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1 Introduction

Krylov eigensolvers are among the most successful methods for approximating eigenvalues and
eigenvectors of large, sparse matrices. It is well known that Krylov subspaces of increasing
dimension contain increasingly better approximations of eigenspaces of a given matrix. These
approximations can be retrieved by the Rayleigh-Ritz projection procedure. The overall process
can be accomplished by means of the Lanczos and Arnoldi algorithms, for the Hermitian and
non-Hermitian cases, respectively. The reader is referred to [Stewart, 2001b; van der Vorst,
2002] for details.

Since the convergence of Krylov subspaces to eigenspaces can be very slow, restarting is
necessary, especially in the non-Hermitian case because Arnoldi needs to operate on all the
available basis vectors. The key point is how to restart without throwing away the currently
available spectral information that is relevant to the user. In this respect, two achievements
have contributed to getting closer to a satisfactory solution: implicit restart and the Krylov-
Schur method. Implicit restart was proposed by Sorensen [1992], and consists in combining the
Arnoldi (or Lanczos) procedure with a few steps of the implicitly shifted QR iteration. The
result is an algorithm that efficiently computes the Arnoldi reduction that would be obtained
with a modified initial vector, on which a polynomial filter has been applied, but without
computing this vector explicitly. In this way, at each restart it is possible to filter out the
components in the direction of unwanted eigenvectors, thus favoring convergence to the wanted
part of the spectrum. The Krylov-Schur method was introduced by Stewart [2001a, 2002] as
an alternative to implicit restart that is mathematically equivalent, but easier to implement in
a numerically robust manner. A symmetric variant of this process had already been proposed
before [Wu and Simon, 2000].

Even with the filtering effect provided by implicit restart, some parts of the spectrum may
be very difficult to compute. This is due to the fact that Krylov subspaces tend to converge

— 2 —



STR-9 Practical Implementation of Harmonic Krylov-Schur

first to eigenspaces associated to dominant eigenvalues or, in general, to those eigenvalues
lying in the periphery of the spectrum. In applications where the sought-after eigenvalues
are interior, restarted Krylov eigensolvers will likely fail. One of the reasons is that standard
Rayleigh-Ritz may provide ‘imposters’ [Stewart, 2001b], that is, approximate eigenvalues whose
associated vector is a linear combination of some irrelevant eigenvectors. If such vectors are
chosen for the restart, then convergence will be damaged. Also, in cases where one is interested
in computing righmost eigenvalues that are small relative to the dominant ones, difficulties arise
as well because the filtering mechanism is not able to get rid of the components from largest
magnitude eigenvalues. Smallest eigenvalues may suffer similar problems. In all these cases, a
remedy is required.

One possibility for computing interior eigenvalues is to apply a spectral transformation such
as shift-and-invert. In this case, the eigensolver builds a Krylov subspace associated to the
shifted and inverted matrix, (A − τI)−1, so that the eigenvalues closest to the parameter τ
now become dominant and well separated. This approach has been used successfully for a long
time, especially in the context of symmetric problems [Ericsson and Ruhe, 1980; Grimes et al.,
1994]. The main drawback of this technique is that inversion implies solving multiple linear
systems within the Arnoldi procedure. The added cost may be prohibitive in some applications,
especially for very large problems. Also, factorizing the matrix may be impractical in the context
of parallel computation, or even impossible in applications where the matrix is not available
explicitly. On the other hand, solving the linear systems with an iterative method is possible
[Meerbergen and Roose, 1997], but in practice it may not be appropriate because these systems
must be solved very accurately. If sufficient accuracy is not attained, then errors accumulate
resulting in a computed subspace that differs from a Krylov subspace. In that case it may be
better to resign from pursuing the Krylov character and build a completely different subspace,
as in the case of preconditioned eigensolvers, see e.g. [Morgan, 2000b] and references therein.

A different alternative, on which we focus in this report, is harmonic extraction. The concept
of harmonic Ritz values was used by Morgan [1991] as a means of achieving a similar effect as
the shift-and-invert transformation, but without incurring the high cost associated with the
inverted operator. Harmonic Ritz values of a matrix A are the reciprocals of Ritz values of
A−1 with respect to the subspace AV, where V is the space of approximants [Paige et al.,
1995; Sleijpen and van der Vorst, 1996]. Harmonic Ritz values can also be seen as the roots of
quasi-kernel polynomials [Freund, 1992], or as directly related to Lehmann bounds [Paige et al.,
1995; Beattie, 1998]. For a general description of harmonic projection techniques, see [Stewart,
2001b; van der Vorst, 2002].

Harmonic Ritz values and vectors are relevant for the iterative solution of linear systems
of equations [Morgan, 1995; Goossens and Roose, 1999; Morgan, 2000a, 2002]. Here, we are
concerned with using them for computing approximations of eigenvalues and eigenvectors.

Although harmonic Ritz values seem to be very promising for computing smallest or internal
eigenvalues, due to their relation to Ritz values of A−1, it turns out that the performance of
this technique is very poor compared to the shift-and-invert mapping in terms of convergence,
although much cheaper. In fact, examples show that convergence rate is more or less equivalent
to standard Ritz values [Paige et al., 1995; Beattie, 1998]. However, when approximating
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internal eigenvalues, the convergence of harmonic Ritz values is monotonic as opposed to the
irregular behaviour of Ritz values, and this can certainly have advantages. In the context
of restarted eigensolvers, it can be beneficial to use harmonic Ritz vectors for restarting, as
advocated by Morgan and Zeng [1998, 2006]. This is because harmonic Rayleigh-Ritz avoids
the appearance of ‘imposters’ when computing internal eigenvalues. See also [Stewart, 2001b,
§4.2]. In this report, we focus on the standard eigenproblem, although harmonic Rayleigh-
Ritz can be extended to the generalized and polynomial eigenvalue problems [Stewart, 2001b;
Hochstenbach and Sleijpen, 2008].

Another alternative for approximating eigenvalues is the so-called refined extraction, which
is indeed compatible with harmonic extraction so that a combined method can be used [Jia,
2002, 2005; Chen and Jia, 2005]. It can be shown that there is a theoretical relation between
refined and harmonic extraction [Sleijpen and van den Eshof, 2003].

As mentioned above, using a harmonic Rayleigh-Ritz procedure for obtaining accurate ap-
proximations of eigenpairs is especially important when these approximations are employed at
the moment of restarting the method. Work by some authors has focussed on Krylov eigen-
solvers with either explicit restart [Chen and Jia, 2005] or implicit restart [Jia, 2002, 2005; Chen
and Lin, 2008], or the Jacobi-Davidson method [Sleijpen and van der Vorst, 1996; Sleijpen et al.,
1998]. In this report, we consider the Krylov-Schur method. Our algorithm is equivalent to the
one proposed by Morgan [2002] and Morgan and Zeng [2006], but here we consider a formulation
entirely in terms of Krylov decompositions as defined by Stewart [2001a, 2002].

The definition of harmonic Ritz value has been generalized by Hochstenbach [2005] to a
more general rational function of a matrix. This rational harmonic Ritz approach can be
useful for computing rightmost eigenvalues or eigenvalues of structured matrices. The use of
harmonic Ritz values has also been extended to the case of computing a partial singular value
decomposition (SVD), where it can be useful for computing smallest or internal singular values
[Kokiopoulou et al., 2004; Hochstenbach, 2004; Baglama and Reichel, 2005, 2006]. This case
will be mentioned also in this report.

In §1.1, we present the main theory of the Krylov-Schur method. Section 2.1 introduces
the harmonic projection, and §2.2 discusses how it can be incorporated into the Krylov-Schur
algorithm. In §2.3, an alternative path to the same result is presented. Section 2.4 provides
some additional details concerning the symmetric case. Throughout this report ‖ · ‖ will denote
the vector and matrix 2-norm. We will also use the colon notation to denote a range of indices
that define a submatrix, for instance Q1:` denotes the matrix formed by the first ` columns of
Q, and S1:`,1:` denotes the leading principal submatrix of order ` of S.

1.1 The Krylov-Schur Method

The Krylov-Schur method is based on so-called Krylov decompositions. Given an n×n matrix
A, a Krylov decomposition of order m is a relation of the form

AU = UB + ub∗, (1)

where B is a square matrix of order m and the columns of [U, u] are linearly independent.
The columns of [U, u] span the space of the decomposition, that can be shown to be a Krylov
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subspace [Stewart, 2001a, Th. 2.2]. If these columns are orthonormal then the decomposition
is said to be orthonormal.

The matrix B is called the Rayleigh quotient of the decomposition. To see why, consider
the particular case of an orthonormal Krylov decomposition and premultiply (1) by U∗. Then,

U∗AU = B. (2)

This fact allows the application of the Rayleigh-Ritz procedure, that is, if ζ is an eigenvalue of
B and y is the corresponding eigenvector, then an approximate eigenpair of A can be obtained
as λ̃ = ζ (Ritz value) and x̃ = Uy (Ritz vector). Generalizations of this procedure will be
considered later on.

If the spaces of two Krylov decompositions are the same, then the decompositions are said to
be equivalent. Two classes of transformations maintain equivalence: similarity and translation.
A similarity transformation is performed by postmultiplying the decomposition by the inverse
of a non-singular matrix W ,

A(UW−1) = (UW−1)(WBW−1) + u(b∗W−1). (3)

Note that the new Rayleigh quotient is similar to the original one, and the basis of the space
has changed. In a translation transformation, the Rayleigh quotient is modified by a rank-one
matrix,

AU = U(B + gb∗) + (u− Ug)b∗. (4)

These two transformations can be used to build a sequence of equivalent Krylov decompositions
with the aim of efficiently extracting the spectral information. In particular, they can be used for
making the columns of [U, u] orthogonal, for transforming an arbitrary Krylov decomposition
to an equivalent Arnoldi decomposition, or for reducing the Rayleigh quotient to the Schur
canonical form. Also, as pointed out by Stewart [2002], translations are relevant for computing
harmonic Ritz values, and this will be discussed further in §2.2.

The Krylov-Schur method works with orthonormal Krylov decompositions and applies trans-
formations in order to reduce them to a Krylov-Schur decomposition, in which B is in Schur
form. The crux of the method is the observation that if B is in Schur form then the de-
composition can be truncated at any point. This allows for a repetive scheme in which the
decomposition is truncated and extended again, keeping the relevant spectral information and
improving it at each cycle. Consider a Krylov-Schur decomposition written as

A
[
U1 U2

]
=
[
U1 U2

] [ S11 S12

0 S22

]
+ u

[
b∗1 b∗2

]
, (5)

then equating the first block-column yields another Krylov-Schur decomposition,

AU1 = U1S11 + ub∗1. (6)

This is possible because the bottom-left corner of the Rayleigh quotient is zero. An implication
of this is that in the case of real arithmetic the Rayleigh quotient is quasi-triangular and
truncation should not split any 2× 2 diagonal blocks.
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Algorithm 1 (Krylov-Schur Method)

1. Start. Given an initial vector, build an orthonormal Krylov decomposition of order m, for
instance with the Arnoldi algorithm,

AU = UB + ub∗. (7)

2. Schur. Compute a unitary matrix Q1 that reduces B to Schur form, S = Q∗
1BQ1, obtain-

ing a Krylov-Schur decomposition,

AUQ1 = UQ1S + ub∗Q1. (8)

3. Sort. Compute a unitary similarity transformation S̃ = Q∗
2SQ2 that sorts the diagonal

blocks of the Rayleigh quotient in an appropriate order. Set Q := Q1Q2, then

AUQ = UQS̃ + ub∗Q. (9)

4. Truncate. Proceed as indicated in (5)–(6). Choose an appropriate dimension, `, and

explicitly compute Û = UQ1:` and b̂ = Q∗
1:`b. Set Ŝ := S̃1:`,1:`. The truncated Krylov-

Schur decomposition is
AÛ = Û Ŝ + ub̂∗. (10)

5. Lock. Check the residual norm estimates and lock converged eigenpairs by setting the
corresponding value of b̂ to zero. If satisfied, stop.

6. Extend. Write (10) as

AÛ =
[
Û u

] [ Ŝ

b̂∗

]
, (11)

then extend to a Krylov decomposition of order m by means of the Arnoldi algorithm
taking u as initial vector. The computed quantities are appended as new columns to both
sides of the equation to get a new U and B, as in (7). Go to step 2.

A few comments are in order to complement the description of Algorithm 1. In step 1, the
Arnoldi algorithm is typically used (or a variant of Lanczos in the symmetric case). Remember
that the Arnoldi method sequentially computes the columns of U and B, as follows. The
(k+ 1)th column of U , uk+1, is computed by orthogonalizing Auk with respect to the previous
k columns, and bi,k are set to the corresponding orthogonalization coefficients, for i = 1, . . . , k.
Finally, uk+1 is normalized and bk+1,k is set to the norm prior to normalization. After m steps
of the algorithm, U has m columns and vector u in (7) represents the last computed vector.
Vector b is a multiple of em, and this can be exploited to get minor savings.

The Arnoldi method is also used in step 6 of Algorithm 1, in this case taking u as the
initial vector and considering also the columns of [Û , u] in all subsequent orthogonalization
operations. Note that u is orthogonal to the columns of Û since u∗Û = u∗UQ1:` and u∗U = 0
by construction.
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For the convergence test in step 5, it is necessary to compute all eigenvalues and eigenvectors
of Ŝ. For a given eigenpair (λ̃, y), the corresponding Ritz pair is (λ̃, Ûy), and the associated
residual norm estimate is

‖AÛy − λ̃Ûy‖ = ‖(Û Ŝ + ub̂∗)y − λ̃Ûy‖ = ‖ub̂∗y‖ = |b̂∗y|. (12)

In step 2, the diagonal blocks of the Schur Rayleigh quotient are sorted by moving them
up and down by means of unitary similarities [Bai and Demmel, 1993]. If they are sorted in
descending or ascending order, then the algorithm computes the largest or smallest Ritz values,
respectively. In other words, step 2 moves the wanted part of the spectrum to the upper-left
corner of S̃, so that truncation keeps these Ritz values together with the associated (Schur) Ritz
vectors. For computing interior eigenvalues, a different sorting criterion could be used, such as
the proximity to a given target value. However, this approach is not useful because Ritz vectors
associated to interior eigenvalues are very poorly approximated and are not good for restart.
As discussed in §1, harmonic Ritz vectors are preferred instead.

To conclude this section, we point out the simplifications that can be made in the case of a
symmetric problem. If A is Hermitian, then B is real, symmetric and tridiagonal. In step 2, S
is diagonal and therefore its diagonal entries are the Ritz values and the columns of Q1 are the
corresponding Ritz vectors. In step 3, Q2 is simply a permutation matrix. Finally, the residual
norm estimates are equal to the absolute values of the elements of b̂.

2 Harmonic Extraction

In this section, we describe the idea of harmonic extraction and consider several ways of incor-
porating it into the Krylov-Schur eigensolver.

2.1 Harmonic Rayleigh-Ritz

As mentioned in the introduction, harmonic extraction intends to emulate the effect of the
shift-and-invert spectral transformation. If we are interested in computing those eigenvalues
of a matrix A that are closest to a given target value, τ , then the shift-and-invert approach
consists in computing the largest eigenvalues of the eigenproblem

(A− τI)−1x = θx. (13)

The relation between the eigenvalues of A, λ, and the transformed eigenvalues, θ, is θ =
(λ− τ)−1. Note that the eigenvectors are not altered. Once the transformed eigenvalues have
been computed, the original eigenvalues can be recovered by a simple operation,

λ = θ−1 + τ. (14)

The effect of the spectral transformation is that eigenvalues closest to the target become dom-
inant and with a better separation than in the original spectrum. Therefore, this approach is
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very effective in computing interior eigenpairs. However, the drawback is the high cost associ-
ated with the inverted operator (A− τI)−1, that is usually handled by computing a triangular
factorization and performing backsolves within the eigensolver.

The goal of harmonic Rayleigh-Ritz is to achieve a similar effect as shift-and-invert, but
avoiding the inverted operator. For this, it is necessary to work with two bases, one that spans
the subspace of approximants for matrix A, U , and another one that is defined as

V := (A− τI)U. (15)

The trick is to try to cancel the inverted operator with the (A− τI) factor.
Suppose we have built a Krylov decomposition associated with matrix A, (1). Then, the

decomposition may be shifted as

(A− τI)U = U(B − τI) + ub∗. (16)

Using the definition of V in (15), the above relation can be written as

V = U(B − τI) + ub∗. (17)

Now, U can be isolated by postmultiplying the equation by the inverse of (B− τI), provided it
exists,

U = V (B − τI)−1 − ug∗, (18)

with

g := (B − τI)−∗b. (19)

Equation (18) can be seen as a Krylov decomposition of the shift-and-invert operator, since
U = (A − τI)−1V . Note that the basis of this decomposition, V , is not orthonormal, in
contrast to the basis of the original decomposition, U . At this point, one may consider using a
combination of similarity and translation transformations so that the columns of [V,−u] become
orthonormal. That would lead to a Rayleigh quotient whose eigenvalues would be related to
the harmonic Ritz values of A with respect to τ . Since explicit orthonormalization may have an
excessive cost, we consider alternative ways of manipulating this new decomposition to obtain
harmonic Ritz values cheaply. This will be achieved by an appropriate projection.

In §1.1, we mentioned how the Rayleigh quotient in (2) can be obtained by premultiplying
the Krylov decomposition by U∗. In terms of a projection method, this represents an orthogonal
projection in which the approximate eigenvectors (Ritz vectors) are chosen from the subspace
spanned by the columns of U , x̃ = Uy, and the residual vectors corresponding to each Ritz pair
(λ̃, Uy) must be orthogonal to the same subspace, that is, they have to satisfy the Galerkin
condition

U∗(AUy − λ̃Uy) = 0. (20)

This yields the projected problem

U∗AUy = λ̃U∗Uy, (21)
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that simplifies to By = λ̃y, B as in (2), if U has orthonormal columns.
Now suppose that a Krylov decomposition (1) is available and we would like to apply the

orthogonal projection method to matrix (A− τI)−1 for Ritz vectors contained in the subspace
spanned by the columns of V . In that case, if the Ritz pair is denoted as (θ̃, V z), the Galerkin
condition can be written as

V ∗((A− τI)−1V z − θ̃V z) = 0, (22)

or
V ∗(A− τI)−1V z = θ̃V ∗V z. (23)

The next step is to write this equation in terms of the Krylov basis U by using the definition
of V in (15),

U∗(A− τI)∗Uz = θ̃U∗(A− τI)∗(A− τI)Uz. (24)

From (16), this is equivalent to

(B − τI)∗z = θ̃(U(B − τI) + ub∗)∗(U(B − τI) + ub∗)z (25)

= θ̃((B − τI)∗(B − τI) + bb∗)z, (26)

that is, the projected problem is a generalized eigenvalue problem in which the matrix on the
right hand side is symmetric and positive definite. The values θ̃ are Ritz values of (A− τI)−1

with respect to V , or alternatively, the values θ̃−1 + τ are harmonic Ritz values of A.
Equation (26) can also be formulated as a standard eigenvalue problem, as follows. First,

pre-multiply the equation by the inverse of (B − τI)∗, to get

z = θ̃((B − τI) + (B − τI)−∗bb∗)z, (27)

or, equivalently, using the definition of g in (19),

z = θ̃((B − τI) + gb∗)z. (28)

Rearranging terms, the projected problem can be written as

(B + gb∗)z = (θ̃−1 + τ)z, (29)

that is, the eigenvalues of matrix B+gb∗ are the harmonic Ritz values of A. The corresponding
harmonic Ritz vectors are equal to V z, or (A − τI)Uz. For practical purposes, the vector Uz
can be taken instead.

The previous paragraphs show that harmonic Ritz pairs can be easily extracted from a
Krylov decomposition of A. The key question is how this simple idea fits in the Krylov-Schur
restart mechanism. But before addressing that issue, let us show that the same result can be
obtained from a different perspective.

Instead of thinking in terms of an orthogonal projection, we could consider an oblique
projection method applied to A. In an oblique projection, approximate eigenvectors are chosen

— 9 —



Practical Implementation of Harmonic Krylov-Schur STR-9

to be in the range of U , as before, but in this case the residuals have to satisfy the Petrov-
Galerkin condition,

V ∗(AUy − λ̃Uy) = 0, (30)

where we will choose the left subspace, V , to be the same as defined before in (15). The resulting
projected eigenproblem is then

V ∗AUy = λ̃V ∗Uy. (31)

Assuming we have a Krylov decomposition (1) available, then

V ∗(UB + ub∗)y = λ̃V ∗Uy, (32)

or
(V ∗UB + V ∗ub∗)y = λ̃V ∗Uy. (33)

As before, we can reduce the problem to a standard eigenproblem, in this case pre-multiplying
by the inverse of V ∗U ,

(B + (V ∗U)−1V ∗ub∗)y = λ̃y. (34)

At this point, using the definition of V in (15) gives the expression

(B + (U∗(A− τI)∗U)−1U∗(A− τI)∗ub∗)y = λ̃y. (35)

So it only remains to notice that U∗(A− τI)∗U = (B − τI)∗ and U∗(A− τI)∗u = b, resulting
in the eigenproblem

(B + (B − τI)−∗bb∗)y = λ̃y, (36)

in which the matrix is the same as in (29).

2.2 Harmonic Krylov-Schur

In the Krylov-Schur algorithm described in §1.1, the restarting mechanism is so effective because
the truncation step, (5)–(6), satisfies two properties:

1. the Ritz values kept in the Rayleigh quotient of the truncated decomposition are those of
interest, and

2. the space of the truncated decomposition contains the Ritz vectors associated to those
particular Ritz values.

Analogously, if we use a Krylov decomposition of A to approximate harmonic Ritz values, the
Krylov-Schur algorithm should be adapted in such a way that in the truncation step (i) the har-
monic Ritz values of interest are kept in the Rayleigh quotient of the truncated decomposition,
and (ii) the space of the truncated decomposition contains the wanted harmonic Ritz vectors.

Algorithm 2 describes the required modifications. The main idea is to apply a transla-
tion transformation (4) to the original Krylov decomposition, in order to express the Rayleigh
quotient as required by (29), then perform the truncation on this Rayleigh quotient.
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Algorithm 2 (Harmonic Krylov-Schur Method)

1. Start. Given an initial vector, build an orthonormal Krylov decomposition of order m, for
instance with the Arnoldi algorithm,

AU = UB + ub∗. (37)

2. Translate. Compute vector g as in (19) and compute a rank-one modification of B, as
B̃ = B + gb∗. This effects a translation on the original decomposition, resulting in

AU = UB̃ + ũb∗, (38)

with ũ = u− Ug.

3. Schur. Compute a unitary matrix Q1 that reduces B̃ to Schur form, S = Q∗
1B̃Q1, obtain-

ing a Krylov-Schur decomposition,

AUQ1 = UQ1S + ũb∗Q1. (39)

4. Sort. Compute a unitary similarity transformation S̃ = Q∗
2SQ2 that sorts the diagonal

blocks of the Rayleigh quotient in an appropriate order. Set Q := Q1Q2, then

AUQ = UQS̃ + ũb∗Q. (40)

5. Truncate. Proceed as indicated in (5)–(6). Choose an appropriate dimension, `, and

explicitly compute Û = UQ1:` and b̂ = Q∗
1:`b. Set Ŝ := S̃1:`,1:`. The truncated Krylov-

Schur decomposition is
AÛ = Û Ŝ + ũb̂∗. (41)

6. Lock. Check the residual norm estimates and lock converged eigenpairs by setting the
corresponding value of b̂ to zero. If satisfied, stop.

7. Recover. Recuperate orthonormality of the truncated decomposition by performing an-
other translation, with

γû = ũ− Û ĝ, ĝ = −Q∗
1:`g, (42)

B̂ = Ŝ + ĝb̂∗. (43)

8. Extend. Write the resulting Krylov decomposition as

AÛ =
[
Û û

] [ B̂

γb̂∗

]
, (44)

then extend to a Krylov decomposition of order m by means of the Arnoldi algorithm
taking û as initial vector. The computed quantities are appended as new columns to both
sides of the equation to get a new U and B, as in (37). Go to step 2.
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The most important difference of Algorithm 2 with respect to Algorithm 1 is the new
step labelled Translate. Note that after this step the resulting decomposition is no longer
orthonormal, because U∗ũ 6= 0. The aim of the other added step, labelled Recover, is to regain
the orthonormal character. Note that vector û computed in (42) is orthogonal to the columns
of Û , since

Û∗(γû) = Û∗(ũ− Û ĝ) = Û∗ũ− ĝ = Q∗
1:`U

∗(u− Ug) +Q∗
1:`g = 0. (45)

An important aspect from the perspective of a practical implementation is that some oper-
ations can be saved because vector ũ is not really being used in steps 3 to 5. Thus, it is not
necessary to compute it explicitly, if we reformulate (42) as

γû = (u− Ug)− Û ĝ = u− Ug + UQ1:`Q
∗
1:`g = u− Ug̃, (46)

where g̃ = (I −Q1:`Q
∗
1:`)g, that is, the vector resulting from orthogonalizing g against the first

` columns of Q.
In step 6 (Lock), vector ũ is implicitly used in the computation of the residual norm estimates

(12), since in this case it has not been normalized. However, only its norm is necessary and
this can be cheaply computed by noting the fact that ũ = u − Ug with u ⊥ U , so ũ, u and
−Ug form a right-angled triangle and their Euclidean lengths are related by the Pythagorean
theorem. Thus,

‖ũ‖ =
√

1 + ‖g‖2. (47)

Analogously, from (46) we get a similar expression for γ,

γ =
√

1 + ‖g̃‖2. (48)

Furthermore, observe that the Recover step is in fact undoing the first translation, because
(43) can be rewritten as

B̂ = Q∗
1:`B̃Q1:` −Q∗

1:`gb
∗Q1:` = Q∗

1:`(B̃ − gb∗)Q1:` = Q∗
1:`BQ1:`, (49)

so B̂ is a section of the original Rayleigh quotient B. This makes sense because the extension
(step 8) should build a non-translated Krylov decomposition before returning to step 2 of the
algorithm.

With the above observations, it is possible to write a cycle of Algorithm 2 in a more compact
way.

Algorithm 3 (Harmonic Krylov-Schur cycle, compact form)

Input: the orthonormal Krylov decomposition AU = UB + ub∗ of (37)

Output: the orthonormal Krylov decomposition AÛ = Û B̂ + û(γb̂)∗ of (44)
g = (B − τI)−∗b

B̃ = B + gb∗

[Q, S̃] = schur sorted(B̃, τ)

— 12 —
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b̂ = Q∗
1:`b

ĝ = −Q∗
1:`g

‖ũ‖ =
√

1 + ‖g‖2
Test convergence, using ‖ũ‖ and b̂

B̂ = S̃1:`,1:` + ĝb̂∗

g̃ = (I −Q1:`Q
∗
1:`)g

û = u− Ug̃
γ =

√
1 + ‖g̃‖2

Û = UQ1:`

In the algorithm, the operation schur_sorted represents the computation of the (real)
Schur form, together with the appropriate ordering of the diagonal blocks [Bai and Demmel,
1993]. Since the diagonal blocks contain harmonic Ritz values, the sorting criterion must be
the distance to the target value, τ .

Another observation is that if any of the eigenvalues of B is close to τ , then the computed
vector g will have large errors, due to ill conditioning of (B−τI)−∗. However, these errors seem
to be benign, as reported by experiments [Morgan and Zeng, 1998, 2006].

A further comment regarding errors is that harmonic Rayleigh-Ritz is better at providing
good approximate eigenvectors for internal eigenvalues, but harmonic Ritz values themselves
may be inaccurate. This is the reason why in the literature (e.g. [Morgan and Zeng, 1998]) it is
recommended to compute the Rayleigh quotient of harmonic Ritz vectors to get the so-called
ρ-values, which may be better approximations than harmonic Ritz values. These ρ-values can
be computed cheaply as

ρi =
z∗i U

∗AUzi
z∗i U

∗Uzi
= τ +

z∗i U
∗(A− τI)Uzi
z∗i zi

= τ +
z∗i (B − τI)zi

z∗i zi
=
z∗iBzi
z∗i zi

. (50)

However, this approach cannot be directly adapted to Algorithm 2 since it uses (real) Schur
forms instead of eigenvectors. On the other hand, the algorithm is based on keeping approximate
eigenvectors of wanted eigenvalues, but without need to compute those eigenvalues accurately
(eigenvalues are only used when sorting). This contrasts with other algorithms that make
explicit use of approximate eigenvalues (e.g. as exact shifts in implicit restart [Jia, 2002]).

2.3 Alternative Derivation of Harmonic Krylov-Schur

It is possible to formulate the harmonic Krylov-Schur method in a slightly different way, by
realizing that the two types of transformations, similarity (3) and translation (4), can be com-
bined in a single transformation, as already pointed out in [Stewart, 2001a]. Suppose that a
matrix

Ŵ :=

[
W 0

0 1

] [
I g

0 µ

]
=

[
W Wg

0 µ

]
(51)
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is nonsingular, so its inverse is

Ŵ−1 =

[
W−1 −µ−1g

0 µ−1

]
. (52)

Write the Krylov decomposition (1) as

AU =
[
U u

] [ B

b∗

]
, (53)

then the combined transformation is effected by

AUW−1 =
[
U u

]
Ŵ−1Ŵ

[
B

b∗

]
W−1, (54)

AUW−1 =
[
UW−1 µ−1(u− Ug)

] [ W (B + gb∗)W−1

µb∗W−1

]
. (55)

Note that this transformation is equivalent to a translation followed by a similarity (the reverse
order can be achieved by swapping the factors in the definition of Ŵ ). The value of µ is arbitrary
and can be chosen so that vector µ−1(u − Ug) has unit norm, if desired. If we assume that
[U, u] has orthonormal columns, this is equivalent to µ =

√
1 + ‖g‖2.

Here, we are interested in a unitary transformation, so that the basis of the space has
orthonormal columns after the transformation. Consider the matrix

Q̂ =

[
Q∗ Q∗g

0 µ

]
(56)

where Q is unitary. The only possibility for Q̂ to be unitary is Q∗g = 0 and µ = 1. In this case,
(55) turns into

AUQ =
[
UQ u

] [ Q∗BQ

b∗Q

]
, (57)

which is the simple similarity transformation used by the standard Krylov-Schur algorithm.
If we allow Q̂ to be non-unitary, then the combined transformation (55) is

AUQ =
[
UQ µ−1(u− Ug)

] [ Q∗(B + gb∗)Q

µb∗Q

]
, (58)

where the resulting basis is not orthogonal in general because of the last vector, µ−1(u− Ug).
Note that in this case the condition µ =

√
1 + ‖g‖2 is equivalent to the last column of Q̂ having

unit norm. The transformation could be reversed by applying another transformation with the
inverse of Q̂,

Q̂−1 =

[
Q −µ−1g

0 µ−1

]
, (59)
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which can be thought of as a translation with −Q∗g followed by a similarity with Q, or alterna-
tively as a similarity with Q followed by a translation with −g. In the harmonic Krylov-Schur
algorithm, only the translation is reversed, so the corresponding transformation would be

Q̄ =

[
I −µ−1Q∗g

0 µ−1

]
. (60)

Now, we introduce the truncation step. Recall that in harmonic Krylov-Schur, we choose
Q in such a way that a zero block is produced in the lower left corner of the projected ma-
trix, i.e. Q∗

`+1:m(B + gb∗)Q1:` = 0, so that we can eliminate the part of the decomposition
corresponding to columns ` + 1 : m of the basis. But this can be done only before the last
transformation. The accumulated transformation is the non-square matrix

Q̃ =

[
I` −µ−1Q∗

1:`g

0 γµ−1

] [
Q∗

1:` Q∗
1:`g

0 µ

]
=

[
Q∗

1:` 0

0 γ

]
, (61)

where the net effect is a truncated similarity. Note that an additional scaling factor γ has been
introduced so that the last column of the resulting basis in normalized. The decomposition
before the last translation is

AUQ1:` =
[
UQ1:` µ−1(u− Ug)

] [ Q∗
1:`(B + gb∗)Q1:`

µb∗Q1:`

]
, (62)

and, using the notation of Algorithm 3, the final one is

AUQ1:` =
[
UQ1:` γ−1(u− Ug̃)

] [ Q∗
1:`BQ1:`

γb̂∗

]
. (63)

Now, starting from a shifted Krylov decomposition (16),

(A− τI)U =
[
U u

] [ B − τI
b∗

]
, (64)

and applying a transformation defined by the matrix

Ĝ :=

[
(B − τI)∗ (B − τI)∗g

0 µ

]
=

[
(B − τI)∗ b

0 µ

]
(65)

with inverse

Ĝ−1 =

[
(B − τI)−∗ −µ−1g

0 µ−1

]
, (66)

the resulting Krylov decomposition is

(A− τI)U(B − τI)−∗ =
[
U(B − τI)−∗ µ−1(u− Ug)

] [ M

µb∗(B − τI)−∗

]
, (67)
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where the Rayleigh quotient is

M := (B − τI)∗(B − τI + gb∗)(B − τI)−∗ (68)

= ((B − τI)∗(B − τI) + bb∗)(B − τI)−∗. (69)

Suppose (θ̃−1, w) is an eigenpair of M , so that Mw = θ̃−1w or

((B − τI)∗(B − τI) + bb∗)z = θ̃−1(B − τI)∗z, (70)

with z = (B−τI)−∗w. Then (θ̃, z) satisfy the eigenvalue equation (26). Let QM be an orthonor-
mal matrix such that Q∗

MMQM = TM is upper (quasi-)triangular with the eigenvalues sorted in

the appropriate order (smallest θ̃−1 in the upper left corner), then a similarity transformation
on decomposition (67) results in

(A− τI)UQZ =
[
UQZ µ−1(u− Ug)

] [ TM
µb∗QZ

]
, (71)

with QZ = (B − τI)−∗QM . Unfortunately, QZ is not an orthonormal matrix in general, so
this approach has no practical interest because an explicit orthonormalization of the new basis
would be required.

2.4 The Symmetric Case and the SVD

Now we turn our attention to the case of a complex Hermitian (or real symmetric) problem
matrix, A = A∗. Our goal is to determine whether the algorithm described in §2.2 can be
tailored to exploit that feature. At the end of §1.1, we already pointed out some particularities
of Krylov-Schur in the symmetric case, such as the special structure of the Rayleigh quotient
B.

If A = A∗ and assuming that τ is a real scalar, it holds that (B−τI)∗ = B−τI. Then, matrix
M in (68) is the product of a symmetric positive definite matrix, ((B − τI)∗(B − τI) + bb∗),
and a Hermitian matrix. Thus, M is a diagonalizable matrix, all of whose eigenvalues are real,
[Horn and Johnson, 1985, Th. 7.6.3]. However, in general M is not unitarily diagonalizable.
A practical procedure for computing the eigenpairs, Mw = θ̃−1w, could be to compute the
following QR decomposition, [

B − τI
b∗

]
= QR, (72)

where R is a square matrix of order m and Q is an (m + 1) × m matrix with orthonormal
columns. Then M = R∗R (B − τI)−∗, so it is possible to solve for

R−∗(B − τI)R−1z = θ̃z, z = R−∗w. (73)

In this way, it would be possible to use a standard dense symmetric eigensolver for the projected
eigenproblem. But again, this procedure has the shortcoming that the resulting transformation
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matrix is non-orthogonal. It seems that there is no way to exploit the symmetry of the Rayleigh
quotient and maintain orthogonality when updating the basis U .

Therefore, one should desist from treating the projected problem as a symmetric one and
stick to the general procedure of (29). Still, for a projected problem of large dimension, one may
consider exploiting the rank-1 perturbation structure of (B + gb∗), with an O(m2) complexity
algorithm as proposed in [Eidelman et al., 2008]. This will not be considered in this report.

In order to complement the discussion of symmetric problems, we now include a few com-
ments regarding the computation of the singular value decomposition (SVD). In the context
of Lanczos bidiagonalization for the computation of a partial SVD, it is convenient to use a
thick-restart variant for enhanced convergence, as proposed by Baglama and Reichel [2005];
see also [Baglama and Reichel, 2006; Hernandez et al., 2008]. Thick-restart can be seen as a
customized version of the Krylov-Schur restarting mechanism tailored for symmetric problems.
In [Baglama and Reichel, 2005], the authors already propose to augment the subspace with
harmonic Ritz vectors when computing the smallest singular values. Thus, it would be rather
straightforward to use the harmonic Krylov-Schur algorithm of §2.2 in this case.

3 The slepc Implementation

The harmonic Krylov-Schur method as expressed in Algorithm 3 has been added to slepc in
version 3.0.0.

3.1 User Options

The user options are not specific of the Krylov-Schur solver. In order to use harmonic extraction,
the value EPS_HARMONIC must be explicitly set with

EPSSetExtraction(EPS eps,EPSExtraction extr);

Also, the target value must be provided as well (default is τ = 0), with

EPSSetTarget(EPS eps,PetscScalar target);

Note that a complex target can be used only if slepc has been configured with complex scalars.

A command line example would be:

ex5 -m 45 -eps_harmonic -eps_target 0.8 -eps_ncv 60

The example computes the eigenvalue closest to τ = 0.8 of a real non-symmetric matrix of order
1035. Note that ncv has been set to a larger value than would be necessary for computing the
largest magnitude eigenvalues. In general, users should expect a much slower convergence when
computing interior eigenvalues compared to extreme eigenvalues. Increasing the value of ncv

may help.
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3.2 Known Issues and Applicability

The following comments have to be taken into account:

• The implementation does not exploit symmetry, that is, for a problem type EPS_HEP the
solver will proceed as if the problem was non-Hermitian.

• In principle, harmonic extraction could be used for generalized eigenproblems, but there
is no point in doing this because internally slepc’s Krylov-Schur for generalized problems
operates with matrix B−1A, and therefore it would be more convenient to use a shift-
and-invert ST with σ = τ .

• Harmonic extraction works for both real and complex scalars.

• The SVD class does not provide support for harmonic extraction yet.

References

Baglama, J. and L. Reichel (2005). Augmented Implicitly Restarted Lanczos Bidiagonalization Meth-
ods. SIAM J. Sci. Comput., 27(1):19–42.

Baglama, J. and L. Reichel (2006). Restarted Block Lanczos Bidiagonalization Methods. Numer.
Algorithms, 43(3):251–272.

Bai, Z. and J. W. Demmel (1993). On Swapping Diagonal Blocks in Real Schur Form. Linear Algebra
Appl., 186:73–95.

Beattie, C. (1998). Harmonic Ritz and Lehmann Bounds. Electron. Trans. Numer. Anal., 7:18–39.

Chen, G. and Z. Jia (2005). A Refined Harmonic Rayleigh-Ritz Procedure and an Explicitly Restarted
Refined Harmonic Arnoldi Algorithm. Math. Comput. Model., 41:615–627.

Chen, G. and J. Lin (2008). A New Shift Scheme for the Harmonic Arnoldi Method. Math. Comput.
Model., 48(11-12):1701–1707.

Eidelman, Y., L. Gemignani, and I. Gohberg (2008). Efficient Eigenvalue Computation for Quasisepa-
rable Hermitian Matrices under Low Rank Perturbations. Numer. Algorithms, 47(3):253–273.

Ericsson, T. and A. Ruhe (1980). The Spectral Transformation Lanczos Method for the Numerical
Solution of Large Sparse Generalized Symmetric Eigenvalue Problems. Math. Comp., 35(152):1251–
1268.

Freund, R. W. (1992). Quasi-kernel Polynomials and their Use in non-Hermitian Matrix Iterations. J.
Comput. Appl. Math., 43:135–158.

Goossens, S. and D. Roose (1999). Ritz and Harmonic Ritz Values and the Convergence of FOM and
GMRES. Numer. Linear Algebra Appl., 6(4):281–293.

— 18 —



STR-9 Practical Implementation of Harmonic Krylov-Schur

Grimes, R. G., J. G. Lewis, and H. D. Simon (1994). A Shifted Block Lanczos Algorithm for Solving
Sparse Symmetric Generalized Eigenproblems. SIAM J. Matrix Anal. Appl., 15(1):228–272.

Hernandez, V., J. E. Roman, and A. Tomas (2008). A Robust and Efficient Parallel SVD Solver Based
on Restarted Lanczos Bidiagonalization. Electron. Trans. Numer. Anal., 31:68–85.

Hochstenbach, M. E. (2004). Harmonic and Refined Extraction Methods for the Singular Value Prob-
lem, with Applications in Least Squares Problems. BIT , 44(4):721–754.

Hochstenbach, M. E. (2005). Generalizations of Harmonic and Refined Rayleigh-Ritz. Electron. Trans.
Numer. Anal., 20:235–252.

Hochstenbach, M. E. and G. L. G. Sleijpen (2008). Harmonic and Refined Rayleigh-Ritz for the
Polynomial Eigenvalue Problem. Numer. Linear Algebra Appl., 15(1):35–54.

Horn, R. A. and C. R. Johnson (1985). Matrix Analysis. Cambridge University Press.

Jia, Z. (2002). The Refined Harmonic Arnoldi Method and an Implicitly Restarted Refined Algorithm
for Computing Interior Eigenpairs of Large Matrices. App. Numer. Math., 42(4):489–512.

Jia, Z. (2005). The Convergence of Harmonic Ritz Values, Harmonic Ritz Vectors and Refined Harmonic
Ritz Vectors. Math. Comp., 74(251):1441–1456.

Kokiopoulou, E., C. Bekas, and E. Gallopoulos (2004). Computing Smallest Singular Triplets with
Implicitly Restarted Lanczos Bidiagonalization. App. Numer. Math., 49(1):39–61.

Meerbergen, K. and D. Roose (1997). The Restarted Arnoldi Method Applied to Iterative Linear System
Solvers for the Computation of Rightmost Eigenvalues. SIAM J. Matrix Anal. Appl., 18(1):1–20.

Morgan, R. B. (1991). Computing Interior Eigenvalues of Large Matrices. Linear Algebra Appl., 154–
156:289–309.

Morgan, R. B. (1995). A Restarted GMRES Method Augmented with Eigenvectors. SIAM J. Matrix
Anal. Appl., 16(4):1154–1171.

Morgan, R. B. (2000a). Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems
of Equations. SIAM J. Matrix Anal. Appl., 21(4):1112–1135.

Morgan, R. B. (2000b). Preconditioning eigenvalues and some comparison of solvers. J. Comput. Appl.
Math., 123(1-2):101–115.

Morgan, R. B. (2002). GMRES with Deflated Restarting. SIAM J. Sci. Comput., 24(1):20–37.

Morgan, R. B. and M. Zeng (1998). Harmonic Projection Methods for Large Non-Symmetric Eigenvalue
Problems. Numer. Linear Algebra Appl., 5(1):33–55.

Morgan, R. B. and M. Zeng (2006). A Harmonic Restarted Arnoldi Algorithm for Calculating Eigen-
values and Determining Multiplicity. Linear Algebra Appl., 415(1):96–113.

Paige, C. C., B. N. Parlett, and H. A. van der Vorst (1995). Approximate Solutions and Eigenvalue
Bounds from Krylov Subspaces. Numer. Linear Algebra Appl., 2(2):115–133.

— 19 —



Practical Implementation of Harmonic Krylov-Schur STR-9

Sleijpen, G. L. G. and J. van den Eshof (2003). On the Use of Harmonic Ritz Pairs in Approximating
Internal Eigenpairs. Linear Algebra Appl., 358(1–3):115–137.

Sleijpen, G. L. G. and H. A. van der Vorst (1996). A Jacobi–Davidson Iteration Method for Linear
Eigenvalue Problems. SIAM J. Matrix Anal. Appl., 17(2):401–425.

Sleijpen, G. L. G., H. A. van der Vorst, and E. Meijerink (1998). Efficient Expansion of Subspaces in
the Jacobi–Davidson Method for Standard and Generalized Eigenproblems. Electron. Trans. Numer.
Anal., 7:75–89.

Sorensen, D. C. (1992). Implicit Application of Polynomial Filters in a k-Step Arnoldi Method. SIAM
J. Matrix Anal. Appl., 13:357–385.

Stewart, G. W. (2001a). A Krylov–Schur Algorithm for Large Eigenproblems. SIAM J. Matrix Anal.
Appl., 23(3):601–614.

Stewart, G. W. (2001b). Matrix Algorithms. Volume II: Eigensystems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA.

Stewart, G. W. (2002). Addendum to “A Krylov–Schur Algorithm for Large Eigenproblems”. SIAM J.
Matrix Anal. Appl., 24(2):599–601.

van der Vorst, H. A. (2002). Computational Methods for Large Eigenvalue Problems. In Handbook
of Numerical Analysis (edited by P. G. Ciarlet and J. L. Lions), volume VIII, pp. 3–179. Elsevier,
Amsterdam.

Wu, K. and H. Simon (2000). Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems.
SIAM J. Matrix Anal. Appl., 22(2):602–616.

— 20 —


	1 Introduction
	1.1 The Krylov-Schur Method

	2 Harmonic Extraction
	2.1 Harmonic Rayleigh-Ritz
	2.2 Harmonic Krylov-Schur
	2.3 Alternative Derivation of Harmonic Krylov-Schur
	2.4 The Symmetric Case and the SVD

	3 The SLEPcImplementation
	3.1 User Options
	3.2 Known Issues and Applicability


