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1 Introduction

Subspace Iteration (or Simultaneous Iteration) is a simple method for approximating eigenvalues
and eigenvectors of matrices. It can be seen as a generalization of the Power Method (see slepc
Technical Report STR-2, “Single Vector Iteration Methods in slepc”), in the sense that it
iterates simultaneously on m initial vectors, instead of just one. Orthogonality of the vectors
is explicitly enforced in order to avoid linear dependence as the iteration proceeds.

Subspace Iteration can be combined with a Rayleigh-Ritz projection procedure in order to
improve convergence. In this case, the algorithm computes approximations of the eigenvalues
and eigenvectors by projecting the problem onto the subspace spanned by the columns of AkX0,
where X0 is the initial set of vectors and k is the current iteration number. In spite of this
enhancement, Subspace Iteration is generally inferior to Krylov methods such as Arnoldi, except
in some cases in which it is still competitive, such as when the relative gap between the desired
eigenvalues and the rest is large.

2 Description of the Method

The implementation currently available in slepc is based on the srrit subroutine [Bai and
Stewart, 1997], which performs a Rayleigh-Ritz projection and handles converged eigenpairs by
locking. This report provides just an overview of the algorithm, and the reader is referred to
[Bai and Stewart, 1997] for additional details.

2.1 Basic Subspace Iteration

The method implemented in slepc is sketched in Algorithm 1. The algorithm computes a set
of dominant Schur vectors, from which the eigenvectors are computed afterwards.

Even with projection, the subspace iteration method usually converges very slowly, thus
requiring many iterations. In order to pursue efficiency, not all the operations have to be
carried out in all the iterations. Since the orthogonalization is a costly operation, it is avoided
unless it is strictly necessary. The multiplication V ← AV is the operation that is computed
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most often (in the innermost loop), while the orthogonalization and projection steps are only
performed occasionally.

Algorithm 1 (Subspace Iteration)

Input: Matrix A
Output: m dominant Schur vectors V and corresponding eigenvalues

Generate a set of initial orthonormal vectors V ∈ Cn×m

For k = 1, 2, . . .
Perform a Rayleigh-Ritz Projection step (algorithm 2)
Check convergence of eigenvalues and lock the converged ones
Orthogonalization loop

Repeatedly compute V ← AV and normalize columns of V
Orthonormalize columns of V

end
end

Algorithm 2 (Rayleigh-Ritz Projection)

Input: Matrix A and an orthonormal set of vectors V
Output: Schur vectors V and quasi-triangular matrix T

Compute the Rayleigh quotient T = V ∗AV
Reduce to Hessenberg form: T ← U∗

1TU1

Reduce to quasi-triangular form: T ← U∗
2TU2

Sort the 1× 1 or 2× 2 diagonal blocks: T ← U∗
3TU3

U = U1U2U3

V ← V U

In Algorithm 2, the quasi-triangular matrix T is sorted in descending order of magnitude,
so that eigenvalues with largest modulus are always on top.

2.2 Available Implementations

The first implementation of Subspace Iteration was developed by Rutishauser in the late 1960’s
[Rutishauser, 1969, 1970]. His Algol procedure ritzit is also described in [Parlett, 1980, ch. 14]
and was intended only for symmetric matrices. A Fortran translation of this procedure can be
found in the svdpack software for singular value computations [Berry, 1992a,b].

The Fortran subroutine lopsi [Stewart and Jennings, 1981] implements the Subspace Iter-
ation method for non-symmetric matrices. This version computes eigenvectors directly, which
can lead to numerical difficulties in some cases.

srrit [Bai and Stewart, 1997] is another implementation that can deal with non-symmetric
matrices, but it is more robust since it is based on the Schur decomposition. It combines
Subspace Iteration with a Rayleigh-Ritz projection. Deflation is handled by locking converged
eigenvectors.

Finally, a proprietary implementation of subspace iteration is subroutine EB12 in the HSL
library, which incorporates Chebyshev acceleration [Duff and Scott, 1993].
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3 The slepc Implementation

As stated above, the slepc implementation of the Subspace Iteration method mimics that of
the srrit subroutine. The corresponding solver is EPSSUBSPACE (or -eps_type subspace from
the command-line).

Currently, no specific options for this solver are available. All the parameters such as the
tolerance for detecting a group of eigenvalues are fixed.

Supported problem types All

Allowed portion of the spectrum Largest |λ|
Support for complex numbers Yes

Support for left eigenvectors No
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