, or STSHELL. The
ST type can also be set with the command-line option -st_type followed by the name of the method (see table
Spectral transformations available in the ST package. (page 37)). The first five spectral transformations are described
in detail in the rest of this section. The last possibility, STSHELL, uses a specific, application-provided spectral
transformation. Section Extending SLEPc (page 90) describes how to implement one of these transformations.

29 https://petsc.org/release/manualpages/PC/PC/
30 https://petsc.org/release/manualpages/Sys/PetscScalar/
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Table 1: Spectral transformations available in the ST package.

Spectral Transformation STType Options Name Operator

Shift of Origin STSHIFT shift B−1A− σI
Shift-and-invert STSINVERT sinvert (A− σB)−1B
Generalized Cayley STCAYLEY cayley (A− σB)−1(A+ νB)
Preconditioner STPRECOND precond K−1 ≈ (A− σB)−1

————————- ————- ————- ——————————–
Polynomial Filter STFILTER filter p(A)
Shell Transformation STSHELL shell user-defined

The last column of table Spectral transformations available in the ST package. (page 37) shows a general form of
the operator used in each case. This generic operator can adopt different particular forms depending on whether the
eigenproblem is standard or generalized, or whether the value of the shift (σ) and anti-shift (ν) is zero or not. All the
possible combinations are listed in table Operators used in each spectral transformation mode. (page 37).

Table 2: Operators used in each spectral transformation mode.

ST Choice of σ, ν Standard problem Generalized problem

shift σ = 0 A B−1A
σ ̸= 0 A− σI B−1A− σI

sinvert σ = 0 A−1 A−1B
σ ̸= 0 (A− σI)−1 (A− σB)−1B

cayley σ ̸= 0, ν = 0 (A− σI)−1A (A− σB)−1A
σ = 0, ν ̸= 0 I + νA−1 I + νA−1B

σ ̸= 0, ν ̸= 0 (A− σI)−1(A+ νI) (A− σB)−1(A+ νB)

precond σ = 0 K−1 ≈ A−1 K−1 ≈ A−1

σ ̸= 0 K−1 ≈ (A− σI)−1 K−1 ≈ (A− σB)−1

The expressions shown in tableOperators used in each spectral transformation mode. (page 37) are not built explicitly.
Instead, the appropriate operations are carried out when applying the operator to a certain vector. The inverses imply
the solution of a linear system of equations that is managed by setting up an associated KSP31 object. The user can
control the behavior of this object by adjusting the appropriate options, as will be illustrated with examples in section
Solution of Linear Systems (page 41).

31 https://petsc.org/release/manualpages/KSP/KSP/
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3.3.1 Relation between Target and Shift

In all transformations except STSHIFT, there is a direct connection between the target τ (described in section
Defining the Problem (page 17)) and the shift σ, as will be discussed below. The normal usage is that the user sets the
target and then σ is set to τ automatically (though it is still possible for the user to set a different value of the shift).

3.3.2 Shift of Origin

By default, no spectral transformation is performed. This is equivalent to a shift of origin (STSHIFT) with σ = 0,
that is, the first line of table Operators used in each spectral transformation mode. (page 37). The solver works with
the original expressions of the eigenvalue problems,

Ax = λx, (3.1)

for standard problems, and Ax = λBx for generalized ones. Note that this last equation is actually treated internally
as

B−1Ax = λx. (3.2)

When the eigensolver in EPS requests the application of the operator to a vector, a matrix-vector multiplication by
matrix A is carried out (in the standard case) or a matrix-vector multiplication by matrix A followed by a linear
system solve with coefficient matrix B (in the generalized case). Note that in the last case, the operation will fail if
matrix B is singular.

When the shift, σ, is given a value different from the default, 0, the effect is to move the whole spectrum by that
exact quantity, σ, which is called shift of origin. To achieve this, the solver works with the shifted matrix, that is, the
expressions it has to cope with are

(A− σI)x = θx, (3.3)

for standard problems, and

(B−1A− σI)x = θx, (3.4)

for generalized ones. The important property that is used is that shifting does not alter the eigenvectors and that it
does change the eigenvalues in a simple known way, it shifts them by σ. In both the standard and the generalized
problems, the following relation holds

θ = λ− σ. (3.5)

This means that after the solution process, the value σ has to be added47 to the computed eigenvalues, θ, in order to
retrieve the solution of the original problem, λ. This is done by means of the function STBackTransform, which
does not need to be called directly by the user.

3.3.3 Shift-and-invert

The shift-and-invert spectral transformation (STSINVERT) is used to enhance convergence of eigenvalues in the
neighborhood of a given value. In this case, the solver deals with the expressions

(A− σI)−1x = θx, (3.6)

(A− σB)−1Bx = θx, (3.7)

for standard and generalized problems, respectively. This transformation is effective for finding eigenvalues near σ
since the eigenvalues θ of the operator that are largest in magnitude correspond to the eigenvalues λ of the original
problem that are closest to the shift σ in absolute value, as illustrated in figure The shift-and-invert spectral transfor-
mation. (page 39) for an example with real eigenvalues. Once the wanted eigenvalues have been found, they may be

47 Note that the sign changed in SLEPc 3.5 with respect to previous versions.
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Fig. 1: The shift-and-invert spectral transformation.

transformed back to eigenvalues of the original problem. Again, the eigenvectors remain unchanged. In this case,
the relation between the eigenvalues of both problems is

θ = 1/(λ− σ). (3.8)

Therefore, after the solution process, the operation to be performed in function STBackTransform is λ = σ+1/θ
for each of the computed eigenvalues.

This spectral transformation is used in the spectrum slicing technique, see section Spectrum Slicing (page 45).

3.3.4 Cayley

The generalized Cayley transform (STCAYLEY) is defined from the expressions

(A− σI)−1(A+ νI)x = θx, (3.9)

(A− σB)−1(A+ νB)x = θx, (3.10)

for standard and generalized problems, respectively. Sometimes, the term Cayley transform is applied for the partic-
ular case in which ν = σ. This is the default if ν is not given a value explicitly. The value of ν (the anti-shift) can
be set with the following function STCayleySetAntishift

STCayleySetAntishift(ST st,PetscScalar nu);

or in the command line with -st_cayley_antishift.

This transformation is mathematically equivalent to shift-and-invert and, therefore, it is effective for finding eigen-
values near σ as well. However, in some situations it is numerically advantageous with respect to shift-and-invert
(see [Bai et al., 2000, 11.2], [Lehoucq and Salinger, 2001]).

In this case, the relation between the eigenvalues of both problems is

θ = (λ+ ν)/(λ− σ). (3.11)

Therefore, after the solution process, the operation to be performed in function STBackTransform is λ = (θσ+
ν)/(θ − 1) for each of the computed eigenvalues.
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3.3.5 Preconditioner

As mentioned in the introduction of this chapter, the special type STPRECOND is used for handling preconditioners
or preconditioned iterative linear solvers, which are used in the context of preconditioned eigensolvers for expanding
the subspace. For instance, in the GD solver the so-called correction vector di to be added to the subspace in each
iteration is computed as

di = K−1Pi(A− θiB)xi, (3.12)

where (θi, xi) is the current approximation of the sought-after eigenpair, and Pi is a projector involving xi and
K−1xi. In the above expressions, K is a preconditioner matrix that is built from A − θiB. However, since θi
changes at each iteration, which would force recomputation of the preconditioner, we opt for using

K−1 ≈ (A− σB)−1. (3.13)

Similarly, in the JD eigensolver the expansion of the subspace is carried out by solving a correction equation similar
to

(I − xix
∗
i )(A− θiB)(I − xix

∗
i )di = −(A− θiB)xi, (3.14)

where the system is solved approximately with a preconditioned iterative linear solver. For building the preconditioner
of this linear system, the projectors I−xix

∗
i are ignored, and again it is not recomputed in each iteration. Therefore,

the preconditioner is built as in equation (3.13) as well.

It should be clear from the previous discussion, thatSTPRECOND does not work in the sameway as the rest of spectral
transformations. In particular, it does not rely on STBackTransform. It is rather a convenient mechanism for
handling the preconditioner and linear solver (see examples in section Solution of Linear Systems (page 41)). The
expressions shown in tables Spectral transformations available in the ST package. (page 37) and Operators used in
each spectral transformation mode. (page 37) are just a reference to indicate from which matrix the preconditioner
is built by default.

There is the possibility that the user overrides the default behaviour, that is, to explicitly supply a matrix from which
the preconditioner is to be built, with STSetPreconditionerMat

STSetPreconditionerMat(ST st,Mat mat);

The above function can also be used in other spectral transformations such as shift-and-invert in case the user has a
cheap approximation K of the coefficient matrix A − σB. An alternative is to pass approximations of both A and
B so that ST builds the preconditioner matrix internally, with STSetSplitPreconditioner

STSetSplitPreconditioner(ST st,PetscInt n,Mat Psplit[],MatStructure strp);

Note that preconditioned eigensolvers in EPS select STPRECOND by default, so the user does not need to specify it
explicitly.

3.3.6 Polynomial Filtering

The type STFILTER is also special. It is used in the case of standard symmetric (or Hermitian) eigenvalue problems
when the eigenvalues of interest are interior to the spectrum and we want to avoid the high cost associated with the
matrix factorization of the shift-and-invert spectral transformation. The techniques generically known as polynomial
filtering aim at this goal.

The polynomial filtering methods address the eigenvalue problem

p(A)x = θx, (3.15)

where p(·) is a suitable high-degree polynomial. Once the polynomial is built, the eigensolver relies on STApply to
compute approximations of the eigenvalues θ of the transformed problem. These approximations must be processed
in some way in order to recover the λ eigenvalues. Note that in this case there is no STBackTransform operation.
Details of the method can be found in [Fang and Saad, 2012].

Polynomial filtering techniques are still under development in SLEPc, and will be improved in future versions. Note
that the external package EVSL also implements polynomial filters to compute all eigenvalues in an interval.
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3.4 Advanced Usage

Using theST object is very straightforward. However, when using spectral transformationsmany things are happening
behind the scenes, mainly the solution of linear systems of equations. The user must be aware of what is going on in
each case, so that it is possible to guide the solution process in the most beneficial way. This section describes several
advanced aspects that can have a considerable impact on efficiency.

3.4.1 Solution of Linear Systems

In many of the cases shown in table Operators used in each spectral transformation mode. (page 37), the operator
contains an inverted matrix, which means that a linear system of equations must be solved whenever the application
of the operator to a vector is required. These cases are handled internally by means of a KSP32 object.

In the simplest case, a generalized problem is to be solved with a zero shift. Suppose you run a program that solves
a generalized eigenproblem, with default options:

$ ./program

In this case, the ST object associated with the EPS solver creates a KSP33 object whose coefficient matrix is B. By
default, this KSP34 object is set to use a direct solver, in particular an LU factorization. However, default settings can
be changed, as illustrated below.

The following command-line is equivalent to the previous one:

$ ./program -st_ksp_type preonly -st_pc_type lu

The two options specify the type of the linear solver and preconditioner to be used. The -st_ prefix indicates that
the option corresponds to the linear solver within ST. The combination preonly+lu instructs to use a direct solver
(LU factorization, see PETSc’s documentation for details), so this is the same as the default. Adding a new option
changes the default behaviour, for instance

$ ./program -st_ksp_type preonly -st_pc_type lu
-st_pc_factor_mat_solver_type mumps

In this case, an external linear solver package is used (MUMPS, see PETSc’s documentation for other available
packages). Note that an external package is required for computing a matrix factorization in parallel, since PETSc
itself only provides sequential direct linear solvers.

Instead of a direct linear solver, it is possible to use an iterative solver. This may be necessary in some cases, specially
for very large problems. However, the user is warned that using an iterative linear solver makes the overall solution
process less robust (see also the discussion of preconditioned eigensolvers below). As an example, the command-line

$ ./program -st_ksp_type gmres -st_pc_type bjacobi -st_ksp_rtol 1e-9

selects the GMRES solver with block Jacobi preconditioning. In the case of iterative solvers, it is important to use
an appropriate tolerance, usually slightly more stringent for the linear solves relative to the desired accuracy of the
eigenvalue calculation (10−9 in the example, compared to 10−8 for the eigensolver).

Although the direct solver approachmay seem too costly, note that the factorization is only carried out at the beginning
of the eigenvalue calculation and this cost is amortized in each subsequent application of the operator. This is also
the case for iterative methods with preconditioners with high-cost set-up such as ILU.

The application programmer is able to set the desired linear systems solver options also from within the code. In
order to do this, first the context of the KSP35 object must be retrieved with the following function STGetKSP

32 https://petsc.org/release/manualpages/KSP/KSP/
33 https://petsc.org/release/manualpages/KSP/KSP/
34 https://petsc.org/release/manualpages/KSP/KSP/
35 https://petsc.org/release/manualpages/KSP/KSP/
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STGetKSP(ST st,KSP *ksp);

The above functionality is also applicable to the other spectral transformations. For instance, for the shift-and-invert
technique with τ = 10 using BiCGStab+Jacobi:

$ ./program -st_type sinvert -eps_target 10 -st_ksp_type bcgs -st_pc_type jacobi

In shift-and-invert and Cayley, unless σ = 0, the coefficient matrix is not a simple matrix but an expression that can
be explicitly constructed or not, depending on the user’s choice. This issue is examined in detail in section Explicit
Computation of Coefficient Matrix (page 42) below.

In many cases, especially if a shift-and-invert or Cayley transformation is being used, iterative methods may
not be well suited for solving linear systems (because of the properties of the coefficient matrix that can be in-
definite and ill-conditioned). When using an iterative linear solver, it may be helpful to run with the option
-st_ksp_converged_reason, which will display the number of iterations required in each operator appli-
cation. In extreme cases, the iterative solver fails, so EPSSolve aborts with an error

[0]PETSC ERROR: KSP did not converge (reason=DIVERGED_ITS)!

If this happens, it is necessary to use a direct method for solving the linear systems, as explained above.

The Case of Preconditioned Eigensolvers

The KSP36 object contained internally in ST is also used for applying the preconditioner or solving the correction
equation in preconditioned eigensolvers.

The GD eigensolver employs just a preconditioner. Therefore, by default it sets the KSP37 type to preonly (no
other KSP38 is allowed) and the PC39 type to jacobi. The user may change the preconditioner, for example as

$ ./ex5 -eps_type gd -st_pc_type asm

The JD eigensolver uses both an iterative linear solver and a preconditioner, so both KSP and PC are meaningful in
this case. It is important to note that, contrary to the ordinary spectral transformations where a direct linear solver is
recommended, in JD using an iterative linear solver is usually better than a direct solver. Indeed, the best performance
may be achieved with a few iterations of the linear solver (or a large tolerance). For instance, the next example uses
JD with GMRES+Jacobi limiting to 10 the number of allowed iterations for the linear solver:

$ ./ex5 -eps_type jd -st_ksp_type gmres -st_pc_type jacobi -st_ksp_max_it 10

A discussion on the different options available for the Davidson solvers can be found in [Romero and Roman, 2014].

3.4.2 Explicit Computation of Coefficient Matrix

Three possibilities can be distinguished regarding the form of the coefficient matrix of the linear systems of equations
associated with the different spectral transformations. The possible coefficient matrices are:

• Simple: B.

• Shifted: A− σI .

• Axpy: A− σB.

The first case has already been described and presents no difficulty. In the other two cases, there are three possible
approaches:

36 https://petsc.org/release/manualpages/KSP/KSP/
37 https://petsc.org/release/manualpages/KSP/KSP/
38 https://petsc.org/release/manualpages/KSP/KSP/
39 https://petsc.org/release/manualpages/PC/PC/
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“shell”
Towork with the corresponding expression without forming the matrix explicitly. This is achieved by internally
setting a matrix-free matrix with MatCreateShell40.

“inplace”
To build the coefficient matrix explicitly. This is done by means of a MatShift41 or a MatAXPY42 operation,
which overwrites matrix A with the corresponding expression. This alteration of matrix A is reversed after
the eigensolution process has finished.

“copy”
To build the matrix explicitly, as in the previous option, but using a working copy of the matrix, that is, without
modifying the original matrix A.

The default behavior is to build the coefficient matrix explicitly in a copy ofA (option “copy”). The user can change
this as in the following example

$ ./program -st_type sinvert -eps_target 10 -st_ksp_type cg
-st_pc_type jacobi -st_matmode shell

As always, the procedural equivalent is also available for specifying this option in the code of the program: STSet-
MatMode

STSetMatMode(ST st,STMatMode mode);

The user must consider which approach is the most appropriate for the particular application. The different options
have advantages and drawbacks. The “shell” approach is the simplest one but severely restricts the number of
possibilities available for solving the system, in particular most of the PETSc preconditioners would not be available,
including direct methods. The only preconditioners that can be used in this case are Jacobi (only if matrices A and
B have the operation MATOP_GET_DIAGONAL) or a user-defined one.

The second approach (“inplace”) can be much faster, specially in the generalized case. A more important advan-
tage of this approach is that, in this case, the linear system solver can be combined with any of the preconditioners
available in PETSc, including those which need to access internal matrix data-structures such as ILU. The main
drawback is that, in the generalized problem, this approach probably makes sense only in the case thatA andB have
the same sparse pattern, because otherwise the function MatAXPY43 might be inefficient. If the user knows that the
pattern is the same (or a subset), then this can be specified with the function STSetMatStructure

STSetMatStructure(ST st,MatStructure str);

Note that when the value of the shift σ is very close to an eigenvalue, then the linear system will be ill-conditioned
and using iterative methods may be problematic. On the other hand, in symmetric definite problems, the coefficient
matrix will be indefinite whenever σ is a point in the interior of the spectrum.

The third approach (“copy”) uses more memory but avoids a potential problem that could appear in the “inplace”
approach: the recovered matrix might be slightly different from the original one (due to roundoff).

3.4.3 Preserving the Symmetry in Generalized Eigenproblems

As mentioned in section Defining the Problem (page 17), some eigensolvers can exploit symmetry and compute a
solution for Hermitian problems with less storage and/or computational cost than other methods. Also, symmetric
solvers can be more accurate in some cases. However, in the case of generalized eigenvalue problems in which
both A and B are symmetric, it happens that, due to the spectral transformation, symmetry is lost since none of the
transformed operators B−1A − σI , (A − σB)−1B, etc. is symmetric (the same applies in the Hermitian case for
complex matrices).

The solution proposed in SLEPc is based on selecting different kinds of inner products. Currently, we have the
following choice of inner products:

40 https://petsc.org/release/manualpages/Mat/MatCreateShell/
41 https://petsc.org/release/manualpages/Mat/MatShift/
42 https://petsc.org/release/manualpages/Mat/MatAXPY/
43 https://petsc.org/release/manualpages/Mat/MatAXPY/
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• Standard Hermitian inner product: ⟨x, y⟩ = x∗y.

• B-inner product: ⟨x, y⟩B = x∗B y.

The second one can be used for preserving the symmetry in symmetric definite generalized problems, as described
below. Note that ⟨x, y⟩B is a genuine inner product only ifB is symmetric positive definite (for the case of symmetric
positive semi-definite B see section Purification of Eigenvectors (page 44)).

It can be shown that Rn with the ⟨x, y⟩B inner product is isomorphic to the Euclidean n-space Rn with the standard
Hermitian inner product. This means that if we use ⟨x, y⟩B instead of the standard inner product, we are just
changing the way lengths and angles are measured, but otherwise all the algebraic properties are maintained and
therefore algorithms remain correct. What is interesting to observe is that the transformed operators such as B−1A
or (A− σB)−1B are self-adjoint with respect to ⟨x, y⟩B .

The userselectsthe
solver

Power/RQI
Subspaceiteration
Arnoldi
Lanczos
Krylov-Schur

The usercanspecify
theproblemtype

General
HermitianDefinite
HermitianIndefinite

The usercanspecify
thespectraltransform

Shift
Shift-and-invert
Cayley

Appropriate
innerproduct
is performed

Appropriate
matrix-vector
productis
performed

Fig. 2: Abstraction used by SLEPc solvers.

Internally, SLEPc operates with the abstraction illustrated in figure Abstraction used by SLEPc solvers. (page 44).
The operations indicated by dashed arrows are implemented as virtual functions. From the user point of view, all
the above explanation is transparent. The only thing he/she has to care about is to set the problem type appropriately
with EPSSetProblemType (see section Defining the Problem (page 17)). In the case of the Cayley transform,
SLEPc is using ⟨x, y⟩A+νB as the inner product for preserving symmetry.

Using the B-inner product may be attractive also in the non-symmetric case (A non-symmetric) as described in the
next subsection.

Note that the above discussion is not directly applicable to STPRECOND and the preconditioned eigensolvers, in the
sense that the goal is not to recover the symmetry of the operator. Still, theB-inner product is also used in generalized
symmetric-definite problems.

3.4.4 Purification of Eigenvectors

In generalized eigenproblems, the case of singularB deserves especial consideration. In this case the default spectral
transformation (STSHIFT) cannot be used since B−1 does not exist.

In shift-and-invert with operator matrix T = (A− σB)−1B, when B is singular all the eigenvectors that belong to
finite eigenvalues are also eigenvectors ofT and belong to the range ofT ,R(T ). In this case, the bilinear form ⟨x, y⟩B
introduced in section Preserving the Symmetry in Generalized Eigenproblems (page 43) is a semi-inner product and
∥x∥B =

√
⟨x, x⟩B is a semi-norm. As before, T is self-adjoint with respect to this inner product sinceB T = T ∗B.

Also, ⟨x, y⟩B is a true inner product onR(T ).

The implication of all this is that, for singular B, if the B-inner product is used throughout the eigensolver then,
assuming that the initial vector has been forced to lie in R(T ), the computed eigenvectors should be correct, i.e.,
they should belong to R(T ) as well. Nevertheless, finite precision arithmetic spoils this nice picture, and computed
eigenvectors are easily corrupted by components of vectors in the null-space ofB. Additional computation is required
for achieving the desired property. This is usually referred to as eigenvector purification.

Althoughmore elaborate purification strategies have been proposed (usually trying to reduce the computational effort,
see [Nour-Omid et al., 1987] and [Meerbergen and Spence, 1997]), the approach in SLEPc is simply to explicitly
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force the initial vector in the range of T , with v0 ← Tv0, as well as the computed eigenvectors at the end, xi ←
Txi. Since this computation can be costly, it can be deactivated if the user knows that B is non-singular, with
EPSSetPurify

EPSSetPurify(EPS eps,PetscBool purify);

A final comment is that eigenvector corruption happens also in the non-symmetric case. IfA is non-symmetric butB
is symmetric positive semi-definite, then the scheme presented above (B-inner product together with purification) can
still be applied and is generally more successful than the straightforward approach with the standard inner product.
For using this scheme in SLEPc, the user has to specify the special problem type EPS_PGNHEP, see table Problem
types considered in EPS. (page 17).

3.4.5 Spectrum Slicing

In the context of symmetric-definite generalized eigenvalue problems (EPS_GHEP) it is often required to compute
all eigenvalues contained in a given interval [a, b]. This poses some difficulties, such as:

• The number of eigenvalues in the interval is not known a priori.

• There might be many eigenvalues, in some applications a significant percentage of the spectrum (20%, say).

• We must make certain that no eigenvalues are missed, and in particular all eigenvalues must be computed with
their correct multiplicity.

• In some applications, the interval is open in one end, i.e., either a or b can be infinite.

One possible strategy to solve this problem is to sweep the interval from one end to the other, computing chunks
of eigenvalues with a spectral transformation that updates the shift dynamically. This is generally referred to as
spectrum slicing. The method implemented in SLEPc is similar to that proposed by Grimes et al. [1994], where
inertia information is used to validate sub-intervals. Given a symmetric-indefinite triangular factorization

A− σB = LDLT , (3.16)

by Sylvester’s law of inertia we know that the number of eigenvalues on the left of σ is equal to the number of negative
eigenvalues of D,

ν(A− σB) = ν(D). (3.17)

A detailed description of the method available in SLEPc can be found in [Campos and Roman, 2012]. The SLEPc
interface hides all the complications of the algorithm. However, the user must be aware of all the restrictions for this
technique to be employed:

• This is currently implemented only in Krylov-Schur.

• The method is based on shift-and-invert, so STSINVERTmust be used. Furthermore, direct linear solvers are
required.

• The direct linear solver must provide the matrix inertia (see PETSc’s MatGetInertia44).

An example command-line that sets up all the required options is:

$ ./ex2 -n 50 -eps_interval 0.4,0.8 -st_type sinvert
-st_ksp_type preonly -st_pc_type cholesky

Note that PETSc’s Cholesky factorization is not parallel, so for doing spectrum slicing in parallel it is required to use
an external solver that supports inertia. For example, with MUMPS (see section Solution of Linear Systems (page 41)
on how to use external linear solvers) we would do:

$ ./ex2 -n 50 -eps_interval 0.4,0.8 -st_type sinvert
-st_ksp_type preonly -st_pc_type cholesky
-st_pc_factor_mat_solver_type mumps -st_mat_mumps_icntl_13 1

44 https://petsc.org/release/manualpages/Mat/MatGetInertia/
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The last option is required by MUMPS to compute the inertia. An alternative is to use SuperLU_DIST, in which
case the required options would be:

$ ./ex2 -n 50 -eps_interval 0.4,0.8 -st_type sinvert
-st_ksp_type preonly -st_pc_type cholesky
-st_pc_factor_mat_solver_type superlu_dist
-st_mat_superlu_dist_rowperm NOROWPERM

In the latter example, MatSetOption45 must be used in both matrices to explicitly state that they are symmetric (or
Hermitian in the complex case).

Apart from the above recommendations, the following must be taken into account:

• The parameters nev and ncv from EPSSetDimensions are determined internally (user-provided val-
ues are ignored, and set to the number of eigenvalues in the interval). It is possible for the user to specify
the “local” nev and ncv parameters that will be used when computing eigenvalues around each shift, with
EPSKrylovSchurSetDimensions.

• The user can also tune the computation by setting the value of max_it.

Usage with Complex Scalars

Some external packages that provide inertia information (MUMPS, Pardiso) do so only in real scalars, but not in the
case of complex scalars. Hence, with complex scalars spectrum slicing is available only sequentially (with PETSc’s
Cholesky factorization) or via SuperLU_DIST (as in the last example above). An alternative to spectrum slicing is
to use the CISS solver with a region enclosing an interval on the real axis, see Maeda et al. [2016] for details.

Use of Multiple Communicators

Since spectrum slicing requires direct linear solves, parallel runs may suffer from bad scalability in the sense that
increasing the number of MPI processes does not imply a performance gain. For this reason, SLEPc provides the
option of using multiple communicators, that is, splitting the initial MPI communicator in several groups, each of
them in charge of processing part of the interval.

The multi-communicator setting is activated with a value of npart>1 in EPSKrylovSchurSetPartitions

EPSKrylovSchurSetPartitions(EPS eps,PetscInt npart);

The interval [a, b] is then divided in npart subintervals of equal size, and the problem of computing all eigenvalues
in [a, b] is divided in npart independent subproblems. Each subproblem is solved using only a subset of the initial
p processes, with ⌈p/npart⌉ processes at most. A final step will gather all computed solutions so that they are
available in the whole EPS communicator.

The division of the interval in subintervals is done blindly, and this may result in load imbalance if some subinter-
vals contain much more eigenvalues than others. This can be prevented by passing a list of subinterval bound-
aries, provided that the user has a priori information to roughly determine the eigenvalue distribution: EP-
SKrylovSchurSetSubintervals

EPSKrylovSchurSetSubintervals(EPS eps,PetscReal *subint);

An additional benefit of multi-communicator support is that it enables parallel spectrum slicing runs without the need
to install a parallel direct solver (MUMPS), by setting the number of partitions equal to the number ofMPI processes.
The following command-line example uses sequential linear solves in 4 partitions, one process each:

$ mpiexec -n 4 ./ex25 -eps_interval 0.4,0.8 -eps_krylovschur_partitions 4
-st_type sinvert -st_ksp_type preonly -st_pc_type cholesky

The analog example using MUMPS with 5 processes in each partition:
45 https://petsc.org/release/manualpages/Mat/MatSetOption/
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$ mpiexec -n 20 ./ex25 -eps_interval 0.4,0.8 -eps_krylovschur_partitions 4
-st_type sinvert -st_ksp_type preonly -st_pc_type cholesky
-st_pc_factor_mat_solver_type mumps -st_mat_mumps_icntl_13 1

3.4.6 Spectrum Folding

In SLEPc versions prior to 3.5, ST had another type intended to perform the spectrum folding technique described
below. It is no longer available with ST, but it can be implemented directly in application code as illustrated in
example ex24.c.

Spectrum folding involves squaring in addition to shifting. This makes sense for standard Hermitian eigenvalue
problems, where the transformed problem to be addressed is

(A− σI)2x = θx. (3.18)

The following relation holds

θ = (λ− σ)2. (3.19)

Note that the mapping between λ and θ is not injective, and hence this cannot be considered a true spectral transfor-
mation.

The effect is that the spectrum is folded around the value of σ. Thus, eigenvalues that are closest to the shift become
the smallest eigenvalues in the folded spectrum, as illustrated in figure Illustration of the effect of spectrum folding.
(page 47). For this reason, spectrum folding is commonly used in combination with eigensolvers that compute the
smallest eigenvalues, for instance in the context of electronic structure calculations [Canning et al., 2000]. This
transformation can be an effective, low-cost alternative to shift-and-invert.

λσ

θ
θ= (λ−σ)2

θ1

θ2

θ3

λ1 λ2 λ3

Fig. 3: Illustration of the effect of spectrum folding.
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CΗАРΤЕR 4

SVD: Singular Value Decomposition

The Singular Value Decomposition (SVD) solver object can be used for computing a partial SVD of a rectangular
matrix, and other related problems. It provides uniform and efficient access to several specific SVD solvers included
in SLEPc, and also gives the possibility to compute the decomposition via the eigensolvers provided in the EPS
package.

In many aspects, the user interface of SVD resembles that of EPS. For this reason, this chapter and chapter EPS:
Eigenvalue Problem Solver (page 13) have a very similar structure.

4.1 Mathematical Background

This section provides some basic concepts about the singular value decomposition and other related problems. The
objective is to set up the notation and also to justify some of the solution approaches, particularly those based on the
EPS object. As in the case of eigensolvers, some of the implemented methods are described in detail in the SLEPc
technical reports.

For background material about the SVD, see for instance [Bai et al., 2000, ch. 6]. Many other books such as
[Björck, 1996] or [Hansen, 1998] present the SVD from the perspective of its application to the solution of least
squares problems and other related linear algebra problems.

4.1.1 The (Standard) Singular Value Decomposition (SVD)

The singular value decomposition (SVD) of anm× n matrix A can be written as

A = UΣV ∗, (4.1)

where U = [u1, . . . , um] is an m × m unitary matrix (U∗U = I), V = [v1, . . . , vn] is an n × n unitary matrix
(V ∗V = I), and Σ is an m × n diagonal matrix with real diagonal entries Σii = σi for i = 1, . . . ,min{m,n}. If
A is real, U and V are real and orthogonal. The vectors ui are called the left singular vectors, the vi are the right
singular vectors, and the σi are the singular values.

In the following, we will assume thatm ≥ n. Ifm < n then A should be replaced by A∗ (note that in SLEPc this is
done transparently as described later in this chapter and the user need not worry about this). In the case thatm ≥ n,
the top n rows of Σ contain diag(σ1, . . . , σn) and its bottomm− n rows are zero. The relation equation (4.1) may
also be written as AV = UΣ, or

Avi = uiσi , i = 1, . . . , n, (4.2)
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A = Un Σn

V∗
n

Fig. 1: Scheme of the thin SVD of a rectangular matrix A.

and also as A∗U = V Σ∗, or

A∗ui = viσi , i = 1, . . . , n, (4.3)

A∗ui = 0 , i = n+ 1, . . . ,m. (4.4)

The last left singular vectors corresponding to equation (4.4) are often not computed, especially if m ≫ n. In that
case, the resulting factorization is sometimes called the thin SVD, A = UnΣnV

∗
n , and is depicted in figure Scheme

of the thin SVD of a rectangular matrix A. (page 50). This factorization can also be written as

A =

n∑
i=1

σiuiv
∗
i . (4.5)

Each (σi, ui, vi) is called a singular triplet.

The singular values are real and nonnegative, σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σn = 0, where r = rank(A).
It can be shown that {u1, . . . , ur} span the range of A, R(A), whereas {vr+1, . . . , vn} span the null space of A,
N (A).

If the zero singular values are dropped from the sum in equation (4.5), the resulting factorization,A =
∑r

i=1 σiuiv
∗
i ,

is called the compact SVD, A = UrΣrV
∗
r .

In the case of a very large and sparse A, it is usual to compute only a subset of k ≤ r singular triplets. We will refer
to this decomposition as the truncated SVD of A. It can be shown that the matrix Ak = UkΣkV

∗
k is the best rank-k

approximation to matrix A, in the least squares sense.

In general, one can take an arbitrary subset of the summands in equation (4.5), and the resulting factorization is
called the partial SVD of A. As described later in this chapter, SLEPc allows the computation of a partial SVD
corresponding to either the k largest or smallest singular triplets.

Equivalent Eigenvalue Problems

It is possible to formulate the problem of computing the singular triplets of a matrix A as an eigenvalue problem
involving a Hermitian matrix related to A. There are two possible ways of achieving this:

1. With the cross product matrix, either A∗A or AA∗.

2. With the cyclic matrix, H(A) =
[

0 A
A∗ 0

]
.

In SLEPc, the computation of the SVD is usually based on one of these two alternatives, either by passing one of
these matrices to an EPS object or by performing the computation implicitly.

By pre-multiplying equation (4.2) by A∗ and then using equation (4.3), the following relation results

A∗Avi = σ2
i vi, (4.6)

that is, the vi are the eigenvectors of matrix A∗A with corresponding eigenvalues equal to σ2
i . Note that after

computing vi the corresponding left singular vector, ui, is readily available through equation (4.2) with just a matrix-
vector product, ui =

1
σi
Avi.
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Alternatively, one could first compute the left vectors and then the right ones. For this, pre-multiply equation (4.3)
by A and then use equation (4.2) to get

AA∗ui = σ2
i ui. (4.7)

In this case, the right singular vectors are obtained as vi = 1
σi
A∗ui.

The two approaches represented in equations (4.6) and (4.7) are very similar. Note however that A∗A is a square
matrix of order n whereas AA∗ is of orderm. In cases wherem≫ n, the computational effort will favor the A∗A
approach. On the other hand, the eigenproblem equation (4.6) has n − r zero eigenvalues and the eigenproblem
equation (4.7) has m − r zero eigenvalues. Therefore, continuing with the assumption that m ≥ n, even in the full
rank case the AA∗ approach may have a large null space resulting in difficulties if the smallest singular values are
sought. In SLEPc, this will be referred to as the cross product approach and will use whichever matrix is smaller,
either A∗A or AA∗.

Computing the SVD via the cross product approachmay be adequate for determining the largest singular triplets ofA,
but the loss of accuracy can be severe for the smallest singular triplets. The cyclic matrix approach is an alternative
that avoids this problem, but at the expense of significantly increasing the cost of the computation. Consider the
eigendecomposition of

H(A) =

[
0 A
A∗ 0

]
, (4.8)

which is a Hermitian matrix of order (m + n). It can be shown that ±σi is a pair of eigenvalues of H(A) for
i = 1, . . . , r and the otherm+n−2r eigenvalues are zero. The unit eigenvectors associated with±σi are 1√

2

[±ui
vi

]
.

Thus it is possible to extract the singular values and the left and right singular vectors ofA directly from the eigenvalues
and eigenvectors of H(A). Note that in this case the singular values are not squared, and therefore the computed
values will be more accurate (especially the small ones). The drawback in this case is that small eigenvalues are
located in the interior of the spectrum.

4.1.2 The Generalized Singular Value Decomposition (GSVD)

An extension of the SVD to the case of two matrices is the generalized singular value decomposition (GSVD), which
can be applied in constrained least squares problems, among others. An overview of the problem can be found in
[Golub and van Loan, 1996, 8.7.3].

Consider two matrices,A ∈ Cm×n withm ≥ n andB ∈ Cp×n. Note that both matrices must have the same column
dimension. Then there exist two unitary matrices U ∈ Cm×m and V ∈ Cp×p and an invertible matrix X ∈ Cn×n

such that

U∗AX = C, V ∗BX = S, (4.9)

where C = diag(c1, . . . , cn) and S = diag(sn−q+1, . . . , sn) with q = min(p, n). The values ci and si are real and
nonnegative, and the ratios define the generalized singular values,

σ(A,B) ≡ {c1/s1, . . . , cq/sq}, (4.10)

and if p < n we can consider that the first n− p generalized singular values are infinite, as if s1 = · · · = sn−p = 0.
Note that ifB is the identity matrix,X can be taken to be unitary and then we recover the standard SVD, σ(A, I) =
σ(A), that is why equation (4.9) is considered a generalization of the SVD.

The diagonal matrices C and S satisfy C∗C + S∗S = I , and are related to the CS decomposition [Golub and van
Loan, 1996, 2.6.4] associated with the orthogonal factor of the QR factorization of matrices A and B stacked, that
is, if

Z :=

[
A
B

]
=

[
Q1

Q2

]
R, (4.11)

then C and S can be obtained from the singular values of Q1 and Q2, respectively. The matrix Z is relevant for
algorithms and is often built explicitly.
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Fig. 2: Scheme of the thin GSVD of two matrices A and B, for the case p < n.

The above description assumes that matrix Z has full column rank, and the rank of B is also q. In the general case
where these assumptions do not hold, the structure of matrices C and S is a bit more complicated. This includes also
the case wherem < n. A detailed description of those cases can be found in [Anderson et al., 1999, 2.3.5.3].

As in the case of the SVD, one can consider thin, compact, truncated, and partial versions of the GSVD. A pictorial
representation of the thin GSVD is shown in figure Scheme of the thin GSVD of two matrices A and B, for the case p
< n. (page 52).

The columns of X , xi, are called the (right) generalized singular vectors. The left vectors in this case would corre-
spond to the columns of U and V . In SLEPc, the user interface will provide these vectors stacked on top of each

other, as a single (m+ p)-vector
[
ui

vi

]
.

Equivalent Eigenvalue Problems

In the GSVD it is also possible to formulate the problem as an eigenvalue problem, which opens the door to approach
its solution via EPS. The columns of X satisfy

s2iA
∗Axi = c2iB

∗Bxi, (4.12)

and so if si ̸= 0 then A∗Axi = σ2
iB

∗Bxi, a generalized eigenvalue problem for the matrix pair (A∗A,B∗B). This
is the analog of the cross product matrix eigenproblem of equation (4.6).

The formulation that is analog to the eigenproblem associated with the cyclic matrix equation (4.8) is to solve the
generalized eigenvalue problem defined by any of the matrix pairs([

0 A
A∗ 0

]
,

[
I 0
0 B∗B

])
, or

([
0 B
B∗ 0

]
,

[
I 0
0 A∗A

])
. (4.13)

4.1.3 The Hyperbolic Singular Value Decomposition (HSVD)

The hyperbolic singular value decomposition (HSVD) was introduced in [Onn et al., 1991], motivated by some
signal processing applications such as the so-called covariance differencing problem. The formulation of the HSVD
is similar to that of the SVD, except that U is orthogonal with respect to a signature matrix,

A = UΣV ∗, U∗ΩU = Ω̃, (4.14)

whereΩ = diag(±1) is anm×m signature matrix provided by the user, while Ω̃ is another signature matrix obtained
as part of the solution. SometimesU is said to be a hyperexchange matrix, or also an (Ω, Ω̃)-orthogonal matrix. Note
that in the problem definition normally found in the literature it is V that is (Ω, Ω̃)-orthogonal and not U . We choose
this definition for consistency with respect to the generalized HSVD of two matrices. If the user wants to compute
the HSVD according to the alternative definition, then it suffices to (conjugate) transpose the input matrix A, using
for instance MatHermitianTranspose48.

48 https://petsc.org/release/manualpages/Mat/MatHermitianTranspose/
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As in the case of the SVD, the solution of the problem consists in singular triplets (σi, ui, vi), with σi real and
nonnegative and sorted in nonincreasing order. Note that these quantities are different from those of section The
(Standard) Singular Value Decomposition (SVD) (page 49), even though we use the same notation here. With each
singular triplet, there is an associated sign ω̃i (either 1 or −1), the corresponding diagonal element of Ω̃. In SLEPc,
this value is not returned by the user interface, but if required it can be easily computed as u∗

iΩui.

The relations between left and right singular vectors are slightly different from those of the standard SVD. We have
AV = UΣ and A∗ΩU = V Σ∗Ω̃, so form ≥ n the following relations hold, together with equation (4.2):

A∗Ωui = viσiω̃i , i = 1, . . . , n, (4.15)

A∗Ωui = 0 , i = n+ 1, . . . ,m. (4.16)

In SLEPc we will compute a partial HSVD consisting of either the largest or smallest hyperbolic singular triplets.
Note that the sign ω̃i is not used when sorting for largest or smallest σi.

Equivalent Eigenvalue Problems

Once again, we can derive cross and cyclic schemes to compute the decomposition by solving an eigenvalue problem.
The cross product matrix approach has two forms, to be selected depending on whetherm ≥ n or not, as discussed
in section The (Standard) Singular Value Decomposition (SVD) (page 49). The first form,

A∗ΩAvi = σ2
i ω̃ivi, (4.17)

is derived by pre-multiplying equation (4.2) by A∗Ω and then using equation (4.15). This eigenproblem can be
solved as a HEP (cf. section Defining the Problem (page 17)) and may have both positive and negative eigenvalues,
corresponding to ω̃i = 1 and ω̃i = −1, respectively. Once the right vector vi has been computed, the corresponding
left vector can be obtained using equation (4.2) with just a matrix-vector product, ui = σ−1

i Avi.

The second form of cross computes the left vectors first, by pre-multiplying equation (4.15) by A and then using
equation (4.2),

AA∗Ωui = σ2
i ω̃iui. (4.18)

In this case, the right singular vectors are obtained as vi = (σiω̃i)
−1A∗Ωui. The coefficient matrix of (4.18) is

non-Hermitian, so the eigenproblem has to be solved as non-Hermitian, or alternatively it can be formulated as a
generalized eigenvalue problem of GHIEP type (cf. section Defining the Problem (page 17)) for the indefinite pencil
(AA∗,Ω),

AA∗ûi = σ2
i ω̃iΩûi, (4.19)

with ûi = Ωui. The eigenvectors obtained from equation (4.18) or equation (4.19) must be normalized so that
U∗ΩU = Ω̃ holds.

Finally, in the cyclic matrix approach for the HSVD we must solve a generalized eigenvalue problem defined by the
matrices of order (m+ n)

H(A) =

[
0 A
A∗ 0

]
, Ω̂ =

[
Ω 0
0 I

]
. (4.20)

As in the case of equation (4.19), this pencil is Hermitian-indefinite and hence it may have complex eigenvalues.
However, it can be shown that nonzero eigenvalues of the pencil (H(A), Ω̂) are either real (equal to±σi for a certain
hyperbolic singular value σi) or purely imaginary (equal to ±σij for a certain σi with j =

√
−1). The associated

eigenvectors are [ ςiui
vi ], where ςi is either ±1 or ±j.
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4.2 Basic Usage

From the perspective of the user interface, the SVD package is very similar to EPS, with some differences that will
be highlighted shortly.

Listing 1: Example code for basic solution with SVD.

SVD svd; /* SVD solver context */
Mat A; /* problem matrix */
Vec u, v; /* singular vectors */
PetscReal sigma; /* singular value */
PetscInt j, nconv;
PetscReal error;

SVDCreate( PETSC_COMM_WORLD, &svd );
SVDSetOperators( svd, A, NULL );
SVDSetProblemType( svd, SVD_STANDARD );
SVDSetFromOptions( svd );
SVDSolve( svd );
SVDGetConverged( svd, &nconv );
for (j=0; j<nconv; j++) {

SVDGetSingularTriplet( svd, j, &sigma, u, v );
SVDComputeError( svd, j, SVD_ERROR_RELATIVE, &error );

}
SVDDestroy( &svd );

The basic steps for computing a partial SVD with SLEPc are illustrated in figure Example code for basic solution with
SVD. (page 54). The steps are more or less the same as those described in chapter EPS: Eigenvalue Problem Solver
(page 13) for the eigenvalue problem. First, the solver context is created with SVDCreate. Then the problem
matrices have to be specified with SVDSetOperators and the type of problem can be selected via SVDSet-
ProblemType. Then, a call to SVDSolve invokes the actual solver. After that, SVDGetConverged is used
to determine how many solutions have been computed, which are retrieved with SVDGetSingularTriplet.
Finally, SVDDestroy gets rid of the object.

If one compares this example code with theEPS example in figure Example code for basic solution with EPS (page 15),
the most outstanding differences are the following:

• The singular value is a PetscReal49, not a PetscScalar50.

• Each singular vector is defined with a single Vec51 object, not two as was the case for eigenvectors.

4.3 Defining the Problem

Defining the problem consists in specifying the problem matrixA (and also a second matrixB in case of the GSVD),
the problem type, and the portion of the spectrum to be computed.

The problem matrices are provided with the following function SVDSetOperators

SVDSetOperators(SVD svd,Mat A,Mat B);

where A can be any matrix, not necessarily square, stored in any allowed PETSc format including the matrix-free
mechanism (see section Supported Matrix Types (page 88) for a detailed discussion), and B is generally set to NULL
except in the case of computing the GSVD. If the problem is hyperbolic (section The Hyperbolic Singular Value
Decomposition (HSVD) (page 52)) then in addition a signature matrixΩmust be provided with SVDSetSignature

SVDSetSignature(SVD svd,Vec omega);

49 https://petsc.org/release/manualpages/Sys/PetscReal/
50 https://petsc.org/release/manualpages/Sys/PetscScalar/
51 https://petsc.org/release/manualpages/Vec/Vec/
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Note that Ω is represented as a vector containing values equal to 1 or −1.

The problem type can be specified with the function SVDSetProblemType

SVDSetProblemType(SVD svd,SVDProblemType type);

Note that in SVD calling it is currently not strictly required, since the problem type can be deduced from the infor-
mation passed by the user: if only one matrix is passed to SVDSetOperators the problem type will default to a
standard SVD (or hyperbolic SVD if a signature has been provided), while if two matrices are passed then it defaults
to GSVD. Still, it is recommended to always call SVDSetProblemType. Table Problem types considered in SVD.
(page 55) lists the supported problem types.

Table 1: Problem types considered in SVD.

Problem Type SVDProblemType Command line key

Standard SVD SVD_STANDARD -svd_standard
Generalized SVD (GSVD) SVD_GENERALIZED -svd_generalized
Hyperbolic SVD (HSVD) SVD_HYPERBOLIC -svd_hyperbolic

It is important to note that all SVD solvers in SLEPc make use of both A and A∗, as suggested by the description in
section The (Standard) Singular Value Decomposition (SVD) (page 49). A∗ is not explicitly passed as an argument
to SVDSetOperators, therefore it will have to stem from A. There are two possibilities for this: either A is
transposed explicitly and A∗ is created as a distinct matrix, or A∗ is handled implicitly via MatMultTranspose52 (or
MatMultHermitianTranspose53 in the complex case) operations whenever a matrix-vector product is required in the
algorithm. The default is to buildA∗ explicitly, but this behavior can be changed with SVDSetImplicitTrans-
pose

SVDSetImplicitTranspose(SVD svd,PetscBool impl);

In section The (Standard) Singular Value Decomposition (SVD) (page 49), it was mentioned that in SLEPc the cross
product approach chooses the smallest of the two possible cases A∗A or AA∗, that is, A∗A is used if A is a tall,
thin matrix (m ≥ n), and AA∗ is used if A is a fat, short matrix (m < n). In fact, what SLEPc does internally is
that ifm < n the roles of A and A∗ are reversed. This is equivalent to transposing all the SVD factorization, so left
singular vectors become right singular vectors and vice versa. This is actually done in all singular value solvers, not
only the cross product approach. The objective is to simplify the number of cases to be treated internally by SLEPc,
as well as to reduce the computational cost in some situations. Note that this is done transparently and the user need
not worry about transposing the matrix, only to indicate how the transpose has to be handled, as explained above.

The user can specify how many singular values and vectors to compute. The default is to compute only one singular
triplet. The function SVDSetDimensions

SVDSetDimensions(SVD svd,PetscInt nsv,PetscInt ncv,PetscInt mpd);

allows the specification of the number of singular values to compute, nsv. The next argument can be set to prescribe
the number of column vectors to be used by the solution algorithm, ncv, that is, the largest dimension of the working
subspace. These two parameters can also be set at run time with the options -svd_nsv and -svd_ncv. For
example, the command line

$ ./program -svd_nsv 10 -svd_ncv 24

requests 10 singular values and instructs to use 24 column vectors. Note that ncv must be at least equal to nsv,
although in general it is recommended (depending on the method) to work with a larger subspace, for instance
ncv ≥ 2 · nsv or even more. As in the case of the EPS object, the last argument, mpd, can be used to limit the
maximum dimension of the projected problem, as discussed in section Computing a Large Portion of the Spectrum
(page 31). Using this parameter is especially important in the case that a large number of singular values are requested.

52 https://petsc.org/release/manualpages/Mat/MatMultTranspose/
53 https://petsc.org/release/manualpages/Mat/MatMultHermitianTranspose/
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Table 2: Available possibilities for selection of the singular values of in-
terest.

SVDWhich Command line key Sorting criterion

SVD_LARGEST -svd_largest Largest σ
SVD_SMALLEST -svd_smallest Smallest σ

For the selection of the portion of the spectrum of interest, there are only two possibilities in the case of SVD: largest
and smallest singular values, see table Available possibilities for selection of the singular values of interest. (page 56).
The default is to compute the largest ones, but this can be changed with SVDSetWhichSingularTriplets

SVDSetWhichSingularTriplets(SVD svd,SVDWhich which);

which can also be specified at the command line. This criterion is used both for configuring how the algorithm seeks
singular values and also for sorting the computed values. In contrast to the case of EPS, computing singular values
located in the interior part of the spectrum is difficult, the only possibility is to use an EPS object combined with a
spectral transformation (this possibility is explained in detail in the next section). Note that in this case, the value of
which applies to the transformed spectrum.

4.3.1 Using a threshold to specify wanted singular values

In some applications, the number of wanted singular values is not known a priori. For instance, suppose that matrix
A is known to have low rank, and we want to approximate it by a truncated SVD containing the leading singular
values. The goal is to have a good approximation, that is, discard only small singular values. The numerical rank k
might be difficult to estimate, due to discretization error or other reasons. But since we assume that singular values
decay abruptly around some unknown value k, we can configure SLEPc to detect this decay.

The threshold δ can be set with SVDSetThreshold

SVDSetThreshold(SVD svd,PetscReal thres,PetscBool rel);

When rel is PETSC_TRUE54, the solver will compute k singular values, with σj ≥ δ · σ1, for j = 1, . . . , k − 1,
where k is computed internally. In this case, the threshold is relative to the largest singular value σ1, i.e., the matrix
norm. It can be interpreted as a percentage, for instance δ = 0.8means compute singular values that are at least 80%
of the matrix norm. Alternatively, an absolute threshold can be used by setting rel to PETSC_FALSE55

0 50 100 150 200
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σ i

singularvalues
threshold

Fig. 3: Illustration of threshold usage with the singular values of the rdb200 matrix. The red line represents a
threshold of δ = 0.8.

In the low-rank example suggested above, the singular values will decay fast for a relatively small k, so a relative
threshold δ = 0.5 or less could do the job. But care must be taken in matrices whose singular values decay pro-
gressively, as in the example of figure Illustration of threshold usage with the singular values of the rdb200 matrix

54 https://petsc.org/release/manualpages/Sys/PETSC_TRUE/
55 https://petsc.org/release/manualpages/Sys/PETSC_FALSE/
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(page 56), since a small δ would imply computing many singular triplets and hence a very high cost, both computa-
tionally and in memory. Since the number of computed singular values is not known a priori, the solver will need to
reallocate the basis of vectors internally, to have enough room to accommodate all the singular vectors, so this option
must be used with caution to avoid out-of-memory problems. The recommendation is to set the value of ncv to be
larger than the estimated number of singular values, to minimize the number of reallocations. You can also use the
nsv parameter in combination with the threshold to stop in case the number of computed singular triplets exceeds
that value.

An absolute threshold is also available when computing smallest singular values, in which case the solver will compute
the k smallest singular values, where σj < δ, j = n− k + 1, . . . , n.

4.4 Selecting the SVD Solver

The available methods for computing the partial SVD are shown in table List of solvers available in the SVD module.
In the column of supported problems, ‘G’ means GSVD and ‘H’ means HSVD (the standard SVD is supported by all
solvers). (page 58). These methods can be classified in the following categories:

• Solvers based on EPS. These solvers set up an EPS object internally, thus using the available eigensolvers for
solving the SVD problem. The two possible approaches in this case are the cross product matrix and the cyclic
matrix, as described in section Mathematical Background (page 49).

• Specific SVD solvers. These are typically eigensolvers that have been adapted algorithmically to exploit the
structure of the SVD or GSVD problems. There are two Lanczos-type solvers in this category: Lanczos and
thick-restart Lanczos, see Hernandez et al. [2007] for a detailed description of these methods. In this category,
we could also add the randomized SVD (RSVD), a special solver that does not compute individual singular
vectors accurately, but rather a low-rank approximation of A by means of randomized techniques.

• The LAPACK solver. This is an interface to some LAPACK routines, analog of those in the case of eigen-
problems. These routines operate in dense mode with only one processor and therefore are suitable only for
moderate size problems. This solver should be used only for debugging purposes.

• External packages: ScaLAPACK and ELEMENTAL are dense packages and compute the complete SVD,
while PRIMME offers Davidson-type methods to compute only a few singular triplets.

The default solver is the one that uses the cross product matrix (cross), usually the fastest andmost memory-efficient
approach, at least for the standard SVD. See a more detailed explanation below.

4.4. Selecting the SVD Solver 57
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Table 3: List of solvers available in the SVD module. In the column of
supported problems, ‘G’ means GSVD and ‘H’ means HSVD (the standard
SVD is supported by all solvers).

Method SVDType Options Database
Name

Supported Prob-
lems

De-
fault

Cross Product SVDCROSS cross G,H ⋆
Cyclic Matrix SVDCYCLIC cyclic G,H

Lanczos SVDLANCZOS lanczos

Thick-restart Lanczos SVDTRLANCZOS trlanczos G,H

Randomized SVD
(RSVD)

SVDRANDOM-
IZED

randomized

LAPACK solver SVDLAPACK lapack G

Wrapper to ScaLAPACK SVDSCALAPACK scalapack

Wrapper to KSVD SVDKSVD ksvd

Wrapper to ELEMEN-
TAL

SVDELEMENTAL elemental

Wrapper to PRIMME SVDPRIMME primme

The solution method can be specified procedurally or via the command line. The application programmer can set it
by means of the command SVDSetType

SVDSetType(SVD svd,SVDType method);

while the user writes the options database command -svd_type followed by the name of the method (see table
List of solvers available in the SVD module. In the column of supported problems, ‘G’ means GSVD and ‘H’ means
HSVD (the standard SVD is supported by all solvers). (page 58)).

Note that not all solvers in the SVDmodule support non-standard problems (sections The Generalized Singular Value
Decomposition (GSVD) (page 51)-The Hyperbolic Singular Value Decomposition (HSVD) (page 52)). Table List of
solvers available in the SVD module. In the column of supported problems, ‘G’ means GSVD and ‘H’ means HSVD (the
standard SVD is supported by all solvers). (page 58) indicates which solvers can be used for these.

The EPS-based solvers deserve some additional comments. These SVD solvers work by creating an EPS object in-
ternally and setting up an eigenproblem of type EPS_HEP (or EPS_GHEP in the case of the GSVD, or EPS_GHIEP
in the case of the HSVD). These solvers implement the cross product matrix and the cyclic matrix approaches as
described in section Mathematical Background (page 49). Therefore, the operator matrix associated with the EPS
object will be A∗A in the case of the cross solver andH(A) in the case of the cyclic solver (with variations in
the case of non-standard problems).

In the case of the cross solver, the matrix A∗A is not built explicitly by default, since the resulting matrix may be
much less sparse than the original matrix. By default, a shell matrix is created internally in the SVD object and passed
to the EPS object. Still, the user may choose to force the computation ofA∗A explicitly, by means of PETSc’s sparse
matrix-matrix product subroutines. This is set with SVDCrossSetExplicitMatrix

SVDCrossSetExplicitMatrix(SVD svd,PetscBool explicit);

In the cyclic solver the user can also choose between handling H(A) implicitly as a shell matrix (the default), or
forming it explicitly, that is, storing its elements in a distinct matrix. The function for setting this option is SVD-
CyclicSetExplicitMatrix
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SVDCyclicSetExplicitMatrix(SVD svd,PetscBool explicit);

The EPS object associated with the cross and cyclic SVD solvers is created with a set of reasonable default
parameters. However, it may sometimes be necessary to change some of the EPS options such as the eigensolver.
To allow application programmers to set any of the EPS options directly within the code, the following routines are
provided to extract the EPS context from the SVD object, SVDCrossGetEPS SVDCyclicGetEPS

SVDCrossGetEPS(SVD svd,EPS *eps);
SVDCyclicGetEPS(SVD svd,EPS *eps);

A more convenient way of changing EPS options is through the command-line. This is achieved simply by prefixing
the EPS options with -svd_cross_ or -svd_cyclic_ as in the following example:

$ ./program -svd_type cross -svd_cross_eps_type gd

At this point, one may consider changing also the options of the ST object associated with the EPS object in cross
and cyclic SVD solvers, for example to compute singular values located at the interior of the spectrum via a shift-
and-invert transformation. This is indeed possible, but some considerations have to be taken into account. When
A∗A or H(A) are managed as shell matrices, then the potential of the spectral transformation is limited seriously,
because some of the required operations will not be defined if working with implicit matrices (this is discussed briefly
in sections Supported Matrix Types (page 88) and Explicit Computation of Coefficient Matrix (page 42)). The following
example illustrates the computation of interior singular values with the cyclic solver with explicit H(A) matrix:

$ ./program -svd_type cyclic -svd_cyclic_explicitmatrix
-svd_cyclic_st_type sinvert -svd_cyclic_eps_target 12.0
-svd_cyclic_st_ksp_type preonly -svd_cyclic_st_pc_type lu

Similarly, in the case of GSVD the thick-restart Lanczos solver uses a KSP56 solver internally, that can be configured
by accessing it with SVDTRLanczosGetKSP

SVDTRLanczosGetKSP(SVD svd,KSP *ksp);

or with the corresponding command-line options prefixed with -svd_trlanczos_. This KSP57 object is used to
solve a linear least squares problem at each Lanczos step with coefficient matrix Z equation (4.11), which by default
is a shell matrix but the user can choose to create it explicitly with the function SVDTRLanczosSetExplicit-
Matrix.

4.5 Retrieving the Solution

Once the call to SVDSolve is complete, all the data associated with the computed partial SVD is kept internally in
the SVD object. This information can be obtained by the calling program by means of a set of functions described
below.

As in the case of eigenproblems, the number of computed singular triplets depends on the convergence and, therefore,
it may be different from the number of solutions requested by the user. So the first task is to find out how many
solutions are available, with SVDGetConverged

SVDGetConverged(SVD svd,PetscInt *nconv);

Usually, the number of converged solutions, nconv, will be equal to nsv, but in general it can be a number ranging
from 0 to ncv (here, nsv and ncv are the arguments of function SVDSetDimensions).

Normally, the user is interested in the singular values only, or the complete singular triplets. The function SVD-
GetSingularTriplet

56 https://petsc.org/release/manualpages/KSP/KSP/
57 https://petsc.org/release/manualpages/KSP/KSP/
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SVDGetSingularTriplet(SVD svd,PetscInt j,PetscReal *sigma,Vec u,Vec v);

returns the j-th computed singular triplet, (σj , uj , vj), where both uj and vj are normalized to have unit norm62.
Typically, this function is called inside a loop for each value of j from 0 to nconv–1. Note that singular values are
ordered according to the same criterion specifiedwith functionSVDSetWhichSingularTriplets for selecting
the portion of the spectrum of interest.

In some applications, it may be enough to compute only the right singular vectors. This is especially important in
cases in which memory requirements are critical (remember that both Uk and Vk are dense matrices, and Uk may
require much more storage than Vk, see figure Scheme of the thin SVD of a rectangular matrix A. (page 50)). In
SLEPc, there is no general option for specifying this, but the default behavior of some solvers is to compute only
right vectors and allocate/compute left vectors only in the case that the user requests them. This is done in the cross
solver and in some special variants of other solvers such as one-sided Lanczos (consult the Hernandez et al. [2007]
technical report for specific solver options).

In the case of the GSVD, the sigma argument of SVDGetSingularTriplet contains σi = ci/si and the
second Vec58 argument (v) contains the right singular vectors (xi), while the first Vec59 argument (u) contains the
other vectors of the decomposition stacked on top of each other, as a single (m+ p)-vector: [ ui

vi ].

4.5.1 Reliability of the Computed Solution

In SVD computations, a-posteriori error bounds are much the same as in the case of Hermitian eigenproblems, due
to the equivalence discussed in section The (Standard) Singular Value Decomposition (SVD) (page 49). The residual
vector is defined in terms of the cyclic matrix,H(A), so its norm is

∥rSVD∥2 =
(
∥Aṽ − σ̃ũ∥22 + ∥A∗ũ− σ̃ṽ∥22

) 1
2 , (4.21)

where σ̃, ũ and ṽ represent any of the nconv computed singular triplets delivered by SVDGetSingular-
Triplet.

Given the above definition, the following relation holds

|σ − σ̃| ≤ ∥rSVD∥2, (4.22)

where σ is an exact singular value. The associated error can be obtained in terms of ∥rSVD∥2 with the following
function: SVDComputeError

SVDComputeError(SVD svd,PetscInt j,SVDErrorType type,PetscReal *error);

In the case of the GSVD, the function SVDComputeErrorwill compute a residual norm based on the two relations
equation (4.9),

∥rGSVD∥2 =
(
∥s̃2A∗ũ− c̃B∗Bx̃∥22 + ∥c̃2B∗ṽ − s̃A∗Ax̃∥22

) 1
2 , (4.23)

where x̃, ũ, ṽ are the computed singular vectors corresponding to σ̃, and c̃, s̃ are obtained from σ̃ as s̃ = 1/
√
1 + σ̃2

and c̃ = σ̃s̃. See [Alvarruiz et al., 2024] for details.

Similarly, in the HSVD we employ a modified residual

∥rHSVD∥2 =
(
∥Aṽ − σ̃ũ∥22 + ∥A∗Ωũ− σ̃ω̃ṽ∥22

) 1
2 , (4.24)

where ω̃ is the corresponding element of the signature Ω̃ of the definition equation (4.14).

62 The exception is in the HSVD, where uj is normalized so that U∗ΩU = Ω̃.
58 https://petsc.org/release/manualpages/Vec/Vec/
59 https://petsc.org/release/manualpages/Vec/Vec/
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4.5.2 Controlling and Monitoring Convergence

Similarly to the case of eigensolvers, in SVD the number of iterations carried out by the solver can be deter-
mined with SVDGetIterationNumber, and the tolerance and maximum number of iterations can be set
with SVDSetTolerances. Also, convergence can be monitored with command-line keys -svd_monitor,
-svd_monitor_all, -svd_monitor_conv, or graphically with -svd_monitor draw::draw_lg, or
alternatively with -svd_monitor_all draw::draw_lg. See section Controlling andMonitoring Convergence
(page 25) for additional details.

Table 4: Available possibilities for the convergence criterion, with Z = A
in the standard SVD or as defined in equation (4.11) for the GSVD.

Convergence criterion SVDConv Command line key Error bound

Absolute SVD_CONV_ABS -svd_conv_abs |r|
Relative to eigenvalue SVD_CONV_REL -svd_conv_rel |r|/|λ|
Relative to matrix norms SVD_CONV_NORM -svd_conv_norm |r|/|Z|
Fixed number of iterations SVD_CONV_MAXIT -svd_conv_maxit ∞
User-defined SVD_CONV_USER -svd_conv_user user function

As in the case of eigensolvers, the user can choose different convergence tests, based on an error bound obtained from
the computed residual norm, ∥r∥. Table Available possibilities for the convergence criterion, with Z=A in the standard
SVD or as defined in equation eq:qr for the GSVD. (page 61) lists the available options. It is worth mentioning the
SVD_CONV_MAXIT convergence criterion, which is a bit special. With this criterion, the solver will not compute
any residual norms and will stop with a successful status when the maximum number of iterations is reached. This is
intended for the SVDRANDOMIZED solver in cases when a low-rank approximation of a matrix needs to be computed
instead of accurate singular vectors.

4.5.3 Viewing the Solution

There is support for different kinds of viewers for the solution, as in the case of eigensolvers. One
can for instance use -svd_view_values, -svd_view_vectors, -svd_error_relative, or
-svd_converged_reason. See the description in section Viewing the Solution (page 28).

4.5. Retrieving the Solution 61
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CΗАРΤЕR 5

PEP: Polynomial Eigenvalue Problems

The Polynomial Eigenvalue Problem (PEP) solver object is intended for addressing polynomial eigenproblems of
arbitrary degree, P (λ)x = 0. A particular instance is the quadratic eigenvalue problem (degree 2), which is the case
more often encountered in practice. For this reason, part of the description of this chapter focuses specifically on
quadratic eigenproblems.

Currently, most PEP solvers are based on linearization, either implicit or explicit. The case of explicit linearization
allows the use of eigensolvers from EPS to solve the linearized problem.

5.1 Overview of Polynomial Eigenproblems

In this section, we review some basic properties of the polynomial eigenvalue problem. The main goal is to set up the
notation as well as to describe the linearization approaches that will be employed for solving via an EPS object. To
simplify the description, we initially restrict to the case of quadratic eigenproblems, and then extend to the general
case of arbitrary degree. For additional background material, the reader is referred to Tisseur and Meerbergen
[2001]. More information can be found in a paper by Campos and Roman [2016], that focuses specifically on SLEPc
implementation of methods based on Krylov iterations on the linearized problem.

5.1.1 Quadratic Eigenvalue Problems

In many applications, e.g., problems arising from second-order differential equations such as the analysis of damped
vibrating systems, the eigenproblem to be solved is quadratic,

(K + λC + λ2M)x = 0, (5.1)

whereK,C,M ∈ Cn×n are the coefficients of a matrix polynomial of degree 2, λ ∈ C is the eigenvalue and x ∈ Cn

is the eigenvector. As in the case of linear eigenproblems, the eigenvalues and eigenvectors can be complex even in
the case that all three matrices are real.

It is important to point out some outstanding differences with respect to the linear eigenproblem. In the quadratic
eigenproblem, the number of eigenvalues is 2n, and the corresponding eigenvectors do not form a linearly independent
set. If M is singular, some eigenvalues are infinite. Even when the three matrices are symmetric and positive
definite, there is no guarantee that the eigenvalues are real, but still methods can exploit symmetry to some extent.
Furthermore, numerical difficulties are more likely than in the linear case, so the computed solution can sometimes
be untrustworthy.

If equation (5.1) is written as P (λ)x = 0, where P is the matrix polynomial, then multiplication by λ−2 results in
revP (λ−1)x = 0, where revP denotes thematrix polynomial with the coefficients ofP in the reverse order. In other
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words, if a method is available for computing the largest eigenvalues, then reversing the roles ofM andK results in
the computation of the smallest eigenvalues. In general, it is also possible to formulate a spectral transformation for
computing eigenvalues closest to a given target, as discussed in section Spectral Transformation (page 70).

Problem Types

As in the case of linear eigenproblems, there are some particular properties of the coefficient matrices that confer a
certain structure to the quadratic eigenproblem, e.g., symmetry of the spectrum with respect to the real or imaginary
axes. These structures are important as long as the solvers are able to exploit them.

• Hermitian (symmetric) problems, whenM ,C,K are all Hermitian (symmetric). Eigenvalues are real or come
in complex conjugate pairs. Furthermore, ifM > 0 and C,K ≥ 0 then the system is stable, i.e., Re(λ) ≤ 0.

• Hyperbolic problems, a particular class of Hermitian problems where M > 0 and (x∗Cx)2 >
4(x∗Mx)(x∗Kx) for all nonzero x ∈ Cn. All eigenvalues are real, and form two separate groups of n eigen-
values, each of them having linearly independent eigenvectors. A particular subset of hyperbolic problems is
the class of overdamped problems, where C > 0 andK ≥ 0, in which case all eigenvalues are non-positive.

• Gyroscopic problems, when M , K are Hermitian, M > 0, and C is skew-Hermitian, C = −C∗. The
spectrum is symmetric with respect to the imaginary axis, and in the real case, it has a Hamiltonian structure,
i.e., eigenvalues come in quadruples (λ, λ̄,−λ,−λ̄).

Currently, the problem type is not exploited by PEP solvers, except for a few exceptions. In the future, we may add
more support for structure-preserving solvers.

Linearization

It is possible to transform the quadratic eigenvalue problem to a linear generalized eigenproblem L0y = λL1y by
doubling the order of the system, i.e., L0, L1 ∈ C2n×2n. There are many ways of doing this. For instance, consider
the following two pencils L(λ) = L0 − λL1,[

0 I
−K −C

]
− λ

[
I 0
0 M

]
, (5.2)

[
−K 0
0 I

]
− λ

[
C M
I 0

]
. (5.3)

Both of them have the same eigenvalues as the quadratic eigenproblem, and the corresponding eigenvectors can be
expressed as

y =

[
x
xλ

]
, (5.4)

where x is the eigenvector of the quadratic eigenproblem.

Other non-symmetric linearizations can be obtained by a linear combination of equations (5.2) and (5.3),[
−βK αI
−αK −αC + βI

]
− λ

[
αI + βC βM

βI αM

]
. (5.5)

for any α, β ∈ R. The linearizations equations (5.2) and (5.3) are particular cases of equation (5.5) taking (α, β) =
(1, 0) and (0, 1), respectively.

Symmetric linearizations are useful for the case that M , C, and K are all symmetric (Hermitian), because the
resulting matrix pencil is symmetric (Hermitian), although indefinite:[

βK αK
αK αC − βM

]
− λ

[
αK − βC −βM
−βM −αM

]
, (5.6)

And for gyroscopic problems, we can consider Hamiltonian linearizations,[
αK −βK

αC + βM αK

]
− λ

[
βM αK + βC
−αM βM

]
, (5.7)
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where one of the matrices is Hamiltonian and the other one is skew-Hamiltonian if (α, β) is (1, 0) or (0, 1).

In SLEPc, the PEPLINEAR solver is based on using one of the above linearizations for solving the quadratic eigen-
problem. This solver makes use of linear eigensolvers from the EPS package.

We could also consider the reversed forms, e.g., the reversed form of equation (5.3) is[
−C −M
I 0

]
− 1

λ

[
K 0
0 I

]
, (5.8)

which is equivalent to the form equation (5.2) for the problem revP (λ−1)x = 0. These reversed forms are not
implemented in SLEPc, but the user can use them simply by reversing the roles of M and K, and considering
the reciprocals of the computed eigenvalues. Alternatively, this can be viewed as a particular case of the spectral
transformation (with σ = 0), see section Spectral Transformation (page 70).

5.1.2 Polynomials of Arbitrary Degree

In general, the polynomial eigenvalue problem can be formulated as

P (λ)x = 0, (5.9)

whereP is ann×nmatrix polynomial of degree d. Ann-vector x ̸= 0 satisfying this equation is called an eigenvector
associated with the corresponding eigenvalue λ.

We start by considering the case where P is expressed in terms of the monomial basis,

P (λ) = A0 +A1λ+A2λ
2 + · · ·+Adλ

d, (5.10)

where A0, . . . , Ad are the n × n coefficient matrices. As before, the problem can be solved via some kind of
linearization. One of the most commonly used ones is the first companion form

L(λ) = L0 − λL1, (5.11)

where the related linear eigenproblem is L(λ)y = 0, with

L0 =


I

. . .
I

−A0 −A1 · · · −Ad−1

 , L1 =


I

. . .
I

Ad

 , y =


x
xλ
...

xλd−1

 . (5.12)

This is the generalization of equation (5.2).

The definition of vector y above contains the successive powers of λ. For large polynomial degree, these values may
produce overflow in finite precision computations, or at least lead to numerical instability of the algorithms due to
the wide difference in magnitude of the eigenvector entries. For this reason, it is generally recommended to work
with non-monomial polynomial bases whenever the degree is not small, e.g., for d > 5.

In the most general formulation of the polynomial eigenvalue problem, P is expressed as

P (λ) = A0ϕ0(λ) +A1ϕ1(λ) + · · ·+Adϕd(λ), (5.13)

where ϕi are the members of a given polynomial basis, for instance, some kind of orthogonal polynomials
such as Chebyshev polynomials of the first kind. In that case, the expression of y in equation (5.12) contains
ϕ0(λ), . . . , ϕd(λ) instead of the powers of λ. Correspondingly, the form of L0 and L1 is different for each type of
polynomial basis.

5.1. Overview of Polynomial Eigenproblems 65
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Avoiding the Linearization

An alternative to linearization is to directly perform a projection of the polynomial eigenproblem. These methods
enforce a Galerkin condition on the polynomial residual, P (θ)u ⊥ K. Here, the subspace K can be built in various
ways, for instance with the Jacobi-Davidson method. This family of methods need not worry about operating with
vectors of dimension dn. The downside is that computing more than one eigenvalue is more difficult, since usual
deflation strategies cannot be applied. For a detailed description of the polynomial Jacobi-Davidson method in
SLEPc, see [Campos and Roman, 2020].

5.2 Basic Usage

The user interface of the PEP package is very similar to EPS. For basic usage, the most noteworthy difference is that
all coefficient matrices Ai have to be supplied in the form of an array of Mat63.

A basic example code for solving a polynomial eigenproblem with PEP is shown in figure Example code for basic
solution with PEP (page 66), where the code for building matrices A[0], A[1], … is omitted. The required steps
are the same as those described in chapter EPS: Eigenvalue Problem Solver (page 13) for the linear eigenproblem. As
always, the solver context is created with PEPCreate. The coefficient matrices are provided with PEPSetOper-
ators, and the problem type is specified with PEPSetProblemType. Calling PEPSetFromOptions allows
the user to set up various options through the command line. The call to PEPSolve invokes the actual solver. Then,
the solution is retrieved with PEPGetConverged and PEPGetEigenpair. Finally, PEPDestroy destroys
the object.

Listing 1: Example code for basic solution with PEP

#define NMAT 5
PEP pep; /* eigensolver context */
Mat A[NMAT]; /* coefficient matrices */
Vec xr, xi; /* eigenvector, x */
PetscScalar kr, ki; /* eigenvalue, k */
PetscInt j, nconv;
PetscReal error;

PEPCreate( PETSC_COMM_WORLD, &pep );
PEPSetOperators( pep, NMAT, A );
PEPSetProblemType( pep, PEP_GENERAL ); /* optional */
PEPSetFromOptions( pep );
PEPSolve( pep );
PEPGetConverged( pep, &nconv );
for (j=0; j<nconv; j++) {

PEPGetEigenpair( pep, j, &kr, &ki, xr, xi );
PEPComputeError( pep, j, PEP_ERROR_BACKWARD, &error );

}
PEPDestroy( &pep );

63 https://petsc.org/release/manualpages/Mat/Mat/
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5.3 Defining the Problem

Table 1: Polynomial bases available to represent the matrix polynomial in
PEP.

Polynomial Basis PEPBasis Options Database Name

Monomial PEP_BASIS_MONOMIAL monomial
Chebyshev (1st kind) PEP_BASIS_CHEBYSHEV1 chebyshev1
Chebyshev (2nd kind) PEP_BASIS_CHEBYSHEV2 chebyshev2
Legendre PEP_BASIS_LEGENDRE legendre
Laguerre PEP_BASIS_LAGUERRE laguerre
Hermite PEP_BASIS_HERMITE hermite

As explained in section Polynomials of Arbitrary Degree (page 65), the matrix polynomial P (λ) can be expressed
in term of the monomials 1, λ, λ2, . . ., or in a non-monomial basis as in equation (5.13). Hence, when defining
the problem we must indicate which is the polynomial basis to be used as well as the coefficient matrices Ai in that
basis representation. By default, a monomial basis is used. Other possible bases are listed in table Polynomial bases
available to represent the matrix polynomial in PEP. (page 67), and can be set with PEPSetBasis

PEPSetBasis(PEP pep,PEPBasis basis);

or with the command-line key -pep_basis <name>. The matrices are passed with PEPSetOperators

PEPSetOperators(PEP pep,PetscInt nmat,Mat A[]);

Table 2: Problem types considered in PEP.

Problem Type PEPProblemType Command line key

General PEP_GENERAL -pep_general
Hermitian PEP_HERMITIAN -pep_hermitian
Hyperbolic PEP_HYPERBOLIC -pep_hyperbolic
Gyroscopic PEP_GYROSCOPIC -pep_gyroscopic

As mentioned in section Quadratic Eigenvalue Problems (page 63), it is possible to distinguish among different prob-
lem types. The problem types currently supported for PEP are listed in table Problem types considered in PEP.
(page 67). The goal when choosing an appropriate problem type is to let the solver exploit the underlying structure,
in order to possibly compute the solution more accurately with less floating-point operations. When in doubt, use the
default problem type (PEP_GENERAL).

The problem type can be specified at run time with the corresponding command line key or, more usually, within the
program with the function PEPSetProblemType

PEPSetProblemType(PEP pep,PEPProblemType type);

Currently, the problem type is ignored in most solvers and it is taken into account only in some cases for the quadratic
eigenproblem only.

Apart from the polynomial basis and the problem type, the definition of the problem is completed with the number
and location of the eigenvalues to compute. This is done very much like in EPS, but with minor differences.

The number of eigenvalues (and eigenvectors) to compute, nev, is specified with the function PEPSetDimen-
sions

PEPSetDimensions(PEP pep,PetscInt nev,PetscInt ncv,PetscInt mpd);

The default is to compute only one. This function also allows control over the dimension of the subspaces used
internally. The second argument, ncv, is the number of column vectors to be used by the solution algorithm, that
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is, the largest dimension of the working subspace. The third argument, mpd, is the maximum projected dimension.
These parameters can also be set from the command line with -pep_nev, -pep_ncv and -pep_mpd.

For the selection of the portion of the spectrum of interest, there are several alternatives listed in table Avail-
able possibilities for selection of the eigenvalues of interest in PEP. (page 68), to be selected with the function
PEPSetWhichEigenpairs

PEPSetWhichEigenpairs(PEP pep,PEPWhich which);

The default is to compute the largest magnitude eigenvalues. For the sorting criteria relative to a target value, the
scalar τ must be specified with: PEPSetTarget

PEPSetTarget(PEP pep,PetscScalar target);

or in the command-line with -pep_target. As in EPS, complex values of τ are allowed only in complex scalar
SLEPc builds. The criteria relative to a target must be used in combination with a spectral transformation as explained
in section Spectral Transformation (page 70).

There is also support for spectrum slicing, that is, computing all eigenvalues in a given interval, see section Spectrum
Slicing (page 71). For this, the user has to specify the computational interval with PEPSetInterval

PEPSetInterval(PEP pep,PetscScalar a,PetscScalar b);

or equivalently with -pep_interval a,b.

Finally, we mention that the use of regions for filtering is also available in PEP, see section Specifying a Region for
Filtering (page 30).

Table 3: Available possibilities for selection of the eigenvalues of interest
in PEP.

PEPWhich Command line key Sorting criterion

PEP_LARGEST_MAGNITUDE -pep_largest_magnitude Largest |λ|
PEP_SMALLEST_MAGNITUDE -pep_smallest_magnitude Smallest |λ|
PEP_LARGEST_REAL -pep_largest_real Largest Re(λ)
PEP_SMALLEST_REAL -pep_smallest_real Smallest Re(λ)
PEP_LARGEST_IMAGINARY -pep_largest_imaginary Largest Im(λ)70

PEP_SMALLEST_IMAGINARY -pep_smallest_imaginary Smallest Im(λ)70

PEP_TARGET_MAGNITUDE -pep_target_magnitude Smallest |λ− τ |
PEP_TARGET_REAL -pep_target_real Smallest |Re(λ− τ)|
PEP_TARGET_IMAGINARY -pep_target_imaginary Smallest |Im(λ− τ)|
PEP_ALL -pep_all All λ ∈ [a, b]
PEP_WHICH_USER user-defined

5.4 Selecting the Solver

The solution method can be specified procedurally with PEPSetType

PEPSetType(PEP pep,PEPType method);

or via the options database command -pep_type followed by the name of the method. The methods currently
available in PEP are listed in table Polynomial eigenvalue solvers available in the PEP module. (page 69). The solvers
in the first group are based on the linearization explained above, whereas solvers in the second group perform a
projection on the polynomial problem (without linearizing).

70 If SLEPc is compiled for real scalars, then the absolute value of the imaginary part, ∥Im(λ)∥, is used for eigenvalue selection and sorting.
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The default solver is PEPTOAR. TOAR is a stable algorithm for building an Arnoldi factorization of the linearization
(equation (5.11)) without explicitly creating matrices L0, L1, and represents the Krylov basis in a compact way.
STOAR is a variant of TOAR that exploits symmetry (requires PEP_HERMITIAN or PEP_HYPERBOLIC problem
types). Q-Arnoldi is related to TOAR and follows a similar approach.

Table 4: Polynomial eigenvalue solvers available in the PEP module.

Method PEPType Options Database
Name

Polynomial De-
gree

Polynomial
Basis

Two-level Orthogonal Arnoldi
(TOAR)

PEPTOAR toar Arbitrary Any

Symmetric TOAR PEPSTOAR stoar Quadratic Monomial
Quadratic Arnoldi (Q-Arnoldi) PEPQARNOLDIqarnoldi Quadratic Monomial
Linearization via EPS PEPLIN-

EAR
linear Arbitrary Any

Jacobi-Davidson PEPJD jd Arbitrary Monomial

ThePEPLINEARmethod carries out an explicit linearization of the polynomial eigenproblem, as described in section
Overview of Polynomial Eigenproblems (page 63), resulting in a generalized eigenvalue problem that is handled by an
EPS object created internally. If required, this EPS object can be extracted with the operation PEPLinearGetEPS

PEPLinearGetEPS(PEP pep,EPS *eps);

This allows the application programmer to set any of the EPS options directly within the code. Also, it is possible to
change the EPS options through the command-line, simply by prefixing the EPS options with -pep_linear_.

In PEPLINEAR, if the eigenproblem is quadratic, the expression used in the linearization is dictated by the problem
type set with PEPProblemType, which chooses from non-symmetric (5.5), symmetric (5.6), and Hamiltonian
(5.7) linearizations. The parameters (α, β) of these linearizations can be set with PEPLinearSetLineariza-
tion

PEPLinearSetLinearization(PEP pep,PetscReal alpha,PetscReal beta);

For polynomial eigenproblems with degree d > 2 the linearization is the one described in section Polynomials of
Arbitrary Degree (page 65).

Another option of the PEPLINEAR solver is whether the matrices of the linearized problem are created explicitly
or not. This is set with the function PEPLinearSetExplicitMatrix

PEPLinearSetExplicitMatrix(PEP pep,PetscBool exp);

The explicit matrix option is available only for quadratic eigenproblems (higher degree polynomials are always han-
dled implicitly). In the case of explicit creation, matrices L0 and L1 are created as true Mat64’s, with explicit storage,
whereas the implicit option works with shell Mat65’s that operate only with the constituent blocks M , C and K (or
Ai in the general case). The explicit case requires more memory but gives more flexibility, e.g., for choosing a
preconditioner. Some examples of usage via the command line are shown at the end of next section.

64 https://petsc.org/release/manualpages/Mat/Mat/
65 https://petsc.org/release/manualpages/Mat/Mat/
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5.5 Spectral Transformation

For computing eigenvalues in the interior of the spectrum (closest to a target τ ), it is necessary to use a spectral
transformation. In PEP solvers this is handled via an ST object as in the case of linear eigensolvers. It is possible to
proceed with no spectral transformation (shift) or with shift-and-invert. Every PEP object has an ST object internally.

The spectral transformation can be applied either to the polynomial problem or its linearization. We illustrate it first
for the quadratic case.

Given the quadratic eigenproblem in equation (5.1), it is possible to define the transformed problem

(Kσ + θCσ + θ2Mσ)x = 0, (5.14)

where the coefficient matrices are

Kσ = M,

Cσ = C + 2σM,

Mσ = σ2M + σC +K,

(5.15)

and the relation between the eigenvalue of the original eigenproblem, λ, and the transformed one, θ, is θ = (λ−σ)−1

as in the case of the linear eigenvalue problem. See chapter ST: Spectral Transformation (page 35) for additional
details.

The polynomial eigenvalue problem of equation (5.14) corresponds to the reversed form of the shifted polynomial,
revP (θ). The extension to matrix polynomials of arbitrary degree is also possible, where the coefficients of revP (θ)
have the general form

Tk =

d−k∑
j=0

(
j + k

k

)
σjAj+k, k = 0, . . . , d. (5.16)

The way this is implemented in SLEPc is that the ST object is in charge of computing the Tk matrices, so that the
PEP solver operates with these matrices as it would with the original Ai matrices, without changing its behaviour.
We say that ST performs the transformation.

An alternative would be to apply the shift-and-invert spectral transformation to the linearization equation (5.11) in
a smart way, making the polynomial eigensolver aware of this fact so that it can exploit the block structure of the
linearization. Let Sσ := (L0−σL1)

−1L1, then when the solver needs to extend the Arnoldi basis with an operation
such as z = Sσw, a linear solve is required with the form

−σI I

−σI
. . .
. . . I

−σI I

−A0 −A1 · · · −Ãd−2 −Ãd−1




z0

z1

...
zd−2

zd−1

 =


w0

w1

...
wd−2

Adw
d−1

 , (5.17)

with Ãd−2 = Ad−2 + σI and Ãd−1 = Ad−1 + σAd. From the block LU factorization, it is possible to derive a
simple recurrence to compute zi, with one of the steps involving a linear solve with P (σ).

Implementing the latter approach is more difficult (especially if different polynomial bases must be supported), and
requires an intimate relation with the PEP solver. That is why it is only available currently in the default solver
(TOAR) and in PEPLINEAR without explicit matrix. In order to choose between the two approaches, the user can
set a flag with STSetTransform

STSetTransform(ST st,PetscBool flg);

(or in the command line -st_transform) to activate the first one (ST performs the transformation). Note that
this flag belongs to ST, not PEP (use PEPGetST to extract it).

In terms of overall computational cost, both approaches are roughly equivalent, but the advantage of the second one is
not having to store the Tk matrices explicitly. It may also be slightly more accurate. Hence, the STSetTransform
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flag is turned off by default. Please note that using shift-and-invert with solvers other than TOARmay require turning
it on explicitly.

A command line example would be:

$ ./ex16 -pep_nev 12 -pep_type toar -pep_target 0 -st_type sinvert

The example computes 12 eigenpairs closest to the origin with TOAR and shift-and-invert. The -st_transform
could be added optionally to switch to ST being in charge of the transformation. The same example with Q-Arnoldi
would be

$ ./ex16 -pep_nev 12 -pep_type qarnoldi -pep_target 0 -st_type sinvert
-st_transform

where in this case -st_transform would be set as default if not specified.

As a complete example of how to solve a quadratic eigenproblem via explicit linearization with explicit construction
of the L0 and L1 matrices, consider the following command line:

$ ./sleeper -pep_type linear -pep_target -10 -pep_linear_st_type sinvert
-pep_linear_st_ksp_type preonly -pep_linear_st_pc_type lu
-pep_linear_st_pc_factor_mat_solver_type mumps
-pep_linear_st_mat_mumps_icntl_14 100 -pep_linear_explicitmatrix

This example uses MUMPS for solving the associated linear systems, see section Solution of Linear Systems (page 41)
for details. The following command line example illustrates how to solve the same problemwithout explicitly forming
the matrices. Note that in this case the ST options are not prefixed with -pep_linear_ since now they do not
refer to the ST within the PEPLINEAR solver but the general ST associated to PEP.

$ ./sleeper -pep_type linear -pep_target -10 -st_type sinvert
-st_ksp_type preonly -st_pc_type lu
-st_pc_factor_mat_solver_type mumps -st_mat_mumps_icntl_14 100

5.5.1 Spectrum Slicing

Similarly to the spectrum slicing technique available in linear symmetric-definite eigenvalue problems (cf. section
Spectrum Slicing (page 45)), it is possible to compute all eigenvalues in a given interval [a, b] for the case of hyper-
bolic quadratic eigenvalue problems (PEP_HYPERBOLIC). In more general symmetric (or Hermitian) quadratic
eigenproblems (PEP_HERMITIAN), it may also be possible to do spectrum slicing provided that computing inertia
is feasible, which essentially means that all eigenvalues in the interval must be real and of the same definite type.

This computation is available only in the PEPSTOAR solver. The spectrum slicing mechanism implemented in PEP
is very similar to the one described in section Spectrum Slicing (page 45) for linear problems, except for the multi-
communicator option which is not implemented yet.

A command line example is the following:

$ ./spring -n 300 -pep_hermitian -pep_interval -10.1,-9.5
-pep_type stoar -st_type sinvert
-st_ksp_type preonly -st_pc_type cholesky

In hyperbolic problems, where eigenvalues form two separate groups ofn eigenvalues, it will be necessary to explicitly
set the problem type to -pep_hyperbolic if the interval [a, b] includes eigenvalues from both groups.

Additional details can be found in [Campos and Roman, 2020].

5.5. Spectral Transformation 71



, Release 3.24.0

5.6 Retrieving the Solution

After the call to PEPSolve has finished, the computed results are stored internally. The procedure for retrieving
the computed solution is exactly the same as in the case of EPS. The user has to call PEPGetConverged first, to
obtain the number of converged solutions, then call PEPGetEigenpair repeatedly within a loop, once per each
eigenvalue-eigenvector pair. The same considerations relative to complex eigenvalues apply, see section Retrieving
the Solution (page 23) for additional details.

5.6.1 Reliability of the Computed Solution.

Table 5: Possible expressions for computing error bounds.

Error type PEPErrorType Command line key Error bound

Absolute error PEP_ERROR_ABSOLUTE -pep_error_absolute |r|
Relative error PEP_ERROR_RELATIVE -pep_error_relative |r|/|λ|
Backward error PEP_ERROR_BACKWARD -pep_error_backward |r|/(

∑
j |Aj ||λi|j)

As in the case of linear problems, the function PEPComputeError

PEPComputeError(PEP pep,PetscInt j,PEPErrorType type,PetscReal *error);

is available to assess the accuracy of the computed solutions. This error is based on the computation of the 2-norm
of the residual vector, defined as

r = P (λ̃)x̃, (5.18)

where λ̃ and x̃ represent any of the nconv computed eigenpairs delivered by PEPGetEigenpair. From the
residual norm, the error bound can be computed in different ways, see table Possible expressions for computing error
bounds. (page 72). It is usually recommended to assess the accuracy of the solution using the backward error, defined
as

η(λ̃, x̃) =
∥r∥∑d

j=0 ∥Aj∥|λ̃|j∥x̃∥
, (5.19)

where d is the degree of the polynomial. Note that the eigenvector is always assumed to have unit norm.

Similar expressions can be used in the convergence criterion used to accept converged eigenpairs internally by the
solver. The convergence test can be set via the corresponding command-line switch (see table Available possibilities
for the convergence criterion. (page 72)) or with PEPSetConvergenceTest

PEPSetConvergenceTest(PEP pep,PEPConv conv);

Table 6: Available possibilities for the convergence criterion.

Convergence criterion PEPConv Command line key Error bound

Absolute PEP_CONV_ABS -pep_conv_abs |r|
Relative to eigenvalue PEP_CONV_REL -pep_conv_rel |r|/|λ|
Relative to matrix norms PEP_CONV_NORM -pep_conv_norm |r|/(

∑
j |Aj ||λi|j)

User-defined PEP_CONV_USER -pep_conv_user user function
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5.6.2 Scaling

When solving a quadratic eigenproblem via linearization, an accurate solution of the generalized eigenproblem does
not necessarily imply a similar level of accuracy for the quadratic problem. Tisseur [2000] shows that in the case of
the linearization equation (5.2), a small backward error in the generalized eigenproblem guarantees a small backward
error in the quadratic eigenproblem. However, this holds only ifM , C andK have a similar norm.

When the norm ofM , C andK vary widely, Tisseur [2000] recommends to solve the scaled problem, defined as

(µ2Mα + µCα +K)x = 0, (5.20)

with µ = λ/α, Mα = α2M and Cα = αC, where α is a scaling factor. Ideally, α should be chosen in such a way

that the norms ofMα, Cα andK have similar magnitude. A tentative value would be α =
√

∥K∥∞
∥M∥∞

.

In the general case of polynomials of arbitrary degree, a similar scheme is also possible, but it is not clear how to
choose α to achieve the same goal. Betcke [2008] proposes such a scaling scheme as well as more general diagonal
scalingsDℓP (λ)Dr. In SLEPc, we provide these types of scalings, whose settings can be tuned withPEPSetScale

PEPSetScale(PEP pep,PEPScale scale,PetscReal alpha,Vec Dl,Vec Dr,
PetscInt its,PetscReal w);

See the manual page for details and the description in [Campos and Roman, 2016].

5.6.3 Extraction

Some of the eigensolvers provided in the PEP package are based on solving the linearized eigenproblem of equation
(5.12). From the eigenvector y of the linearization, it is possible to extract the eigenvector x of the polynomial
eigenproblem. The most straightforward way is to take the first block of y, but there are other, more elaborate
extraction strategies. For instance, one may compute the norm of the residual (equation (5.18)) for every block
of y, and take the one that gives the smallest residual. The different extraction techniques may be selected with
PEPSetExtract

PEPSetExtract(PEP pep,PEPExtract extract);

For additional information, see [Campos and Roman, 2016].

5.6.4 Controlling and Monitoring Convergence

As in the case of EPS, in PEP the number of iterations carried out by the solver can be deter-
mined with PEPGetIterationNumber, and the tolerance and maximum number of iterations can
be set with PEPSetTolerances. Also, convergence can be monitored with command-line keys
-pep_monitor, -pep_monitor_all, -pep_monitor_conv, -pep_monitor draw::draw_lg, or
-pep_monitor_all draw::draw_lg. See section Controlling and Monitoring Convergence (page 25) for
additional details.

5.6.5 Viewing the Solution

Likewise to linear eigensolvers, there is support for various kinds of viewers for the solution. One
can for instance use -pep_view_values, -pep_view_vectors, -pep_error_relative, or
-pep_converged_reason. See description in section Viewing the Solution (page 28).
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5.6.6 Iterative Refinement

As mentioned above, scaling can sometimes improve the accuracy of the computed solution considerably, in the
case that the coefficient matrices Ai are very different in norm. Still, even when the matrix norms are well balanced
the accuracy can sometimes be unacceptably low. The reason is that methods based on linearization are not always
backward stable, that is, even if the computation of the eigenpairs of the linearization is done in a stable way, there
is no guarantee that the extracted polynomial eigenpairs satisfy the given tolerance.

If good accuracy is required, one possibility is to perform a few steps of iterative refinement on the solution computed
by the polynomial eigensolver algorithm. Iterative refinement can be seen as the Newton method applied to a set of
nonlinear equations related to the polynomial eigenvalue problem [Betcke and Kressner, 2011]. It is well known that
global convergence of Newton’s iteration is guaranteed only if the initial guess is close enough to the exact solution,
so we still need an eigensolver such as TOAR to compute this initial guess.

Iterative refinement can be very costly (sometimes a single refinement step is more expensive than the whole iteration
to compute the initial guess with TOAR), that is why in SLEPc it is disabled by default. When the user activates it,
the computation of Newton iterations will take place within PEPSolve as a final stage (identified as PEPRefine
in the -log_view report).

PEPSetRefine

PEPSetRefine(PEP pep,PEPRefine refine,PetscInt npart,
PetscReal tol,PetscInt its,PEPRefineScheme scheme);

There are two types of refinement, identified as simple and multiple. The first one performs refinement on each
eigenpair individually, while the second one considers the computed invariant pair as a whole. This latter approach
is more costly but it is expected to be more robust in the presence of multiple eigenvalues.

In PEPSetRefine, the argument npart indicates the number of partitions in which the communicator must be
split. This can sometimes improve the scalability when refining many eigenpairs.

Additional details can be found in [Campos and Roman, 2016].
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NEP: Nonlinear Eigenvalue Problems

The Nonlinear Eigenvalue Problem (NEP) solver object covers the general case where the eigenproblem is nonlinear
with respect to the eigenvalue, but it cannot be expressed in terms of a polynomial. We will write the problem as
T (λ)x = 0, where T is a matrix-valued function of the eigenvalue λ. Note that NEP does not cover the even more
general case of having a nonlinear dependence on the eigenvector x.

In terms of the user interface, NEP is quite similar to previously discussed solvers. The main difference is how to
represent the function T . We will show different alternatives for this.

The NEP module of SLEPc has been explained with more detail in [Campos and Roman, 2021], including an algo-
rithmic description of the implemented solvers.

6.1 General Nonlinear Eigenproblems

As in previous chapters, we first set up the notation and briefly review basic properties of the eigenvalue problems to
be addressed. In this case, we focus on general nonlinear eigenproblems, that is, those that cannot be expressed in a
simpler form such as a polynomial eigenproblem. These problems arise in many applications, such as the discretiza-
tion of delay differential equations. Some of the methods designed to solve such problems are based on Newton-type
iterations, so in some ways NEP has similarities to PETSc’s nonlinear solvers SNES71. For background material on
the nonlinear eigenproblem, the reader is referred to [Güttel and Tisseur, 2017], [Mehrmann and Voss, 2004].

We consider nonlinear eigenvalue problems of the form

T (λ)x = 0, x ̸= 0, (6.1)

where T : Ω → Cn×n is a matrix-valued function that is analytic on an open set of the complex plane Ω ⊆
C. Assuming that the problem is regular, that is, detT (λ) does not vanish identically, any pair (λ, x) satisfying
equation (6.1) is an eigenpair, where λ ∈ Ω is the eigenvalue and x ∈ Cn is the eigenvector. Linear and polynomial
eigenproblems are particular cases of equation (6.1).

An example application is the rational eigenvalue problem

−Kx+ λMx+

k∑
j=1

λ

σj − λ
Cjx = 0, (6.2)

arising in the study of free vibration of plates with elastically attached masses. Here, all matrices are symmetric, K
and M are positive-definite and Cj have small rank. Another example comes from the discretization of parabolic

71 https://petsc.org/release/manualpages/SNES/SNES/
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partial differential equations with time delay τ , resulting in

(−λI +A+ e−τλB)x = 0. (6.3)

6.1.1 Split Form

Equation (6.1) can always be rewritten as

(
A0f0(λ) +A1f1(λ) + · · ·+Aℓ−1fℓ−1(λ)

)
x =

(
ℓ−1∑
i=0

Aifi(λ)

)
x = 0, (6.4)

where Ai are n×nmatrices and fi : Ω→ C are analytic functions. We will call equation (6.4) the split form of the
nonlinear eigenvalue problem. Often, the formulation arising from applications already has this form, as illustrated
by the examples above. Also, a polynomial eigenvalue problem fits this form, where in this case the fi functions are
the polynomial bases of degree i, either monomial or non-monomial.

6.2 Defining the Problem

The user interface of the NEP package is quite similar to EPS and PEP. As mentioned above, the main difference
is the way in which the eigenproblem is defined. In equation Using Callback Functions (page 76), we focus on the
case where the problem is defined as in PETSc’s nonlinear solvers SNES72, that is, providing user-defined callback
functions to compute the nonlinear function matrix, T (λ), and its derivative, T ′(λ). We defer the discussion of using
the split form of the nonlinear eigenproblem to section Expressing the NEP in Split Form (page 78).

6.2.1 Using Callback Functions

A sample code for solving a nonlinear eigenproblem with NEP is shown in figure Example code for basic solution with
NEP using callbacks. (page 76). The usual steps are performed, starting with the creation of the solver context with
NEPCreate. Then the problem matrices are defined, see discussion below. The call to NEPSetFromOptions
captures relevant options specified in the command line. The actual solver is invoked with NEPSolve. Then, the
solution is retrieved with NEPGetConverged and NEPGetEigenpair. Finally, NEPDestroy destroys the
object.

Listing 1: Example code for basic solution with NEP using callbacks.

NEP nep; /* eigensolver context */
Mat F, J; /* Function and Jacobian matrices */
Vec xr, xi; /* eigenvector, x */
PetscScalar kr, ki; /* eigenvalue, k */
ApplCtx ctx; /* user-defined context */
PetscInt j, nconv;
PetscReal error;

NEPCreate( PETSC_COMM_WORLD, &nep );
/* create and preallocate F and J matrices */
NEPSetFunction( nep, F, F, FormFunction, &ctx );
NEPSetJacobian( nep, J, FormJacobian, &ctx );
NEPSetFromOptions( nep );
NEPSolve( nep );
NEPGetConverged( nep, &nconv );
for (j=0; j<nconv; j++) {

NEPGetEigenpair( nep, j, &kr, &ki, xr, xi );
NEPComputeError( nep, j, NEP_ERROR_RELATIVE, &error );

}
NEPDestroy( &nep );
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In SNES73, the usual way to define a set of nonlinear equations F (x) = 0 is to provide two user-defined callback
functions, one to compute the residual vector, r = F (x) for a givenx, and another one to evaluate the Jacobianmatrix,
J(x) = F ′(x). In the case of NEP there are some differences, since the function T depends on the parameter λ only.
For a given value of λ and its associated vector x, the residual vector is defined as

r = T (λ)x. (6.5)

We require the user to provide a callback function to evaluate T (λ), rather than computing the residual r. Once
T (λ) has been built, NEP solvers can compute its action on any vector x. Regarding the derivative, in NEP we use
T ′(λ), which will be referred to as the Jacobian matrix by analogy to SNES. This matrix must be computed with
another callback function.

Hence, both callback functions must compute a matrix. The nonzero pattern of these matrices does not usually
change, so they must be created and preallocated at the beginning of the solution process. Then, these Mat74 objects
are passed to the solver, together with the pointers to the callback functions, with NEPSetFunction NEPSet-
Jacobian

NEPSetFunction(NEP nep,Mat F,Mat P,PetscErrorCode (*fun)(NEP,PetscScalar,
Mat,Mat,void*),void *ctx);

NEPSetJacobian(NEP nep,Mat J,PetscErrorCode (*jac)(NEP,PetscScalar,
Mat,void*),void *ctx)

The argument ctx is an optional user-defined context intended to contain application-specific parameters required
to build T (λ) or T ′(λ), and it is received as the last argument in the callback functions. The callback routines also
get an argument containing the value of λ at which T or T ′ must be evaluated. Note that the NEPSetFunction
callback takes twoMat75 arguments instead of one. The rationale for this is that some NEP solvers require to perform
linear solves with T (λ) within the iteration (in SNES76 this is done with the Jacobian), so T (λ) will be passed as the
coefficient matrix to a KSP77 object. The second Mat78 argument P is the matrix from which the preconditioner is
constructed (which is usually the same as F).

There is the possibility of solving the problem in a matrix-free fashion, that is, just implementing subroutines that
compute the action of T (λ) or T ′(λ) on a vector, instead of having to explicitly compute all nonzero entries of these
two matrices. The SLEPc distribution contains an example illustrating this, using the concept of shell matrices (see
section Supported Matrix Types (page 88) for details).

Parameters for Problem Definition.

Once T and T ′ have been set up, the definition of the problem is completed with the number and location of the
eigenvalues to compute, in a similar way as eigensolvers discussed in previous chapters.

The number of requested eigenvalues (and eigenvectors), nev, is established with NEPSetDimensions

NEPSetDimensions(NEP nep,PetscInt nev,PetscInt ncv,PetscInt mpd);

By default, nev=1 (and some solvers will return only one eigenpair, even if a larger nev is requested). The other
two arguments control the dimension of the subspaces used internally (the number of column vectors, ncv, and the
maximum projected dimension, mpd), although they are relevant only in eigensolvers based on subspace projection
(basic algorithms ignore them). There are command-line keys for these parameters: -nep_nev, -nep_ncv and
-nep_mpd.

73 https://petsc.org/release/manualpages/SNES/SNES/
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Table 1: Available possibilities for selection of the eigenvalues of interest
in NEP.

NEPWhich Command line key Sorting criterion

NEP_LARGEST_MAGNITUDE -nep_largest_magnitude Largest |λ|
NEP_SMALLEST_MAGNITUDE -nep_smallest_magnitude Smallest |λ|
NEP_LARGEST_REAL -nep_largest_real Largest Re(λ)
NEP_SMALLEST_REAL -nep_smallest_real Smallest Re(λ)
NEP_LARGEST_IMAGINARY -nep_largest_imaginary Largest Im(λ)
NEP_SMALLEST_IMAGINARY -nep_smallest_imaginary Smallest Im(λ)
NEP_TARGET_MAGNITUDE -nep_target_magnitude Smallest |λ− τ |
NEP_TARGET_REAL -nep_target_real Smallest |Re(λ− τ)|
NEP_TARGET_IMAGINARY -nep_target_imaginary Smallest |Im(λ− τ)|
NEP_ALL -nep_all All λ ∈ Ω

For the selection of the portion of the spectrum of interest, there are several alternatives listed in table Avail-
able possibilities for selection of the eigenvalues of interest in NEP. (page 78), to be selected with the function
NEPSetWhichEigenpairs

NEPSetWhichEigenpairs(NEP nep,NEPWhich which);

The default is to compute the largest magnitude eigenvalues. For the sorting criteria relative to a target value, τ must
be specified with NEPSetTarget or in the command-line with -nep_target.

NEP solvers can also work with a region of the complex plane (RG), as discussed in section Specifying a Region for
Filtering (page 30) for linear problems. Some eigensolvers (NLEIGS) use the definition of the region to compute
nev eigenvalues in its interior. If all eigenvalues inside the region are required, then a contour-integral method is
required, see discussion in Maeda et al. [2016].

Left Eigenvectors

As in the case of linear eigensolvers, some NEP solvers have two-sided variants to compute also left eigenvectors. In
the case of NEP, left eigenvectors are defined as

y∗T (λ) = 0∗, y ̸= 0. (6.6)

Two-sided variants can be selected with NEPSetTwoSided

NEPSetTwoSided(NEP eps,PetscBool twosided);

6.2.2 Expressing the NEP in Split Form

Listing 2: Example code for defining the NEP eigenproblem in the split
form.

FNCreate(PETSC_COMM_WORLD,&f1); /* f1 = -lambda */
FNSetType(f1,FNRATIONAL);
coeffs[0] = -1.0; coeffs[1] = 0.0;
FNRationalSetNumerator(f1,2,coeffs);

FNCreate(PETSC_COMM_WORLD,&f2); /* f2 = 1 */
FNSetType(f2,FNRATIONAL);
coeffs[0] = 1.0;
FNRationalSetNumerator(f2,1,coeffs);

FNCreate(PETSC_COMM_WORLD,&f3); /* f3 = exp(-tau*lambda) */

(continues on next page)
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(continued from previous page)

FNSetType(f3,FNEXP);
FNSetScale(f3,-tau,1.0);

mats[0] = A; funs[0] = f2;
mats[1] = Id; funs[1] = f1;
mats[2] = B; funs[2] = f3;
NEPSetSplitOperator(nep,3,mats,funs,SUBSET_NONZERO_PATTERN);

Instead of implementing callback functions for T (λ) and T ′(λ), a usually simpler alternative is to use the split form
of the nonlinear eigenproblem, equation (6.4). Note that in split form, we have T ′(λ) =

∑ℓ−1
i=0 Aif

′
i(λ), so the

derivatives of fi(λ) are also required. As described below, we will represent each of the analytic functions fi by
means of an auxiliary object FN that holds both the function and its derivative.

Hence, for the split form representation we must provide ℓ matrices Ai and the corresponding functions fi(λ), by
means of NEPSetSplitOperator

NEPSetSplitOperator(NEP nep,PetscInt l,Mat A[],FN f[],MatStructure str);

Here, the MatStructure79 flag is used to indicate whether all matrices have the same (or subset) nonzero pattern with
respect to the first one. Figure Example code for defining the NEP eigenproblem in the split form. (page 78) illustrates
this usage with the problem of equation (6.3), where ℓ = 3 and the matrices are I , A and B (note that in the code
we have changed the order for efficiency reasons, since the nonzero pattern of I andB is a subset ofA’s in this case).
Two of the associated functions are polynomials (−λ and 1) and the other one is the exponential e−τλ.

Note that using the split form is required in order to be able to use some eigensolvers, in particular, those that project
the nonlinear eigenproblem onto a low dimensional subspace and then use a dense nonlinear solver for the projected
problem.

Details of how to define the fi functions by using the FN class are provided in section Auxiliary Classes (page 90).

Table 2: Problem types considered in NEP.

Problem Type NEPProblemType Command line key

General NEP_GENERAL -nep_general
Rational NEP_RATIONAL -nep_rational

When defining the problem in split form, it may also be useful to specify a problem type. For example, if the user
knows that all fi functions are rational, as in equation (6.2), then setting the problem type to NEP_RATIONAL gives
a hint to the solver that may simplify the solution process. The problem types currently supported for NEP are listed
in table Problem types considered in NEP. (page 79). When in doubt, use the default problem type (NEP_GENERAL).

The problem type can be specified at run time with the corresponding command line key or, more usually, within the
program with the function NEPSetProblemType

NEPSetProblemType(NEP nep,NEPProblemType type);

Currently, the problem type is ignored in most solvers and it is taken into account only in NLEIGS for determining
singularities automatically.

79 https://petsc.org/release/manualpages/Mat/MatStructure/
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6.3 Selecting the Solver

The solution method can be specified procedurally with NEPSetType

NEPSetType(NEP nep,NEPType method);

or via the options database command -nep_type followed by the name of the method (see table Nonlinear eigen-
value solvers available in the NEP module. (page 80)). The methods currently available in NEP are the following:

• Residual inverse iteration (RII), where in each iteration the eigenvector correction is computed as T (σ)−1

times the residual r.

• Successive linear problems (SLP), where in each iteration a linear eigenvalue problem T (λ̃)x̃ = µT ′(λ̃)x̃ is
solved for the eigenvalue correction µ.

• Nonlinear Arnoldi, which builds an orthogonal basis Vj of a subspace expanded with the vectors generated by
RII, then chooses the approximate eigenpair (λ̃, x̃) such that x̃ = Vjy and V ∗

j T (λ̃)Vjy = 0.

• NLEIGS, which is based on a (rational) Krylov iteration operating on a companion-type linearization of a
rational interpolant of the nonlinear function.

• CISS, a contour-integral solver that allows computing all eigenvalues in a given region.

• Polynomial interpolation, where a matrix polynomial P (λ) is built by evaluating T (·) at a few points, then
PEP is used to solve the polynomial eigenproblem.

Table 3: Nonlinear eigenvalue solvers available in the NEP module.

Method NEPType Options Database Need T ′(·) Two-sided

Residual inverse iteration NEPRII rii no

Successive linear problems NEPSLP slp yes yes
Nonlinear Arnoldi NEPNARNOLDI narnoldi no

Rational Krylov (NLEIGS) NEPNLEIGS nleigs no yes
Contour integral SS NEPCISS ciss yes

Polynomial interpolation NEPINTERPOL interpol no

The NEPSLP method performs a linearization that results in a (linear) generalized eigenvalue problem. This is
handled by an EPS object created internally. If required, this EPS object can be extracted with the operation NEP-
SLPGetEPS

NEPSLPGetEPS(NEP nep,EPS *eps);

This allows the application programmer to set any of the EPS options directly within the code. These options can
also be set through the command-line, simply by prefixing the EPS options with -nep_slp_.

Similarly, NEPINTERPOL works with a PEP object internally, that can be retrieved by NEPInterpolGetPEP.
Another relevant option of this solver is the degree of the interpolation polynomial, that can be set with NEPIn-
terpolSetInterpolation

NEPInterpolSetInterpolation(NEP nep,PetscReal tol,PetscInt deg);

The polynomial interpolation solver currently uses Chebyshev polynomials of the 1st kind and requires the user to
specify an interval of the real line where the eigenvalues must be computed, e.g.

$ ./ex22 -nep_type interpol -rg_interval_endpoints 0.1,14.0,-0.1,0.1
-nep_nev 2 -nep_interpol_interpolation_degree 15 -nep_target 1.0
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For details about specifying a region, see section Auxiliary Classes (page 90).

Some solvers such as NEPRII and NEPNARNOLDI need a KSP80 object to handle the solution of linear systems of
equations. This KSP81 and can be retrieved with e.g. NEPRIIGetKSP

NEPRIIGetKSP(NEP nep,KSP *ksp);

This KSP82 object is typically used to compute the action of T (σ)−1 on a given vector. In principle, σ is an approx-
imation of an eigenvalue, but it is usually more efficient to keep this value constant, otherwise the factorization or
preconditioner must be recomputed every time since eigensolvers update eigenvalue approximations in each iteration.
This behaviour can be changed with NEPSetLagPreconditioner

NEPRIISetLagPreconditioner(NEP nep,PetscInt lag);

Recomputing the preconditioner every 2 iterations, say, will introduce a considerable overhead, but may reduce
the number of iterations significantly. Another related comment is that, when using an iterative linear solver, the
requested accuracy is adapted as the outer iteration progresses, being the tolerance larger in the first solves. Again,
the user can modify this behaviour with NEPRIISetConstCorrectionTol. Both options can also be changed
at run time. As an example, consider the following command line:

$ ./ex22 -nep_type rii -nep_rii_lag_preconditioner 2
-nep_rii_ksp_type bcgs -nep_rii_pc_type ilu
-nep_rii_const_correction_tol 1 -nep_rii_ksp_rtol 1e-3

The example uses RII with BiCGStab plus ILU, where the preconditioner is updated every two outer iterations and
linear systems are solved up to a tolerance of 10−3.

The NLEIGS solver is most appropriate for problems where T (·) is singular at some known parts of the complex
plane, for instance the case that T (·) contains

√
λ. To treat this case effectively, the NLEIGS solver requires a

discretization of the singularity set, which can be provided by the user in the form of a callback function: NEPN-
LEIGSSetSingularitiesFunction

NEPNLEIGSSetSingularitiesFunction(NEP nep,PetscErrorCode (*fun)
(NEP,PetscInt*,PetscScalar*,void*),void *ctx);

Alternatively, if the problem is known to be a rational eigenvalue problem, the user can avoid the computation
of singularities by just specifying the problem type with NEPSetProblemType, as explained at the end of the
previous section. If none of the above functions is invoked by the user, then the NLEIGS solver attempts to determine
the singularities automatically.

6.4 Retrieving the Solution

The procedure for obtaining the computed eigenpairs is similar to previously discussed eigensolvers. After the call to
NEPSolve, the computed results are stored internally and a call to NEPGetConverged must be issued to obtain
the number of converged solutions. Then calling NEPGetEigenpair repeatedly will retrieve each eigenvalue-
eigenvector pair.

NEPGetEigenpair

NEPGetEigenpair(NEP nep,PetscInt j,PetscScalar *kr,PetscScalar *ki,
Vec xr,Vec xi);

In two-sided solvers (see tableNonlinear eigenvalue solvers available in the NEP module. (page 80)), it is also possible
to retrieve left eigenvectors with NEPGetLeftEigenvector

80 https://petsc.org/release/manualpages/KSP/KSP/
81 https://petsc.org/release/manualpages/KSP/KSP/
82 https://petsc.org/release/manualpages/KSP/KSP/
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NEPGetLeftEigenvector(NEP nep,PetscInt j,Vec yr,Vec yi);

Note about real/complex scalar versions: The interface makes provision for returning a complex eigenvalue (or
eigenvector) when doing the computation in a PETSc/SLEPc version built with real scalars, as is done in other
eigensolvers such as EPS. However, in some cases this will not be possible. In particular, when callback functions
are used and a complex eigenvalue approximation is hit, the solver will fail unless configured with complex scalars.
The reason is that the user interface for callback functions only have a single PetscScalar83 lambda argument and
hence cannot handle complex arguments in real arithmetic.

The function NEPComputeError

NEPComputeError(NEP nep,PetscInt j,NEPErrorType type,PetscReal *error);

can be used to assess the accuracy of the computed solutions. The error is based on the 2-norm of the residual vector
r defined in equation (6.5).

As in the case of EPS, in NEP the number of iterations carried out by the solver can be determined with NEPGetIt-
erationNumber, and the tolerance and maximum number of iterations can be set with NEPSetTolerances.
Also, convergence can be monitored with either textual monitors -nep_monitor, -nep_monitor_all,
-nep_monitor_conv, or graphical monitors -nep_monitor draw::draw_lg, -nep_monitor_all
draw::draw_lg. See section Controlling and Monitoring Convergence (page 25) for additional details. Similarly,
there is support for viewing the computed solution as explained in section Viewing the Solution (page 28).

TheNEP class also provides some kind of iterative refinement, similar to the one available inPEP, see section Iterative
Refinement (page 74). The parameters can be set with NEPSetRefine

NEPSetRefine(NEP nep,NEPRefine refine,PetscInt npart,
PetscReal tol,PetscInt its,NEPRefineScheme scheme);

83 https://petsc.org/release/manualpages/Sys/PetscScalar/
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MFN: Matrix Function

The Matrix Function (MFN) solver object provides algorithms that compute the action of a matrix function on a given
vector, without evaluating the matrix function itself. This is not an eigenvalue problem, but some methods rely on
approximating eigenvalues (for instance with Krylov subspaces) and that is why we have this in SLEPc.

7.1 The Problem f(A)v

The need to evaluate a function f(A) ∈ Cn×n of a matrix A ∈ Cn×n arises in many applications. There are many
methods to compute matrix functions, see for instance the survey by Higham and Al-Mohy [2010]. Here, we focus
on the case that A is large and sparse, or is available only as a matrix-vector product subroutine. In such cases, it
is the action of f(A) on a vector, f(A)v, that is required and not f(A). For this, it is possible to adapt some of
the methods used to approximate eigenvalues, such as those based on Krylov subspaces or on the concept of contour
integral. The description below will be restricted to the case of Krylov methods.

In the sequel, we concentrate on the exponential function, which is one of themost demanded in applications, although
the concepts are easily generalizable to other functions as well. Using the Taylor series expansion of eA, we have

y = eAv = v +
A

1!
v +

A2

2!
v + · · · , (7.1)

so, in principle, the vector y can be approximated by an element of the Krylov subspaceKm(A, v) defined in equation
(2.6). This is the basis of the method implemented in EXPOKIt [Sidje, 1998]. LetAVm = Vm+1Hm be an Arnoldi
decomposition, where the columns of Vm form an orthogonal basis of the Krylov subspace, then the approximation
can be computed as

ỹ = βVm exp(Hm)e1, (7.2)

where β = ∥v∥2 and e1 is the first coordinate vector. Hence, the problem of computing the exponential of a large
matrix A of order n is reduced to computing the exponential of a small matrix Hm of orderm. For the latter task,
we employ algorithms implemented in the FN auxiliary class, see section Auxiliary Classes (page 90).
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7.2 Basic Usage

The user interface of the MFN package is simpler than the interface of eigensolvers. In some ways, it is more similar
to KSP85, in the sense that the solver maps a vector v to a vector y.

Listing 1: Example code for basic solution with MFN

MFN mfn; /* MFN solver context */
Mat A; /* problem matrix */
FN f; /* the function, exp() in this example */
PetscScalar alpha; /* to compute exp(alpha*A) */
Vec v, y; /* right vector and solution */

MFNCreate( PETSC_COMM_WORLD, &mfn );
MFNSetOperator( mfn, A );
MFNGetFN( mfn, &f );
FNSetType( f, FNEXP );
FNSetScale( f, alpha, 1.0 );
MFNSetFromOptions( mfn );
MFNSolve( mfn, v, y );
MFNDestroy( &mfn );

Figure Example code for basic solution withMFN (page 84) shows a simple example with the basic steps for computing
y = exp(αA)v. After creating the solver context with MFNCreate, the problem matrix has to be passed with
MFNSetOperator and the function to compute f(·) must be specified with the aid of the auxiliary class FN, see
details in sectionAuxiliary Classes (page 90). Then, a call to MFNSolve runs the solver on a given vector v, returning
the computed result y. Finally, MFNDestroy is used to reclaim memory. We give a few more details below.

7.2.1 Defining the Problem

Defining the problem consists in specifying the matrix, A, and the function to compute, f(·). The problem matrix is
provided with MFNSetOperator

MFNSetOperator(MFN mfn,Mat A);

where A should be a square matrix, stored in any allowed PETSc format including the matrix-free mechanism (see
section Supported Matrix Types (page 88)). The function f(·) is defined with an FN object. One possibility is to
extract the FN object handled internally by MFN: MFNGetFN

MFNGetFN(MFN mfn,FN *f);

An alternative would be to create a standalone FN object and pass it with MFNSetFN. In any case, the function
is defined via its type and the relevant parameters, see section Auxiliary Classes (page 90) for details. The scaling
parameters can be used for instance for the exponential when used in the context of ODE integration, y = etAv,
where t represents the elapsed time. Note that someMFN solvers may be restricted to only some types ofFN functions.

In MFN it makes no sense to specify the number of eigenvalues. However, there is a related operation that allows the
user to specify the size of the subspace that will be used internally by the solver (ncv, the number of column vectors
of the basis): MFNSetDimensions

MFNSetDimensions(EPS eps,PetscInt ncv);

This parameter can also be set at run time with the option -mfn_ncv.

85 https://petsc.org/release/manualpages/KSP/KSP/
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7.2.2 Selecting the Solver

Table 1: List of solvers available in the MFN module.

Method MFNType Options Database Name Supported Functions

Restarted Krylov solver MFNKRYLOV krylov Any
Expokit algorithm MFNEXPOKIT expokit Exponential

The methods available in MFN are shown in table List of solvers available in the MFN module. (page 85). The solution
method can be specified procedurally with MFNSetType

MFNSetType(MFN mfn,MFNType method);

or via the options database command -mfn_type followed by the method name (see table List of solvers available
in the MFN module. (page 85)).

Currently implemented methods are:

• A Krylov method with restarts as proposed by Eiermann and Ernst [2006].

• The method implemented in EXPOKIt [Sidje, 1998] for the matrix exponential.

7.2.3 Accuracy and Monitors

In the f(A)v problem, there is no clear definition of residual, as opposed to the case of linear systems or eigen-
problems. Still, the solvers have different ways of assessing the accuracy of the computed solution. The user can
provide a tolerance and maximum number of iterations with MFNSetTolerances, but there is no guarantee that
an analog of the residual is below the tolerance.

After the solver has finished, the number of performed (outer) iterations can be obtained with MFNGetItera-
tionNumber. There are also monitors that display the error estimate, which can be activated with command-line
keys -mfn_monitor, or -mfn_monitor draw::draw_lg. See section Controlling and Monitoring Conver-
gence (page 25) for additional details.
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Additional Information

This chapter contains miscellaneous information as a complement to the previous chapters, which can be regarded
as less important.

8.1 Supported PETSc Features

SLEPc relies on PETSc for most features that are not directly related to eigenvalue problems. All functionality
associated with vectors and matrices as well as linear systems of equations is provided by PETSc. Also, low level
details are inherited directly from PETSc. In particular, the parallelism within SLEPc methods is handled almost
completely by PETSc’s vector and matrix modules.

SLEPc mainly contains high level objects, as depicted in figure Numerical components of PETSc and SLEPc (page 3).
These object classes have been designed and implemented following the philosophy of other high level objects in
PETSc. In this way, SLEPc benefits from a number of PETSc’s good properties such as the following (see PETSc
users guide for details):

• Portability and scalability in a wide range of platforms. Different architecture builds can coexist in the same
installation. Where available, shared libraries are used to reduce disk space of executable files.

• Support for profiling of programs:

– Display performance statistics with -log_view, including also SLEPc’s objects. The collected data are
flops, memory usage and execution times as well as information about parallel performance, for individual
subroutines and the possibility of user-defined stages.

– Event logging, including user-defined events.

– Direct wall-clock timing with PetscTime86.

– Display detailed profile information and trace of events.

• Convergence monitoring, both textual and graphical.

• Support for debugging of programs:

– Debugger startup and attachment of parallel processes.

– Automatic generation of back-traces of the call stack.

– Detection of memory leaks.

86 https://petsc.org/release/manualpages/Sys/PetscTime/
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• A number of viewers for visualization of data, including built-in graphics capabilities that allow for sparse
pattern visualization, graphic convergence monitoring, operator’s spectrum visualization and display of regions
of the complex plane.

• Easy handling of runtime options.

• Support for Fortran programming using Fortran 90 modules. See section Fortran Interface (page 101) for an
example with fixed-format source lines.

8.2 Supported Matrix Types

Methods implemented in EPSmerely require vector operations and matrix-vector products. In PETSc, mathematical
objects such as vectors and matrices have an interface that is independent of the underlying data structures. SLEPc
manipulates vectors andmatrices via this interface and, therefore, it can be used with any of thematrix representations
provided by PETSc, including dense, sparse, and symmetric formats, either sequential or parallel.

The above statement must be reconsidered when using EPS in combination with ST. As explained in chapter ST:
Spectral Transformation (page 35), in many cases the operator associated with a spectral transformation not only
consists in pure matrix-vector products but also other operations may be required as well, most notably a linear
system solve (see Table Operators used in each spectral transformation mode. (page 37)). In this case, the limitation
is that there must be support for the requested operation for the selected matrix representation.

8.2.1 Shell Matrices

In many applications, the matrices that define the eigenvalue problem are not available explicitly. Instead, the user
knows a way of applying these matrices to a vector.

An intermediate case is when the matrices have some block structure and the different blocks are stored separately.
There are numerous situations in which this occurs, such as the discretization of equations with a mixed finite-element
scheme. An example is the eigenproblem arising in the stability analysis associated with Stokes problems,[

A C
C∗ 0

] [
x
p

]
= λ

[
B 0
0 0

] [
x
p

]
, (8.1)

where x and p denote the velocity and pressure fields. Similar formulations also appear in many other situations.

In some cases, these problems can be solved by reformulating them as a reduced-order standard or generalized
eigensystem, in which the matrices are equal to certain operations of the blocks. These matrices are not computed
explicitly to avoid losing sparsity.

All these cases can be easily handled in SLEPc by means of shell matrices. These are matrices that do not require ex-
plicit storage of the matrix entries. Instead, the user must provide subroutines for all the necessary matrix operations,
typically only the application of the linear operator to a vector.

Shell matrices, also called matrix-free matrices, are created in PETSc with the command MatCreateShell87. Then,
the function MatShellSetOperation88 is used to provide any user-defined shell matrix operations (see the PETSc
documentation for additional details). Several examples are available in SLEPc that illustrate how to solve a matrix-
free eigenvalue problem.

In the simplest case, defining matrix-vector product operations (MATOP_MULT) is enough for using EPS with
shell matrices. However, in the case of generalized problems, if matrix B is also a shell matrix then it may
be necessary to define other operations in order to be able to solve the linear system successfully, for exam-
ple MATOP_GET_DIAGONAL to use an iterative linear solver with Jacobi preconditioning. On the other hand,
if the shift-and-invert ST is to be used, then in addition it may also be necessary to define MATOP_SHIFT or
MATOP_AXPY (see section Explicit Computation of Coefficient Matrix (page 42) for discussion).

In the case of SVD, both A and A∗ are required to solve the problem. So when computing the SVD, the shell
matrix needs to have the MATOP_MULT_TRANSPOSE operation (or MATOP_MULT_HERMITIAN_TRANSPOSE

87 https://petsc.org/release/manualpages/Mat/MatCreateShell/
88 https://petsc.org/release/manualpages/Mat/MatShellSetOperation/
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in the case of complex scalars) in addition to MATOP_MULT. Alternatively, if A∗ is to be built explicitly,
MATOP_TRANSPOSE is then the required operation. For details, see the manual page for SVDSetImplicit-
Transpose.

8.3 GPU Computing

Support for graphics processor unit (GPU) computing is included in SLEPc. This is related to section Supported
Matrix Types (page 88) because GPU support in PETSc is based on using special types of Mat89 and Vec90. GPU
support in SLEPc has been tested in all solver classes and most solvers should work, although the performance gain
to be expected depends on the particular algorithm. Regarding PETSc, all iterative linear solvers are prepared to run
on the GPU, but this is not the case for direct solvers and preconditioners (see PETSc documentation for details).
The user must not expect a spectacular performance boost, but in general moderate gains can be achieved by running
the eigensolver on the GPU instead of the CPU (in some cases a 10-fold improvement).

SLEPc currently provides support for NVIDIA GPUs using CUDA112 as well as AMD GPUs using HIP and
ROCm113.

CUDA provides a C/C++ compiler with CUDA extensions as well as the cuBLAS and cuSPARSE libraries that
implement dense and sparse linear algebra operations. For instance, to configure PETSc with GPU support in single
precision arithmetic use the following options:

$ ./configure --with-precision=single --with-cuda

VECCUDA91 and MATAIJCUSPARSE92 are currently the mechanism in PETSc to run a computation on the GPU.
VECCUDA93 is a special type of Vec94 whose array is mirrored in the GPU (and similarly for MATAIJCUS-
PARSE95). PETSc takes care of keeping memory coherence between the two copies of the array, and performs
the computation on the GPU when possible, trying to avoid unnecessary copies between the host and the device. For
maximum efficiency, the user has to make sure that all vectors and matrices are of these types. If they are created
in the standard way (VecCreate96 plus VecSetFromOptions97) then it is sufficient to run the SLEPc program with

$ ./program -vec_type cuda -mat_type aijcusparse

Note that the first option is unnecessary if no Vec98 is created in the main program.

For AMD GPUs the procedure is very similar, with HIP providing the compiler and ROCm providing the analogue
libraries hipBLAS and hipSPARSE. To configure PETSc with HIP do:

$ ./configure --with-precision=single --with-hip

Then the equivalent vector and matrix types are VECHIP99 and MATAIJHIPSPARSE100, which can be used in the
command line with

$ ./program -vec_type hip -mat_type aijhipsparse

89 https://petsc.org/release/manualpages/Mat/Mat/
90 https://petsc.org/release/manualpages/Vec/Vec/
112 https://developer.nvidia.com/cuda-zone
113 https://rocm.docs.amd.com
91 https://petsc.org/release/manualpages/Vec/VECCUDA/
92 https://petsc.org/release/manualpages/Mat/MATAIJCUSPARSE/
93 https://petsc.org/release/manualpages/Vec/VECCUDA/
94 https://petsc.org/release/manualpages/Vec/Vec/
95 https://petsc.org/release/manualpages/Mat/MATAIJCUSPARSE/
96 https://petsc.org/release/manualpages/Vec/VecCreate/
97 https://petsc.org/release/manualpages/Vec/VecSetFromOptions/
98 https://petsc.org/release/manualpages/Vec/Vec/
99 https://petsc.org/release/manualpages/Vec/VECHIP/
100 https://petsc.org/release/manualpages/Mat/MATAIJHIPSPARSE/
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8.4 Extending SLEPc

Shell matrices, presented in section Supported Matrix Types (page 88), are a simple mechanism of extensibility, in
the sense that the package is extended with new user-defined matrix objects. Once the new matrix has been defined,
it can be used by SLEPc in the same way as the rest of the matrices as long as the required operations are provided.

A similar mechanism is available in SLEPc also for extending the system incorporating new spectral transformations
(ST). This is done by using the STSHELL spectral transformation type, in a similar way as shell matrices or shell
preconditioners. In this case, the user defines how the operator is applied to a vector and optionally how the computed
eigenvalues are transformed back to the solution of the original problem (see section Extending SLEPc (page 90) for
details). This tool is intended for simple spectral transformations. For more sophisticated transformations, the user
should register a new ST type (see below).

The function STShellSetApply

STShellSetApply(ST,PetscErrorCode(*)(ST,Vec,Vec));

has to be invoked after the creation of the ST object in order to provide a routine that applies the operator to a vector.
And the function STShellSetBackTransform

STShellSetBackTransform(ST,PetscErrorCode(*)(ST,PetscInt,PetscScalar*,
↪→PetscScalar*));

can be used optionally to specify the routine for the back-transformation of eigenvalues. The two functions pro-
vided by the user can make use of any required user-defined information via a context that can be retrieved with
STShellGetContext. An example program is provided in the SLEPc distribution in order to illustrate the use
of shell transformations.

SLEPc further supports extensibility by allowing application programmers to code their own subroutines for unim-
plemented features such as new eigensolvers or new spectral transformations. It is possible to register these new
methods to the system and use them as the rest of standard subroutines. For example, to implement a variant of the
Subspace Iteration method, one could copy the SLEPc code associated with the subspace solver, modify it and
register a new EPS type with the following line of code EPSRegister

EPSRegister("newsubspace",EPSCreate_NEWSUB);

After this call, the new solver could be used in the same way as the rest of SLEPc solvers, e.g. with -eps_type
newsubspace in the command line. A similar mechanism is available for registering new types of the other classes.

8.5 Auxiliary Classes

Apart from the main solver classes listed in table SLEPc modules (page 4), SLEPc contains several auxiliary classes:

• ST: Spectral Transformation, fully described in chapter ST: Spectral Transformation (page 35).

• FN: Mathematical Function, required in application code to represent the constituent functions of the nonlinear
operator in split form (chapter NEP: Nonlinear Eigenvalue Problems (page 75)), as well as the function to be
used when computing the action of a matrix function on a vector (chapter MFN: Matrix Function (page 83)).

• DS: Direct Solver (or Dense System), can be seen as a wrapper to LAPACK functions used within SLEPc. It
is mostly an internal object that need not be called by end users.

• BV: Basis Vectors, provides the concept of a block of vectors that represent the basis of a subspace.

• RG: Region, a way to define a region of the complex plane.
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8.5.1 FN: Mathematical Functions

Table 1: Mathematical functions available as FN objects.

Function FNType Expression

Polynomial and rational FNRATIONAL p(x)/q(x)
Exponential FNEXP ex

Logarithm FNLOG logx
φ-functions FNPHI φ0(x), φ1(x), …
Square root FNSQRT

√
x

Inverse square root FNINVSQRT x− 1
2

Combine two functions FNCOMBINE See text

The FN class provides a few predefined mathematical functions, including rational functions (of which polynomials
are a particular case) and exponentials. Objects of this class are instantiated by providing the values of the relevant
parameters. FN objects are created with FNCreate and it is necessary to select the type of function (rational,
exponential, etc.) with FNSetType. TableMathematical functions available as FN objects. (page 91) lists available
functions.

Parameters common to all FN types are the scaling factors, which are set with FNSetScale

FNSetScale(FN fn,PetscScalar alpha,PetscScalar beta);

where alpha multiplies the argument and beta multiplies the result. With this, the actual function is β · f(α · x)
for a given function f(·). For instance, an exponential function f(x) = ex will turn into

g(x) = βeαx. (8.2)

In a rational function there are specific parameters, namely the coefficients of the numerator and denominator,

r(x) =
p(x)

q(x)
=

νn−1x
n−1 + · · ·+ ν1x+ ν0

δm−1xm−1 + · · ·+ δ1x+ δ0
. (8.3)

These parameters are specified with FNRationalSetNumerator FNRationalSetDenominator

FNRationalSetNumerator(FN fn,PetscInt np,PetscScalar *pcoeff);
FNRationalSetDenominator(FN fn,PetscInt nq,PetscScalar *qcoeff);

Here, polynomials are passed as an array with high order coefficients appearing in low indices.

The φ-functions are given by

φ0(x) = ex, φ1(x) =
ex − 1

x
, φk(x) =

φk−1(x)− 1/(k − 1)!

x
, (8.4)

where the index k must be specified with FNPhiSetIndex.

Whenever the solvers need to compute f(x) or f ′(x) on a given scalar x, the following functions are invoked:
FNEvaluateFunction FNEvaluateDerivative

FNEvaluateFunction(FN fn,PetscScalar x,PetscScalar *y)
FNEvaluateDerivative(FN fn,PetscScalar x,PetscScalar *y)

The function can also be evaluated as a matrix function, B = f(A), where A,B are small, dense, square matrices.
This is done with FNEvaluateFunctionMat. Note that for a rational function, the corresponding expression
would be q(A)−1p(A). For computing functions such as the exponential of a small matrix A, several methods are
available. When the matrix A is symmetric, the default is to compute f(A) using the eigendecomposition A =
QΛQ∗, for instance the exponential would be computed as exp(A) = Q diag(eλi)Q∗. In the general case, it is
necessary to have recourse to one of the methods discussed in, e.g., [Higham and Al-Mohy, 2010].
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Finally, there is amechanism to combine simple functions in order to createmore complicated functions. For instance,
the function

f(x) = (1− x2) exp
(
−x

1 + x2

)
(8.5)

can be represented with an expression tree with three leaves (one exponential function and two rational functions)
and two interior nodes (one of them is the root, f(x)). Interior nodes are simply FN objects of type FNCOMBINE
that specify how the two children must be combined (with either addition, multiplication, division or function com-
position): FNCombineSetChildren

FNCombineSetChildren(FN fn,FNCombineType comb,FN f1,FN f2)

The combination of f1 and f2 with division will result in f1(x)/f2(x) and f2(A)−1f1(A) in the case of matrices.

8.5.2 BV: Basis Vectors

The BV class may be useful for advanced users, so we briefly describe it here for completeness. BV is a convenient
way of handling a collection of vectors that often operate together, rather than working with an array of Vec101. It
can be seen as a generalization of Vec102 to a tall-skinny matrix with several columns.

Table 2: Operations available for BV objects.

Operation Block version Column version Vector version

Y = X BVCopy BVCopyColumn BVCopyVec
Y = βY + αXQ BVMult BVMultColumn BVMultVec
M = Y ∗AX BVMatProject – –
M = Y ∗X BVDot BVDotColumn BVDotVec
Y = αY BVScale BVScaleColumn –
r = |X|type BVNorm BVNormColumn BVNormVec
Set to random values BVSetRandom BVSetRandomColumn –
Orthogonalize BVOrthogonal-

ize
BVOrthogonalizeCol-
umn

BVOrthogonal-
izeVec

Table Operations available for BV objects. (page 92) shows a summary of the operations offered by the BV class,
with variants that operate on the whole BV, on a single column, or on an external Vec103 object. Missing variants
can be achieved simply with Vec104 and Mat105 operations. Other available variants not shown in the table are
BVMultInPlace, BVMultInPlaceHermitianTranspose and BVOrthogonalizeSomeColumn.

Most SLEPc solvers use a BV object to represent the working subspace basis. In particular, orthogonalization oper-
ations are mostly confined within BV. Hence, BV provides options for specifying the method of orthogonalization of
vectors (Gram-Schmidt) as well as the method of block orthogonalization, see BVSetOrthogonalization.

101 https://petsc.org/release/manualpages/Vec/Vec/
102 https://petsc.org/release/manualpages/Vec/Vec/
103 https://petsc.org/release/manualpages/Vec/Vec/
104 https://petsc.org/release/manualpages/Vec/Vec/
105 https://petsc.org/release/manualpages/Mat/Mat/
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8.5.3 RG: Region

The RG object defines a region of the complex plane, that can be used to specify where eigenvalues must be sought.
Currently, the following types of regions are available:

• A (generalized) interval, defined as [a, b] × [c, d], where the four parameters can be set with RGInter-
valSetEndpoints. This covers the particular cases of an interval on the real axis (setting c = d = 0),
the left halfplane [−∞, 0] × [−∞,+∞], a quadrant, etc. (see figure Interval region defined via de RG class.
(page 93))

-1.2 -7.0e-1 -2.0e-1 3.0e-1 8.0e-1
-1.2

-7.0e-1

-2.0e-1

3.0e-1

8.0e-1

Fig. 1: Interval region defined via de RG class.

• A polygon defined by its vertices, see RGPolygonSetVertices. (see figure Polygon region defined via de
RG class. (page 93))

-2.0e-1 3.0e-1 8.0e-1 1.3 1.8
-1.2

-7.0e-1

-2.0e-1

3.0e-1

8.0e-1

Fig. 2: Polygon region defined via de RG class.

• An ellipse defined by its center, radius and vertical scale (1 by default), see RGEllipseSetParameters.
(see figure Ellipse region defined via de RG class. (page 94))

• A ring region similar to an ellipse but consisting of a thin stripe along the ellipse with optional start and end
angles, see RGRingSetParameters. (see figure Ring region defined via de RG class. (page 94))

Sometimes it is useful to specify the complement of a certain region, e.g., the part of the complex plane outside an
ellipse. This can be achieved with RGSetComplement

RGSetComplement(RG rg,PetscBool flg)

or in the command line with -rg_complement.

By default, a newly created RG object that is not set a type nor parameters must represent the whole complex plane
(the same as RGINTERVAL with values [−∞,+∞] × [−∞,+∞]). We call this the trivial region, and provide a
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Fig. 3: Ellipse region defined via de RG class.
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Fig. 4: Ring region defined via de RG class.
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function to test this situation: RGIsTrivial

RGIsTrivial(RG rg,PetscBool *trivial)

Another useful operation is to check whether a given point of the complex plane is inside the region or not:
RGCheckInside

RGCheckInside(RG rg,PetscInt n,PetscScalar *ar,PetscScalar *ai,PetscInt *inside)

Note that the point is represented as two PetscScalar106’s, similarly to eigenvalues in SLEPc.

Table 3: Regions available as RG objects.

Region Type RGType Options Database Name

(Generalized) Interval RGINTERVAL interval
Polygon RGPOLYGON polygon
Ellipse RGELLIPSE ellipse
Ring RGRING ring

8.6 Directory Structure

The directory structure of the SLEPc software is very similar to that in PETSc. The root directory of SLEPc contains
the following directories:

• lib/slepc/conf - Directory containing the base SLEPc makefile, to be included in application makefiles.

• config - SLEPc configuration scripts.

• doc - All documentation for SLEPc, including this manual. The subdirectory manualpages contains the
on-line manual pages of each SLEPc routine.

• include - All include files for SLEPc. The following subdirectories exist:

– slepc/finclude - include files for Fortran programmers.

– slepc/private - include files containing implementation details, for developer use only.

• share/slepc - Common files, including:

– datafiles - data files used by some examples.

• src - The source code for all SLEPc components, which currently includes:

– sys - system-related routines and auxiliary classes bv, ds, fn, rg, st.

– eps - eigenvalue problem solver.

– svd - singular value decomposition solver.

– pep - polynomial eigenvalue problem solver.

– nep - nonlinear eigenvalue problem solver.

– mfn - matrix function.

– lme - linear matrix equations.

• $PETSC_ARCH - For each value of PETSC_ARCH, a directory exists containing files generated during in-
stallation of that particular configuration. The following subdirectories exist:

– lib - all the generated libraries.

– lib/slepc/conf - configuration parameters and log files.

– include - automatically generated include files, such as Fortran 90 *.mod files.

106 https://petsc.org/release/manualpages/Sys/PetscScalar/
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Each SLEPc source code component directory has the following subdirectories:

• interface: The calling sequences for the abstract interface to the components. Code here does not know
about particular implementations.

• impls: Source code for the different implementations.

• tutorials: Example programs intended for learning to use SLEPc.

• tests: Example programs used by testing scripts.

8.7 Wrappers to External Libraries

SLEPc interfaces to several external libraries for the solution of eigenvalue problems. This section provides a short
description of each of these packages as well as some hints for using them with SLEPc, including pointers to the
respective websites from which the software can be downloaded. The description may also include method-specific
parameters, that can be set in the same way as other SLEPc options, either procedurally or via the command-line.

In order to use SLEPc together with an external library such as ARPACK, one needs to do the following.

1. Install the external software, with the same compilers and MPI that will be used for PETSc/SLEPc.

2. Enable the utilization of the external software from SLEPc by specifying configure options as explained in
section Configuration Options (page 4).

3. Build the SLEPc libraries.

4. Use the runtime option -eps_type <type> to select the solver.

Exceptions to the above rule are LAPACK, which should be enabled during PETSc’s configuration, and BLOPEX,
that must be installed with--download-blopex in SLEPc’s configure. Other packages also support the download
option.

8.7.1 [LAPACK]

References
[Anderson et al., 1999].

Website
https://www.netlib.org/lapack.

Version
3.0 or later.

Summary
LAPACK (Linear Algebra PACKage) is a software package for the solution of many different
dense linear algebra problems, including various types of eigenvalue problems and singular value
decompositions.

SLEPc explicitly creates the operator matrix in dense form and then the appropriate LAPACK
driver routine is invoked. Therefore, this interface should be used only for testing and validation
purposes and not in a production code. The operator matrix is created by applying the operator to
the columns of the identity matrix.

Installation
The SLEPc interface to LAPACK can be used directly. If SLEPc’s configure script
complains about missing LAPACK functions, then configure PETSc with option
--download-f2cblaslapack.

96 Chapter 8. Additional Information

https://www.netlib.org/lapack


, Release 3.24.0

8.7.2 [ARPACK]

References
[Lehoucq et al., 1998], [Maschhoff and Sorensen, 1996].

Website
https://github.com/opencollab/arpack-ng.

Version
Release 2 (plus patches).

Summary
ARPACK (ARnoldi PACKage) is a software package for the computation of a few eigenvalues
and corresponding eigenvectors of a general n×nmatrixA. It is most appropriate for large sparse
or structured matrices, where structured means that a matrix-vector product w ← Av requires
order n rather than the usual order n2 floating point operations.

ARPACK is based upon an algorithmic variant of the Arnoldi process called the Implicitly
Restarted Arnoldi Method (IRAM). When the matrix A is symmetric it reduces to a variant of
the Lanczos process called the Implicitly Restarted Lanczos Method (IRLM). These variants may
be viewed as a synthesis of the Arnoldi/Lanczos process with the Implicitly Shifted QR technique
that is suitable for large scale problems.

It can be used for standard and generalized eigenvalue problems, both in real and complex arith-
metic. It is implemented in Fortran 77 and it is based on the reverse communication interface. A
parallel version, PARPACK, is available with support for both MPI and BLACS.

Installation
To install from the original website: first of all, unpack arpack96.tar.gz and also the patch
file patch.tar.gz. If you plan to use the parallel version, extract also the contents of the
file parpack96.tar.gz together with the patches ppatch.tar.gz (make sure you delete
any mpif.h files that could exist in the directory tree). After setting all the directories, modify
the ARmake.inc file and then compile the software with make all. It is recommended that
ARPACK is installed with its own LAPACK version since it may give unexpected results with
more recent versions of LAPACK.

Alternatively, one can use the arpack-ng distribution, available in github.com, that supports
configure+make for installation. Also, SLEPc’s configure allows to download this version
automatically via the --download-arpack option.

It is possible to configure SLEPcwith the serial version ofARPACK. For this, you have to configure
PETSc with the option --with-mpi=0.

8.7.3 [PRIMME]

References
[Stathopoulos and McCombs, 2010].

Website
https://www.cs.wm.edu/~andreas/software.

Version
3.2.

Summary
PRIMME (PReconditioned Iterative MultiMethod Eigensolver) is a C library for finding a number
of eigenvalues and their corresponding eigenvectors of a real symmetric (or complex Hermitian)
matrix. This library provides a multimethod eigensolver, based on Davidson/Jacobi-Davidson.
Particular methods include GD+1, JDQMR, and LOBPCG. It supports preconditioning as well as
the computation of interior eigenvalues.
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Installation
Type make lib after customizing the file Make_flags appropriately. Alternatively, the
--download-primme option is also available in SLEPc’s configure.

Specific options
Since PRIMME contains preconditioned solvers, the SLEPc interface uses STPRECOND, as de-
scribed in section Preconditioner (page 40).

The SLEPc interface to this package allows the user to specify the maximum allowed
block size with the function EPSPRIMMESetBlockSize or at run time with the op-
tion -eps_primme_blocksize <size>. For changing the particular algorithm within
PRIMME, use the function EPSPRIMMESetMethod.

PRIMME also provides a solver for the singular value decomposition that is interfaced in SLEPc’s
SVD, see chapter SVD: Singular Value Decomposition (page 49).

8.7.4 [EVSL]

References
[Li et al., 2019].

Website
https://www-users.cse.umn.edu/~saad/software/EVSL/.

Summary
EVSL is a sequential library that implements methods for computing all eigenvalues located in a
given interval for real symmetric (standard or generalized) eigenvalue problems. Currently SLEPc
only supports standard problems.

Installation
The option --download-evsl is available in SLEPc’s configure for easy installation. Alterna-
tively, one can use an already installed version.

8.7.5 [BLOPEX]

References
[Knyazev et al., 2007].

Website
https://github.com/lobpcg/blopex.

Summary
BLOPEX is a package that implements the Locally Optimal Block Preconditioned Conjugate Gra-
dient (LOBPCG) method for computing several extreme eigenpairs of symmetric positive gener-
alized eigenproblems. Numerical comparisons suggest that this method is a genuine analog for
eigenproblems of the standard preconditioned conjugate gradient method for symmetric linear
systems.

Installation
In order to use BLOPEX from SLEPc, it necessary to install it during SLEPc’s configuration:
./configure --download-blopex.

Specific options
Since BLOPEX contains preconditioned solvers, the SLEPc interface uses STPRECOND, as de-
scribed in section Preconditioner (page 40).
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8.7.6 [ScaLAPACK]

References
[Blackford et al., 1997].

Website
https://www.netlib.org/scalapack.

Summary
ScaLAPACK is a library of high-performance linear algebra routines for parallel distributed mem-
ory machines. It contains eigensolvers for dense Hermitian eigenvalue problems, as well as solvers
for the (dense) SVD.

Installation
For using ScaLAPACK from SLEPc it is necessary to select it during configuration of PETSc.

8.7.7 [ELPA]

References
[Auckenthaler et al., 2011].

Website
https://elpa.mpcdf.mpg.de/.

Summary
ELPA is a high-performance library for the parallel solution of dense symmetric (or Hermitian)
eigenvalue problems on distributed memory computers. It uses a ScaLAPACK-compatible matrix
distribution.

Installation
The SLEPc wrapper to ELPA can be activated at configure time with the option
--download_elpa, in which case ScaLAPACK support must have been enabled during the
configuration of PETSc.

8.7.8 [KSVD]

References
[Sukkari et al., 2019].

Website
https://github.com/ecrc/ksvd/.

Summary
KSVD is a high performance software framework for computing a dense SVD on distributed-
memory manycore systems. The KSVD solver relies on the polar decomposition (PD) based on
the QR Dynamically-Weighted Halley (QDWH) and ZOLO-PD algorithms.

Installation
The option --download-ksvd is available in SLEPc’s configure for easy installation, which in
turn requires adding --download-polar and --download-elpa.
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8.7.9 [ELEMENTAL]

References
[Poulson et al., 2013].

Website
https://github.com/elemental/Elemental.

Summary
ELEMENTAL is distributed-memory, arbitrary-precision, dense and sparse-direct linear algebra
package. It contains eigensolvers for dense Hermitian eigenvalue problems, as well as solvers for
the SVD.

Installation
For using ELEMENTAL from SLEPc it is necessary to select it during configuration of PETSc.

8.7.10 [FEAST]

References
[Polizzi, 2009].

Website
https://feast-solver.org/.

Version
FEAST is a numerical library for solving the standard or generalized symmetric eigenvalue prob-
lem, and obtaining all the eigenvalues and eigenvectors within a given search interval. It is based
on an innovative fast and stable numerical algorithm which deviates fundamentally from the tra-
ditional Krylov subspace based iterations or Davidson-Jacobi techniques. The FEAST algorithm
takes its inspiration from the density-matrix representation and contour integration technique in
quantum mechanics. Latest versions also support non-symmetric problems.

Installation
We only support the FEAST implementation included in Intel MKL. For using it from SLEPc
it is necessary to configure PETSc with MKL by adding the corresponding option, e.g.,
--with-blas-lapack-dir=$MKLROOT.

Specific options
The SLEPc interface to FEAST allows the user to specify the number of contour integra-
tion points with the function EPSFEASTSetNumPoints or at run time with the option
-eps_feast_num_points <n>.

8.7.11 [CHASE]

References
[Winkelmann et al., 2019].

Website
https://github.com/ChASE-library/ChASE.

Summary
CHASE is a modern and scalable library based on subspace iteration with polynomial acceleration
to solve dense Hermitian (symmetric) algebraic eigenvalue problems, especially solving dense Her-
mitian eigenproblems arranged in a sequence. Novel to ChASE is the computation of the spectral
estimates that enter in the filter and an optimization of the polynomial degree that further reduces
the necessary floating-point operations.

Installation
Currently, the CHASE interface in SLEPc is based on the MPI version with block-cyclic distribu-
tion, i.e., ScaLAPACK matrix storage, so it is necessary to enable ScaLAPACK during configu-
ration of PETSc.
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8.8 Fortran Interface

SLEPc provides an interface for Fortran programmers, very much like PETSc. As in the case of PETSc, there are
slight differences between the C and Fortran SLEPc interfaces, due to differences in Fortran syntax. For instance, the
error checking variable is the final argument of all the routines in the Fortran interface, in contrast to the C convention
of providing the error variable as the routine’s return value.

The following is a Fortran example. It is the Fortran equivalent of the program given in section Simple SLEPc Example
(page 8) and can be found in ${SLEPC_DIR}/src/eps/tutorials (file ex1f.F90).

!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! SLEPc - Scalable Library for Eigenvalue Problem Computations
! Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
!
! This file is part of SLEPc.
! SLEPc is distributed under a 2-clause BSD license (see LICENSE).
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
! Program usage: mpiexec -n <np> ./ex1f [-help] [-n <n>] [all SLEPc options]
!
! Description: Simple example that solves an eigensystem with the EPS object.
! The standard symmetric eigenvalue problem to be solved corresponds to the
! Laplacian operator in 1 dimension.
!
! The command line options are:
! -n <n>, where <n> = number of grid points = matrix size
!
! ----------------------------------------------------------------------
!

program main
#include <slepc/finclude/slepceps.h>

use slepceps
implicit none

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! Declarations
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
! Variables:
! A operator matrix
! eps eigenproblem solver context

Mat A
EPS eps
EPSType tname
PetscInt n, i, Istart, Iend, one, two, three
PetscInt nev
PetscInt row(1), col(3)
PetscMPIInt rank
PetscErrorCode ierr
PetscBool flg, terse
PetscScalar val(3)

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! Beginning of program
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

one = 1
two = 2
three = 3
PetscCallA(SlepcInitialize(PETSC_NULL_CHARACTER,"ex1f test"//c_new_line,

(continues on next page)
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(continued from previous page)

↪→ierr))
if (ierr .ne. 0) then

print*,'SlepcInitialize failed'
stop

endif
PetscCallMPIA(MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr))
n = 30
PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-n',n,

↪→flg,ierr))

if (rank .eq. 0) then
write(*,100) n

endif
100 format (/'1-D Laplacian Eigenproblem, n =',I4,' (Fortran)')

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! Compute the operator matrix that defines the eigensystem, Ax=kx
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

PetscCallA(MatCreate(PETSC_COMM_WORLD,A,ierr))
PetscCallA(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n,ierr))
PetscCallA(MatSetFromOptions(A,ierr))

PetscCallA(MatGetOwnershipRange(A,Istart,Iend,ierr))
if (Istart .eq. 0) then

row(1) = 0
col(1) = 0
col(2) = 1
val(1) = 2.0
val(2) = -1.0
PetscCallA(MatSetValues(A,one,row,two,col,val,INSERT_VALUES,ierr))
Istart = Istart+1

endif
if (Iend .eq. n) then

row(1) = n-1
col(1) = n-2
col(2) = n-1
val(1) = -1.0
val(2) = 2.0
PetscCallA(MatSetValues(A,one,row,two,col,val,INSERT_VALUES,ierr))
Iend = Iend-1

endif
val(1) = -1.0
val(2) = 2.0
val(3) = -1.0
do i=Istart,Iend-1

row(1) = i
col(1) = i-1
col(2) = i
col(3) = i+1
PetscCallA(MatSetValues(A,one,row,three,col,val,INSERT_VALUES,ierr))

enddo

PetscCallA(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY,ierr))
PetscCallA(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY,ierr))

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! Create the eigensolver and display info
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! ** Create eigensolver context

(continues on next page)
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PetscCallA(EPSCreate(PETSC_COMM_WORLD,eps,ierr))

! ** Set operators. In this case, it is a standard eigenvalue problem
PetscCallA(EPSSetOperators(eps,A,PETSC_NULL_MAT,ierr))
PetscCallA(EPSSetProblemType(eps,EPS_HEP,ierr))

! ** Set solver parameters at runtime
PetscCallA(EPSSetFromOptions(eps,ierr))

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! Solve the eigensystem
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

PetscCallA(EPSSolve(eps,ierr))

! ** Optional: Get some information from the solver and display it
PetscCallA(EPSGetType(eps,tname,ierr))
if (rank .eq. 0) then

write(*,120) tname
endif

120 format (' Solution method: ',A)
PetscCallA(EPSGetDimensions(eps,nev,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,

↪→ierr))
if (rank .eq. 0) then

write(*,130) nev
endif

130 format (' Number of requested eigenvalues:',I4)

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! Display solution and clean up
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! ** show detailed info unless -terse option is given by user
PetscCallA(PetscOptionsHasName(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-

↪→terse',terse,ierr))
if (terse) then

PetscCallA(EPSErrorView(eps,EPS_ERROR_RELATIVE,PETSC_NULL_VIEWER,ierr))
else

PetscCallA(PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_
↪→ASCII_INFO_DETAIL,ierr))

PetscCallA(EPSConvergedReasonView(eps,PETSC_VIEWER_STDOUT_WORLD,ierr))
PetscCallA(EPSErrorView(eps,EPS_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD,

↪→ierr))
PetscCallA(PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD,ierr))

endif
PetscCallA(EPSDestroy(eps,ierr))
PetscCallA(MatDestroy(A,ierr))

PetscCallA(SlepcFinalize(ierr))
end

!/*TEST
!
! build:
! requires: defined(PETSC_USING_F2003) defined(PETSC_USING_F90FREEFORM)
!
! test:
! args: -eps_nev 4 -terse
! filter: sed -e "s/3.83791/3.83792/"
!
!TEST*/
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[Balay:PUM] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown, Peter Brune, Kris
Buschelman, Emil Constantinescu, Lisandro Dalcin, Alp Dener, Victor Eijkhout, Jacob Faibussow-
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Report STR-11, Universitat Politècnica de València, 2016. Available at https://slepc.upv.es.

[Meerbergen:1994:SCT] K. Meerbergen, A. Spence, and D. Roose. Shift-invert and Cayley transforms for detection
of rightmost eigenvalues of nonsymmetric matrices. BIT Numerical Mathematics, 34(3):409–423, 1994.

[Meerbergen:1997:IRA] Karl Meerbergen and Alastair Spence. Implicitly restarted Arnoldi with purification for the
shift-invert transformation. Mathematics of Computation, 66(218):667–689, 1997.

[Nour-Omid:1987:HIS] Bahram Nour-Omid, Beresford N. Parlett, Thomas Ericsson, and Paul S. Jensen. How to
implement the spectral transformation. Mathematics of Computation, 48(178):663–673, 1987.

[Romero:2014:PID] E. Romero and J. E. Roman. A parallel implementation of Davidson methods for large-scale
eigenvalue problems in SLEPc. ACM Transactions on Mathematical Software, 40(2):13:1–13:29, 2014.
doi:10.1145/254369646.

[Scott:1982:AIO] D. S. Scott. The advantages of inverted operators in Rayleigh-Ritz approximations. SIAM Journal
on Scientific and Statistical Computing, 3(1):68–75, 1982.

27 https://doi.org/10.1088/1361-648x/ab15d0
46 https://doi.org/10.1145/2543696

106 Bibliography

https://doi.org/10.1088/1361-648x/ab15d0
https://doi.org/10.1088/1361-648x/ab15d0
https://doi.org/10.1145/2543696


, Release 3.24.0

[Alvarruiz:2024:TLB] F. Alvarruiz, C. Campos, and J. E. Roman. Thick-restarted joint Lanczos bidiagonal-
ization for the GSVD. Journal of Computational and Applied Mathematics, 440:115506, 2024.
doi:10.1016/j.cam.2023.11550660.

[Anderson:1999:LUG] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users' Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.

[Bai:2000:TSA] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Templates for the Solution
of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2000.
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Report STR-11, Universitat Politècnica de València, 2016. Available at https://slepc.upv.es.

60 https://doi.org/10.1016/j.cam.2023.115506
61 https://doi.org/10.1109/78.134396
66 https://doi.org/10.1002/nla.2052
67 https://doi.org/10.1137/15M1022458
68 https://doi.org/10.1007/s10543-019-00778-z
69 https://doi.org/10.1002/nla.2293
84 https://doi.org/10.1145/3447544

Bibliography 107

https://doi.org/10.1016/j.cam.2023.115506
https://doi.org/10.1109/78.134396
https://doi.org/10.1002/nla.2052
https://doi.org/10.1137/15M1022458
https://doi.org/10.1007/s10543-019-00778-z
https://doi.org/10.1007/s10543-019-00778-z
https://doi.org/10.1002/nla.2293
https://doi.org/10.1145/3447544


, Release 3.24.0

[Mehrmann:2004:NEP] V. Mehrmann and H. Voss. Nonlinear eigenvalue problems: a challenge for modern eigen-
value methods. GAMM Mitteilungen, 27(2):121–152, 2004.

[Eiermann:2006:RKS] M. Eiermann and O. G. Ernst. A restarted Krylov subspace method for the evaluation of
matrix functions. SIAM Journal on Numerical Analysis, 44(6):2481–2504, 2006.

[Higham:2010:CMF] N. J. Higham and A. H. Al-Mohy. Computing matrix functions. Acta Numerica, 19:159–208,
2010.

[Sidje:1998:ESP] R. B. Sidje. Expokit: a software package for computing matrix exponentials. ACM Transactions
on Mathematical Software, 24(1):130–156, 1998.

[Anderson:1999:LUG] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users' Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.

[Auckenthaler:2011:ELP] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L. Krämer, B. Lang,
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