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1 Introduction

The singular value decomposition (SVD) of an m x n complex matrix A can be written as

A=USV*, (1)
where U = [ug,...,Uy] is an m X m unitary matrix (U*U =1), V = [v1,...,v,] isan n X n
unitary matrix (V*V =1I), and ¥ is an m X n diagonal matrix with nonnegative real diagonal
entries 3;; = o0; for i = 1,...,min{m,n}. If A is real, U and V are real and orthogonal. The

vectors u; are called the left singular vectors, the v; are the right singular vectors, and the o;
are the singular values. In this report, we will assume without loss of generality that m > n.

It is possible to formulate the problem of computing the singular triplets (o;,u;,v;) of A as
an eigenvalue problem involving a Hermitian matrix related to A. There are two possible ways
of achieving this:

1. With the cross product matrix, A*A.
2. With the cyclic matrix, H(A) = [ 2. 4].

The singular values are the nonnegative square roots of the eigenvalues of the cross product
matrix. This approach may imply a severe loss of accuracy in the smallest singular values.
The cyclic matrix approach is an alternative that avoids this problem, but at the expense of
significantly increasing the cost of the computation. Additional details can be found in chapter
4 of the sLEPc Users Manual.

Computing the cross product matrix explicitly is not recommended, especially in the case of
sparse A. Bidiagonalization was proposed by Golub and Kahan [1965] as a way of tridiagonaliz-
ing the cross product matrix without forming it explicitly. Consider the following decomposition

A= PBQ, (2)
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where P and @) are unitary matrices and B is an m X n upper bidiagonal matrix. Then the
tridiagonal matrix B*B is unitarily similar to A*A. Additionally, specific methods exist (e.g.
[Demmel and Kahan, 1990]) that compute the singular values of B without forming B*B.
Therefore, after computing the SVD of B,

B= XYY", (3)

it only remains to combine Egs. 3 and 2 to get the solution of the original problem, Eq. 1, with
U=PX and V =QY.

Bidiagonalization can be accomplished by means of Householder transformations or alter-
natively via Lanczos recurrences. The latter approach is more appropriate for sparse matrix
computations and was already proposed in the Golub and Kahan paper, hence it is sometimes
referred to as Golub-Kahan-Lanczos bidiagonalization. This report focuses on this technique
for computing a partial SVD.

Lanczos bidiagonalization inherits the good properties as well as the implementation diffi-
culties present in Lanczos-based eigensolvers (see the sLEPc Technical Report STR-5, “Lanczos
Methods in SLEPc” for complementary information). It is possible to stop after a few Lanczos
steps, in which case we obtain Rayleigh-Ritz approximations of the singular triplets. On the
other hand, loss of orthogonality among Lanczos vectors has to be dealt with, either by full
reorthogonalization or by a cheaper alternative. Block variants of the method can be proposed,
as in [Golub et al., 1981]. Also, in the case of slow convergence, restarting techniques become
very important, as will be emphasized in this report.

Section 2 provides a general description of the bidiagonalization method, including important
aspects such as reorthogonalization and restart. Then section 3 gives some details that are
particular to the SLEPc implementation.

2 Description of the Method

This section provides a detailed description of the three main ingredients of the method: Lanczos
bidiagonalization, mechanisms for treating loss of orthogonality, and restarting.

2.1 Lanczos Bidiagonalization

The Lanczos bidiagonalization technique can be derived from several equivalent perspectives.
We start by setting up the notation. Consider a trimmed version of Eq. 2

A= P,B,Q;, (4)

where the zero rows of the bidiagonal matrix have been removed and, therefore, P,, is now an
m X n matrix with orthonormal columns, @), is a unitary matrix of order n, and B, is the
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following square matrix of order n

az B3

Qp—1 anl
an

The coefficients of this matrix are real and given by a; = pjAq; and 8; = pjAgj+1, where p;
and g; are the columns of P, and @, respectively. It is possible to derive a double recurrence
to compute these coeflicients together with the vectors p; and g;, since after choosing ¢; as an
arbitrary unit vector, the other columns of P, and @, are determined uniquely (assuming A
has full rank).

Pre-multiplying Eq. 5 by P,,, we have the relation AQ,, = P, B,,. Also, if we transpose both
sides of Eq. 5 and pre-multiply by @, we obtain A*P, = @, B}. Equating the first k£ columns
of both relations results in

AQy = Py By, (6)
A*Py, = Qi By + BrQrt1€)s (7)

where Bj, denotes the k X k leading principal submatrix of B,,. Analogous expressions can be
written in vector form by equating the jth column only,

Agj = Bj—1pj—1 + a;p;, (8)
A'pj = a;qj + Bigj1 (9)

These expressions directly yield the double recursion

a;pj = Aqj — Bj—1pj-1, (10)
Bigj+1 = A"pj — o5, (11)
with a; = ||Ag; — Bj_1pj—1ll2 and B; = ||[A*p; — a;q;]|2 since the columns of P, and @, are

normalized.

Algorithm 1 (Golub-Kahan-Lanczos Bidiagonalization)

Choose a unit-norm vector ¢;
Set 50 =0
For j=1,2,... )k

pj = Agq; — Bj—1pj—1

a;j = ||pll2

pi =pj/
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aj+1 = A'pj — a;q;

Bi = llgj+1ll2

qj+1 = Qj+1/5j
end

Egs. 6 and 7 can be combined by pre-multiplying the first one by A*, resulting in

A*AQy = Qi By By, + arBrqr 16k (12)

The matrix B}, By, is symmetric positive definite and tridiagonal. The conclusion is that Algo-
rithm 1 computes the same information as the Lanczos tridiagonalization algorithm applied to
the Hermitian matrix A*A. In particular, the right Lanczos vectors ¢; computed by Algorithm
1 constitute an orthonormal basis of the following Krylov subspace

Kr(A*A, q1) = span{q1, A" Aq, . . ., (A*A)k_lql}. (13)

Another way of combining Egs. 6 and 7 is by pre-multiplying the second one by A, resulting in
this case the following equation

AA*P, = PkBkBZ + BkAQkJrle;;- (14)

Apparently, this equation is not a Lanczos decomposition, as Eq. 12, because vector Aqpy1 is
not orthogonal to Py, in general. However, using Eq. 8 we get

AA*Py = PyBy B}, + Bipres, + BeQt1Pr+1€) (15)
= Pu(BiBj; + Brerer) + BeQk1Pr+ 1€}, (16)

where matrix BBj; + Biege; is also symmetric positive definite and tridiagonal. Thus, a
similar conclusion can be drawn for matrix AA*, and the left Lanczos vectors p; span the
Krylov subspace Ky (AA*, p1).

There is an alternative way of deriving Algorithm 1, which further displays the intimate
relation between Lanczos bidiagonalization and the usual three-term Lanczos tridiagonalization.
The idea is to apply the standard Lanczos algorithm to the cyclic matrix, H(A), with the
following special initial vector

o= { 0 } (17)

q1

It can be shown that the generated Lanczos vectors are the following

2951 = [ ; } and  zz; = [ %j } ) (18)
j
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and that the projected matrix after 2k Lanczos steps is

F 0 o _
ap 0 B
B 0
0
Top, = a2 B2 (19)
B2 0O
Oy
L a0 ]

That is, two steps of this procedure compute the same information as one step of Algorithm 1.
It is easy to show also that there is a simple permutation (odd-even) that maps To into the
cyclic matrix H(Bj). Note that, in a computer implementation, this procedure would require
about twice as much storage as Algorithm 1.

Due to these equivalences, all the properties and implementation considerations of Lanczos
tridiagonalization (see SLEPc Technical Report STR-5) carry over to Algorithm 1. In particular,
error bounds for Ritz approximations can be computed very easily. After k Lanczos steps, the
Ritz values &; (approximate singular values of A) are equal to the computed singular values of
By, and the Ritz vectors are

U; = Ppa;, 0; = QrYi, (20)

where x; and y; are the left and right singular vectors of By. With these definitions, and Egs.
6-7, it is easy to show that

Av; = G415, A%y = 6i0; + Brqry1€,Ti- (21)
If we define the residual norm associated to the Ritz singular triplet, (&, ;, ;), as
1
Irille = (1A — dsal|5 + | A* @ — &:0:3) (22)
then it can be cheaply computed as

Irill2 = Brlegwil- (23)

2.2 Dealing with Loss of Orthogonality

As in the case of the standard Lanczos tridiagonalization algorithm, Algorithm 1 diverts from
the expected behavior when run in finite precision arithmetic. In particular, after a sufficient
number of steps the Lanczos vectors start to lose their mutual orthogonality, and this happens
together with the appearance in the spectrum of B; of repeated and spurious Ritz values.
The simplest cure for this loss of orthogonality is full orthogonalization. In Lanczos bidi-
agonalization, two sets of Lanczos vectors are computed, so full orthogonalization amounts to
orthogonalizing vector p; explicitly with respect to all the previously computed left Lanczos
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vectors, and orthogonalizing vector g;1 explicitly with respect to all the previously computed
right Lanczos vectors. Algorithm 2 shows the full orthogonalization variant. Note that in the
computation of p; it is no longer necessary to subtract the term 5;_1p;_1, since this is already
done in the orthogonalization step, and analogously in the computation of g;j41.

Algorithm 2 (Lanczos Bidiagonalization with Full Orthogonalization)

Choose a unit-norm vector ¢;
For j=1,2,...,k
pj = Agj
Orthogonalize p; with respect to P;_;
a; = |pll2
pj = Dj/a;
gj+1 = A'p,
Orthogonalize gj+1 with respect to Q;
Bi = llgj+ll2
Gi+1 = Qj+1/5;
end

This solution was already proposed in the seminal paper by Golub and Kahan [1965], and
used in some of the first implementations such as the block version in [Golub et al., 1981]. The
main advantage of full orthogonalization is its robustness, since orthogonality is maintained to
full machine precision. Note that for this to be true it may be necessary to resort to orthogo-
nalization refinement, as explained in section 3. Its main drawback is the high computational
cost, which grows as the iteration proceeds. However, this problem is less important in the
context of restarted variants, discussed in subsection 2.3.

An alternative to full orthogonalization is to simply ignore loss of orthogonality and perform
only local orthogonalization at every Lanczos step. This technique has to carry out a post-
process of matrix Thy in order to determine the correct multiplicity of the computed singular
values as well as to discard the spurious ones. See [Cullum et al., 1983] for further details.

Semiorthogonal techniques try to find a compromise between full and local orthogonaliza-
tion. One of such techniques is partial reorthogonalization (see SLEPc Technical Report STR-5
for details), which uses a cheap recurrence to estimate the level of orthogonality, and when it
drops below a certain threshold some corrective measures are applied. This technique has been
adapted by Larsen [1998] to the particular case of Lanczos bidiagonalization. In this case, two
recurrences are necessary, one for monitoring loss of orthogonality among right Lanczos vectors,
and the other for left Lanczos vectors.

One-sided Variant. There is a variation of Algorithm 2 that maintains the effectiveness of
full reorthogonalization but with a considerably reduced cost. This technique was proposed
by Simon and Zha [2000]. The idea comes from the observation that, in the Lanczos bidiag-
onalization procedure without reorthogonalization, the level of orthogonality of left and right
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Lanczos vectors go hand in hand. If we quantify the level of orthogonality of the Lanczos vectors
computed in finite precision arithmetic, P; and Q;, as

n(Fy) = 1= P} Bjllz, n(Q;) = I - Q;Qsll2, (24)

then it can be observed that at a given Lanczos step, 7, n(ﬁj) and U(Qj) differ in no more than
an order of magnitude, except maybe in the case that B; becomes very ill-conditioned. This
observation led to Simon and Zha to propose what they called the one-sided version, shown in
Algorithm 3.

Algorithm 3 (One-Sided Lanczos Bidiagonalization)

Choose a unit-norm vector gy
Set ﬂo =0
For j=1,2,...,k
pj = Agj — Bj-1pj—1
a; = [p;ll2
pj =pj/;
gj+1 = A"p;
Orthogonalize g;1 with respect to @;
Bi = llgj+1ll2
qj+1 = gj+1/B5;
end

Note that the only difference of Algorithm 3 with respect to Algorithm 2 is that p; is no
longer orthogonalized explicitly. Still, numerical experiments carried out by Simon and Zha
show that the computed ]5]- vectors maintain a similar level of orthogonality as Qj. The same
behavior has been observed in the context of the SLEPc implementation.

Apart from the substantial reduction of computational cost achieved by the one-sided vari-
ant, another very important practical consideration is that the Pj vectors need no longer be
stored (apart from p; and p;_1) because (1) they are not involved in the reorthogonalization,
and (2) left singular vectors, if required, can be computed by the simple relation Av; = o;u;.
Note that, in some applications, this may represent a huge savings in memory requirements,
especially for the case of very skinny matrix A with m > n.

2.3 Restarted Bidiagonalization

Restarting is a key aspect in the efficient implementation of projection eigensolvers. This issue is
treated in SLEPc reports STR-4, STR-5 and STR-7, in the context of Krylov-type eigensolvers.
In this section, we adapt the discussion to the context of Lanczos bidiagonalization.

The number of iterations required in the Lanczos bidiagonalization algorithm (the value of k)
can be quite high, if many singular triplets are requested, and also depending on the distribution
of the spectrum (convergence is slow in the presence of clustered singular values). Increasing k
too much may not be acceptable, since this implies a growth in storage requirements and, more
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importantly, a growth of computational cost per iteration (in the case of full orthogonalization).
To avoid this problem, restarted variants limit the maximum number of Lanczos steps to a fixed
value, k, and when this value is reached the computation is re-initiated. This can be done in
different ways.

Explicit restart consists in rerunning the algorithm with a “better” initial vector. In Al-
gorithms 1-3, the initial vector is g1, so the easiest strategy is to replace ¢; with the (right)
Ritz vector associated to the (approximate) dominant singular value. A block equivalent of this
technique was employed in [Golub et al., 1981]. In the case that many singular triplets are to
be computed, it is not evident how to build the new ¢;. One possibility is to compute ¢; as
a linear combination of a subset of the computed Ritz vectors, possibly applying a polynomial
filter to remove components in unwanted directions.

Implicit restart is a much better alternative that eliminates the need to explicitly compute
a new start vector ¢;. It consists in combining the Lanczos bidiagonalization process with
the implicitly shifted QR algorithm. The k-step Lanczos relations described in Egs. 6-7 are
compacted into order ¢, and then extended again to order k. The procedure allows the small-
size equations to retain the relevant spectral information of the full-size relations. A detailed
description of this technique can be found in [Bjorck et al., 1994], [Larsen, 2001], [Jia and Niu,
2003] and [Kokiopoulou et al., 2004].

An equivalent yet easier to implement alternative to implicit restart is the so-called thick
restart, originally proposed in the context of Lanczos tridiagonalization [Wu and Simon, 2000].
We next describe how this method can be adapted to Lanczos bidiagonalization, as proposed
in [Baglama and Reichel, 2005].

The main idea of thick-restarted Lanczos bidiagonalization is to reduce the full k-step Lanc-
zos bidiagonalization, Eqgs. 6-7, to the following one

AQe41 = Pr1 By, (25)
A*Priy = Q1B + BZ+1‘§Z+262+1’ (26)

where the value of ¢ < k could be for instance the number of wanted singular values. The
key point here is to build the decomposition of Egs. 25-26 in such a way that it keeps the
relevant spectral information contained in the full decomposition. This is achieved directly
by setting the first ¢ columns of QZH to be the wanted approximate right singular vectors,
and analogously in P(+1 the corresponding approximate left singular vectors. It can be shown
[Baglama and Reichel, 2005] that it is possible to easily build a decomposition that satisfies
these requirements, as described next.
We start by defining Qe+1 as

Q€+l = [171,772,...,77[,Qk+1] ) (27)

that is, the Ritz vectors 0; = Qxy; together with the last Lanczos vector generated by Algorithm
1. Note that this matrix has orthonormal columns because Qjgr+1 = 0 by construction.
Similarly, define p@+1 as }

Pryy = [, g, . . ., Ge, Pesa] (28)
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with @; = Pra;, and pgq1 a unit-norm vector computed as pgy1 = f/||f|, where f is the vector
resulting from orthogonalizing Agy+1 with respect to the first ¢ left Ritz vectors, u;,

¢
f=Agpsr = i (29)
i=1
It can be shown that the orthogonalization coefficients can be easily computed as p; = Brejz;
(note that these values are similar to the residual bounds in Eq. 23, but here the sign is relevant).
The new projected matrix is

01 p1
02 P2
Buys = - (30)
¢ pe
Qi1
where Gy11 = ||f|| so that Eq. 25 holds. To complete the form of a Lanczos bidiagonalization,
it only remains to define 841 and Gpio in Eq. 26, which turn out to be Sey1 = ||g|| and

Ge2 = g/|\gll, where g = A*pri1 — der1qqr-

It is shown in [Baglama and Reichel, 2005] that the Lanczos bidiagonalization relation is
maintained if Algorithm 1 is run for j = ¢+ 2, ...,k starting from the values of Bg+1 and Gpyo
indicated above, thus obtaining a new full-size decomposition. In this case, the projected matrix
is no longer bidiagonal,

g1 f1
op) P2

5 e Pe
B = - 31
b Q41 6€+1 ( )

1 5k—1
Qg

where the values without tilde are computed in the usual way with Algorithm 1. When carried
out in an iterative fashion, the above procedure gets the form shown in Algorithm 4.

Algorithm 4 (Thick-restart Lanczos Bidiagonalization)

Input: Matrix A, initial unit-norm vector ¢, and number of steps k
Output: ¢ < k Ritz triplets

1. Build an initial Lanczos bidiagonalization of order k

2. Compute Ritz approximations of the singular triplets

— 10 —
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3. Truncate to a Lanczos bidiagonalization of order ¢
4. Extend to a Lanczos bidiagonalization of order k
5. If not satisfied, go to step 2

Note that in step 2, it is necessary to use a general dense solver for the computation of the
singular triplets of matrix By, since the bidiagonal structure cannot be exploited.

Step 4 can be carried out by a variation of e.g. Algorithm 3, as illustrated in Algorithm 5.
Starting from the new initial vector, go41, this algorithm first computes the corresponding left
initial vector, py41, then iterates normally.

Algorithm 5 (One-Sided Lanczos Bidiagonalization — restarted)

Det1 = Aot
Fori=1,2,...,¢
De+1 = Pe+1 — Bi o1
end
a1 = |[pesllz
Pe+1 = pe+1/az+1
Forj=(+1,6+2.. .k
gj+1 = A"p;
Orthogonalize gj+1 with respect to Q;
Bi = llgj+1ll2
¢j+1 = qi+1/5;
Ifj<k
Pi+1 = Agj+1 — Bjpj
ajr1 = [|pjt1ll2
Pj+1 = Pjt1/ajm
end
end

2.4 Available Implementations

In this subsection, we cite software packages that provide implementations of algorithms dis-
cussed in this report. For additional information, see SLEPc Technical Report STR-6, “A Survey
of Software for Sparse Eigenvalue Problems”.

SVDPACK [Berry, 1992b,a] is a Fortran77 software library that provides four alternative meth-
ods for the computation of a partial SVD. Three of these methods are eigensolvers that work
with the equivalent eigenproblem associated to the cross product matrix or the cyclic matrix.
The fourth method performs a block Lanczos bidiagonalization with full reorthogonalization,
in the spirit of [Golub et al., 1981].

PROPACK [Larsen, 1998] is based on the Lanczos bidiagonalization algorithm with partial re-
orthogonalization. The Fortran version of PROPACK incorporates implicit restart, thus reducing
the storage requirements. PROPACK can be used with either real or complex matrices.
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3 The sLEPc Implementation

SLEPc provides the following two implementations of Lanczos bidiagonalization:

e Explicit restart version. The corresponding solver is SVDLANCZ0S (or -svd_type lanczos
from the command-line). It uses a simple restart mechanism, in which the most recent ap-
proximation of the dominant Ritz vector is used as the new starting vector ¢;. Converged
triplets are locked and explicitly deflated during the iteration.

e Thick-restart version. The corresponding solver is SUDTRLANCZ0S (or -svd_type trlanc-
zos from the command-line). It uses the restarting strategy discussed at the end of section
2.3. Converged triplets are also locked and deflated during the iteration, that is, the first
p: are set to zero and the leading part of By, in Eq. 31 is not considered in the computation
of the SVD, but the Ritz vectors are indeed included in the orthogonalization step.

For practical use, it is almost always recommended to use the thick-restarted version. This
implementation is further described next.

3.1 The Algorithm

In addition to the features described in this report, the Lanczos bidiagonalization implemented
in SLEPc also incorporates several techniques for efficient orthogonalization of vectors during
the computation of Lanczos vectors. For numerical robustness, it is necessary to carry out
conditional refinement in the orthogonalization, and this has to be carefully implemented in
order to maintain good parallel performance. In particular, estimation of the norm and delayed
normalization are used in this context. See [Hernandez et al., 2007] and the SLEPc Technical
Report STR-1, “Orthogonalization Routines in SLEPc” for a description of these techniques.

Algorithm 6 represents a detailed version of Algorithm 4, that intends to be closer to the
actual SLEPc implementation. It makes use of Algorithm 7, which is a version of Algorithm 5
incorporating the efficient orthogonalization techniques mentioned above.

Algorithm 6 (Thick-restart Lanczos Bidiagonalization)

Input: Matrix A, initial vector g1, and number of steps k
Output: nev Ritz triplets, with nev < ¢ < k
Normalize q;
Set £ =0
Restart loop
Run one-sided Lanczos bidiagonalization (Algorithm 7)
Compute the SVD of By, = X;,3,Y;
Compute residual norm estimates, |p;|, with p; = Brejz;
Exit if enough converged singular triplets, otherwise lock newly converged triplets
Update ¢ and set qpi1 < qrt1
Compute Ritz vectors, Q — QrY: 1.0, Po < PrX. 1.
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end

Insert p; in the appropriate positions of By

Algorithm 7 (One-Sided Lanczos Bidiag. — restarted, with enhancements)

De+1 = Age

For

end
For

end

Selection of /.

i=1,2,...0

De+1 = Pet1 — By pr1pi

G=l+1,042,. .k
gj+1 = A*p;
c=Qjqj+
p=g+1ll2
aj = |pjll2
pj =pj/a;
Gj+1 = Qj+1/0y
c=c/o;
p=p/a;
Gi+1 = gj+1 — Q¢
B = \/ p? — 2:1 c;
It B; <mp
c= Q;Qj+1
p=lgj+1ll2
gj+1 = gj+1 — Qjc

j
Bi=\/p* =i c

end

Qj+1 = Qj+1/B;
Ifj<k

Pi+1 = Agjt1 — Bjp;

end

2

%

Note that in Algorithm 6 the value of ¢ changes dynamically. Currently,

the SLEPc implementation sets this value to somewhere in-between & (the maximum subspace
dimension, or ncv) and the number of currently converged singular triplets. Its value grows

progressively as singular values converge.

3.2 User Options

Both bidiagonalization methods implemented in SLEPc support one-sided orthogonalization as
discussed in section 2.2. By default, these variants are deactivated, in order to avoid numerical
problems in the case of very ill-conditioned Bj. However, in most cases it is safe to activate
them with

13 —
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SVDLanczosSetOneSide (SVD svd,PetscTruth oneside)
SVDTRLanczosSetOneSide (SVD svd,PetscTruth oneside)

or alternatively in the command-line with -~svd_lanczos_oneside or -svd_trlanczos_oneside.

Activating this option may represent a substantial reduction in the computing time. Ad-
ditionally, there is a significant reduction in memory requirements with the explicit restarted
algorithm, which is especially important in very large problems that do not need to compute
left singular vectors.

3.3 Known Issues and Applicability

Currently, the computation of small singular values is not very robust, because convergence
of the methods discussed in this report is likely to be slow or, in some cases, unattainable.
In order to be more likely to get convergence to small singular values, it would be necessary
to incorporate techniques such as harmonic or refined Ritz projections. These techniques are
discussed in some of the references cited so far, e.g. [Jia and Niu, 2003], [Kokiopoulou et al.,
2004], and [Baglama and Reichel, 2005].

Allowed portion of the spectrum | All
Support for complex numbers Yes
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