S Scalable Librar
DE VALENCIA e omputations SLEPc

SLEPc Technical Report STR-2
Available at http://slepc.upv.es

Single Vector lteration Methods in SLEPc

V. Hernandez
J. E. Roman
A. Tomas
V. Vidal

Last update: June, 2005 (SLEPc 2.3.0)
Previous updates: —

About SLEPc Technical Reports: These reports are part of the documentation of SLEPc, the Scalable Library for
Eigenvalue Problem Computations. They are intended to complement the Users Guide by providing technical details

that normal users typically do not need to know but may be of interest for more advanced users.

http://slepc.upv.es

Single Vector Iteration Methods in SLEPc STR-2

Contents

1 Introduction 2

2 Description of the Methods 2
2.1 Direct and Inverse Iteration L L o 2
2.2 Rayleigh Quotient Iteration L 4
2.3 Variations of the Algorithms 5
2.4 Survey of Available Implementations oL L. 7

3 The sLEpPc Implementation 7
3.1 User Options o i it e 8
3.2 Known Issues and Applicability 8

1 Introduction

This report describes the algorithms for the solution of eigenvalue problems that are imple-
mented in the SLEPc eigensolver power (EPSPOWER). This eigensolver covers several well-known
single-vector iteration methods such as the Power Iteration, the Inverse Iteration and the
Rayleigh Quotient Iteration. These algorithms were the first ones to be employed in the sparse
eigenvalue scenario and come from the observation that a vector that is repeatedly multiplied
by matrix A usually tends to align in the direction of the eigenvector associated to its dominant
eigenvalue.

Normally, this eigensolver is not competitive with other methods provided in SLEPc, except
maybe in some cases with the Rayleigh Quotient Iteration. Therefore, its use is not recom-
mended. However, its simplicity makes it appropriate for helping understand how eigensolvers
are implemented in SLEPc.

2 Description of the Methods

A brief description of the three methods and their variants follows below. Detailed theoretical
analyses of convergence as well as several implementation aspects can be found in classical
references or in more recent monographs, see for example [Wilkinson, 1965], [Parlett, 1980] or
[Saad, 1992].

2.1 Direct and Inverse Iteration

The Direct Iteration (or Power Method) is the simplest single vector iteration method. It
consists in premultiplying a vector by matrix A repeatedly, that is, generating the sequence of
vectors A¥vg where vy is some nonzero initial vector.

STR-2 Single Vector Iteration Methods in SLEPc

Algorithm 1 (Basic Power Method)

Input: Matrix A and initial vector vg
Output: Approximate dominant eigenpair (6, v)

Y=o

For k=1,2,...
0 =llylloo
v=uy/l
y=Av

end

In Algorithm 1 the vector is normalized at each iteration to avoid underflow and overflow.
The advantage of the particular normalization used is that the approximation of the eigenvalue,
0, is readily available, which can then be used for the convergence test. If another norm is used
for normalization then the eigenvalue must be computed explicitly as the Rayleigh quotient
associated to the current approximation of the eigenvector, v. The Rayleigh quotient is defined
as .
R(v) = vAv

(1)

The theory says that if A has a unique eigenvalue of largest modulus, A1, and vy is not defi-
cient in the direction of the corresponding eigenvector, x1, then the Power Iteration converges
to a multiple of z1. The rate of convergence is linear and depends on the factor |A1 /A2, being
Ao the next largest eigenvalue in magnitude. Thus, convergence can be very slow if these two
eigenvalue are close (in magnitude) and will not be achieved at all in the case that there is no
unique dominant eigenvalue (e.g., A1 is part of a complex conjugate pair).

The Inverse Iteration consists simply in iterating with the matrix A~! instead of the original
matrix A. The method is often combined with shifts of origin so vectors are multiplied by
(A —oI)~1, and the computed results are then the eigenvalue of A that is closest to scalar o
and the corresponding eigenvector. The main advantage of this method is a faster convergence
due to a better separation of the eigenvalues, although it is still linear. The disadvantage is
having to deal with the inverse. Fortunately, it is not necessary to compute the inverse explicitly.
Instead, a linear system of equations is solved at each iteration, as shown in Algorithm 2.

v*U

Algorithm 2 (Inverse Iteration)

Input: Matrix A, value of the shift o and initial vector vgy
Output: Approximate eigenpair (6, v)
Y ="
For k=1,2,...
0=yl
v=uy/6
Solve (A—ol)y=v
end

Single Vector Iteration Methods in SLEPc STR-2

The linear system is usually solved with a direct method, where the factorization needs to
be computed only once and is amortized in successive solves. The coefficient matrix A — ol
is indefinite if o is inside A’s spectrum. In addition, it is nearly singular if o is very close to
an eigenvalue and, in this case, a large error should be expected in the solution computed by
a direct solver. However, it can be shown that the error lies almost entirely in the direction of
the wanted eigenvector and therefore it is harmless, [Parlett, 1980, §4.3].

An alternative to the direct linear solver is to use an iterative linear solver. Eigensolvers
that make use of iterative linear solvers are generally referred to as inexact eigensolvers or
inner-outer iterations. Typically, it is necessary to use a more stringent convergence tolerance
for the linear solver than for the eigensolver itself. Also, this scheme is not recommended if o is
very close to an eigenvalue because that implies a very slow convergence of the inner iteration.

2.2 Rayleigh Quotient Iteration

Analysis of Inverse Iteration shows that convergence is faster if o is much closer to A1 than it is
to Ag. Therefore, an improved method is to change the shift o occasionally into a value that is
known to be a better approximation of the eigenvalue \; than the previous . One possibility is
to take the new shift to be the Rayleigh quotient of the last approximate eigenvector, resulting
in the Rayleigh Quotient Iteration (RQI), shown in Algorithm 3.

Algorithm 3 (Rayleigh Quotient Iteration, RQI)

Input: Matrix A and initial vector v
Output: Approximate eigenpair (6, v)

Y=o
v=y/llyll2
Choose o1 or compute it as o1 = R(v)
For k=1,2,...
Solve (A— o)y =
Y=y
5 = [yl
Ohy1 = O +7/6°
v=uy/d
end
0 =011

In the above algorithm, o1 is nothing more than the Rayleigh quotient, computed efficiently:

*v (A —opl *A
O’k+1=Uk+12=Uk+y* ZUk—Fy(*k)yzy*y . (2)

0 Yy vty vy
In other words, the new shift is computed by updating the previous one with a correction that
corresponds to the Rayleigh quotient of the shifted matrix. It can be shown that § is the
reciprocal of the residual norm ||r||2 = ||Av — ov||2 for the approximated eigenpair (o, v). So

the convergence criterion can also be implemented very efficiently.

STR-2 Single Vector Iteration Methods in SLEPc

If matrix A is Hermitian then RQI has locally cubical convergence, [Wilkinson, 1965, ch.
9, §62]. That is, once the current estimate (og,v) becomes sufficiently close to some eigenpair,
then each iteration triples the number of accurate digits. If A is non-Hermitian then it is still
possible to get cubical convergence if using a two-sided version of the algorithm (see below).

One drawback of RQI is that it may converge to an eigenvalue which is not the closest
to the initial shift ;. This could be remedied by initially performing a few iterations of
inverse iteration, [Szyld, 1988]. Another drawback of RQI is its higher cost since it requires
a factorization at every iteration. Again, solving the linear systems iteratively may be an
acceptable alternative.

2.3 Variations of the Algorithms

Practical implementations often introduce some of the variations described next in order to
improve the usability of the algorithms.

Wilkinson shift. In Algorithm 3, it is sometimes possible to improve convergence by choosing
a new shift different from the Rayleigh quotient: the Wilkinson shift. This shift was proposed
in the context of LR and QR iterations, but the same idea can be applied to RQI, see [Parlett,
1980, §8.10]. The computation of this shift requires an additional matrix-vector product, so
usually the potential reduction in the number of iterations does not pay off the extra effort.

Two-sided versions. It is possible to formulate two-sided versions of the algorithms. In
general, two-sided eigensolvers are those which try to compute approximations of both left and
right invariant subspaces. In the context of the above algorithms, this means computing also the
left eigenvector, w, such that w*A = w*6. This makes sense only in the case of non-Hermitian
problems since otherwise left and right eigenvectors coincide.

The left eigenvector is an eigenvector of A* with eigenvalue 6. This fact can be exploited
to define two-sided versions of direct and inverse iteration, where two sequences of vectors are
generated: one multiplying by A to get v and another multiplying by A* to get w. In the case
of RQI, in addition, it is possible to make use of the generalized Rayleigh quotient of A at v
and w,

wAv

w*v

R(v,w) = (3)

This quantity represents a more accurate approximation of the eigenvalue than the ordinary
Rayleigh quotient (1), assuming that v and w are the approximate right and left eigenvectors,
respectively. Due to this good property, two-sided RQI (Algorithm 4) retains the locally cubical
convergence condition in the non-Hermitian case. Further details about the algorithm can be
found in [Ostrowski, 1959] and [Parlett, 1974].

Algorithm 4 (Two-sided RQI)

Input: Matrix A and initial vectors vg, wg
Output: Approximate eigentriple (6, v, w)

Single Vector Iteration Methods in SLEPc STR-2

y =vo, v =y/lyll
z=wo, w = z/||z[2
Choose o7 or compute it as o1 = R(v, w)
For k=1,2,...
Solve (A — o)y =
Solve (A —orl)*z=w
v =z%v
§=+/z"y
Ok4+1 = Ok +’y/52
v=y/d, w=2z/§
end
0 = okt1

Deflation. Assuming that an eigenvalue A; and its corresponding eigenvector x; have been
computed with any of the single-vector iteration methods described so far, the same algorithm
can be rerun to compute the next ones, provided that it is equipped with some form of defiation
to avoid convergence to the previously computed eigenpair.

A general deflation procedure is to apply a rank one modification to matrix A so as to
displace eigenvalue A1 while keeping all other eigenvalues unchanged,

Ay =A—oxv" . (4)

Assuming that the eigenvector £ has unit norm and v is any vector satisfying v*x1 = 1, matrix
(4) has the same eigenvalues as A except for the eigenvalue A; which is transformed into A; —o.
The natural value for o is A\;. For vector v, there are two possible choices that are usually
considered. The first one is to use v = x1, the computed eigenvector. This choice has the
advantage of preserving the eigenvectors in addition to eigenvalues. The other choice is v =y,
the left eigenvector computed by a two-sided eigensolver. In this case, the transformation
preserves both right and left eigenvectors.

Deflation based on equation (4) can be easily implemented without building A; explicitly.
However, as suggested by Wilkinson, it is not recommended due to potential stability problems.
A preferred deflation procedure, which is mathematically equivalent, consists in purging the
iterate vector of all previously converged eigenvectors. Suppose we want to perform a matrix-
vector product with matrix Aq,

A1z = (A= Mza))x = (A — Axya])e = A(J — xy27)x = Az, (5)

where & = (I — x127)x is the result of orthogonalizing x with respect to x, or applying the
orthogonal projector represented by matrix P = I —z;z]. The idea extends easily to more than
one eigenvector. In the context of two-sided methods, it is also possible to define this form of
deflation, but with the analog concepts of bi-orthogonalization and oblique projection.

In [Dax, 2003], a selective orthogonalization criterion is proposed in the context of RQI, try-
ing to avoid unnecessary orthogonalizations. With this criterion, the current vector is orthog-
onalized only with respect to approximate eigenvectors x; whose associate eigenvalue satisfies
[Ai — o] < k|| Al /1000.

STR-2 Single Vector Iteration Methods in SLEPc

Definite pencils. In order to solve a generalized eigenvalue problem with the above algo-
rithms, a spectral transformation has to be used. In the case of Hermitian positive-definite
problems, symmetry is lost in the transformed operator, B~!A, (A — 0B)~!'B, etc. Then, a
two-sided algorithm is required to retain locally cubical convergence. A better alternative could
be to reorient the algorithms so that they are based on the Rayleigh quotient of a matrix pair,

vAv

v*Bv

Rap(v) = (6)
It is easy to see that the meaning of all the quantities of the algorithms is retained if we replace
the standard Hermitian inner product, (z,y) = y*z, by the B-inner product, (z,y)p = y*Bz.

Block versions. The Power iteration can be generalized to operate on a set of vectors instead
of a single vector. This new procedure is usually referred to as subspace iteration or simultaneous
iteration. Details related to this procedure can be found in SLEPc Technical Report STR-3,
“Subspace Iteration in SLEPc”. With respect to RQI, block versions have also been proposed,
see for instance [Absil et al., 2002].

2.4 Survey of Available Implementations

Due to their simplicity, single vector iteration methods have been traditionally implemented by
the users themselves. For this reason, publicly available implementations are scarce.

An old implementation of the Power Iteration is available in NAPACK (http://www.netlib.
org/napack/power.f). It handles complex conjugate eigenvalues by a simple block technique
with two vectors. PEIGS (http://www.emsl.pnl.gov/docs/nwuchem) provides an implementa-
tion of a variant of inverse iteration tailored for dense symmetric eigenproblems. Finally, direct,
inverse and Rayleigh quotient iterations are implemented in IETL (http://www.comp-phys.
org/software/ietl), as well as in the Java library SMT (http://www.math.uib.no/ bjornoh/
mtj/smt).

3 The sLEPc Implementation

The SLEPc solver EPSPOWER provides an implementation of most of the algorithms and variants
described in the previous section.

When using the default spectral transformation (STSHIFT), this solver provides an implemen-
tation of the Power Iteration, whereas in shift-and-invert mode (STSINV) the resulting method
is the Inverse Iteration. In the latter case, by default the shift is constant. An option described
below allows the user to specify a variable shift thus turning to an RQI variant.

The implemented algorithms incorporate deflation (when requesting more than one eigen-
value), two-sided versions (with EPSSetClass(eps,EPS_TWO_SIDE)), and support for definite
pencils (when the problem type has been set to EPS_GHEP).

http://www.netlib.org/napack/power.f
http://www.netlib.org/napack/power.f
http://www.emsl.pnl.gov/docs/nwchem
http://www.comp-phys.org/software/ietl
http://www.comp-phys.org/software/ietl
http://www.math.uib.no/~bjornoh/mtj/smt
http://www.math.uib.no/~bjornoh/mtj/smt

Single Vector Iteration Methods in SLEPc STR-2

3.1 User Options
The user is able to change the way in which the shift o is updated:

EPSPowerSetShiftType (EPS eps,EPSPowerShiftType type)

This function is only relevant in shift-and-invert mode (STSINV). By default, the shifts are con-
stant. The other possibilities are EPSPOWER_SHIFT_RAYLEIGH and EPSPOWER_SHIFT_WILKINSON.
This can also be changed with the command-line option -eps_power_shift_type. Another re-
lated function is:

STSetShift (ST st,PetscScalar shift)

This function is not specific to the power solver, and it changes the value of the shift, o, in the
associated ST object. It is used in the implementation of the RQI method to set the initial shift.
This can also be set with the command-line option -st_shift. Note that calling this function
may involve refactorization of the matrix A — o B.

3.2 Known Issues and Applicability

Single-vector iteration methods provided in SLEPc cannot cope with complex conjugate eigen-
value pairs when working in real arithmetic. As stated above, the Power Iteration does not
converge in this case. However, a simple analysis shows that the subspace spanned by two
consecutive iterates contains converging approximations to the complex pair of eigenvectors. A
simple block version working with two vectors would be able to extract the desired eigenval-
ues and eigenvectors. However, this possibility is not taken into account in SLEPc in order to
keep the implementation simple. In order to solve problems of this type, other solvers such as
subspace should be used.

This solver can only be used for the case that the wanted eigenvalues are those of largest
magnitude (see EPSWhichEigenpairs).

The Power Iteration can be applied to any PETSc matrix object, including shell matrices
provided that the MatMult operation is implemented (as well as MatMultTranspose in the two-
sided solver). In the case of Inverse Iteration and RQI, then the behavior is not so simple
because a linear system of equations must be solved, thus possibly requiring other operations
such as MatAXPY or MatGetDiagonal. There is also the possibility that the linear solve fails if
the shift ¢ happens to be too close to an eigenvalue.

In the two-sided algorithm, it is not guaranteed that the solver is able to compute more
than one eigenpair.

Supported problem types All
Allowed portion of the spectrum | Largest ||
Support for complex numbers Yes
Support for left eigenvectors Yes

STR-2 Single Vector Iteration Methods in SLEPc

References

Absil, P.-A., P. V. Dooren, R. Mahony, and R. Sepulchre (2002). A Grassmann-Rayleigh Quotient
Iteration for Computing Invariant Subspaces. SIAM Rev., 44(1):57-73.

Dax, A. (2003). The Orthogonal Rayleigh Quotient Iteration (ORQI) Method. Linear Algebra Appl.,
358(1-3):23-43.

Ostrowski, A. M. (1959). On the Convergence of the Rayleigh Quotient Iteration for the Computation
of the Characteristic Roots and Vectors. III (Generalized Rayleigh Quotient and Characteristic Roots
with Linear Elementary Divisors). Arch. Rational Mech. Anal., 3:325-240.

Parlett, B. N. (1974). The Rayleigh Quotient Iteration and Some Generalizations for Nonnormal
Matrices. Math. Comp., 28:679-693.

Parlett, B. N. (1980). The Symmetric Figenvalue Problem. Prentice-Hall, Englewood Cliffs, NJ.
Reissued with revisions by STAM, Philadelphia, 1998.

Saad, Y. (1992). Numerical Methods for Large Eigenvalue Problems: Theory and Algorithms. John
Wiley and Sons, New York.

Szyld, D. (1988). Criteria for Combining Inverse Iteration and Rayleigh Quotient Iteration. SIAM J.
Numer. Anal., 25(6):1369-1375.

Wilkinson, J. H. (1965). The Algebraic Eigenvalue Problem. Claredon Press, Oxford, UK.

	1 Introduction
	2 Description of the Methods
	2.1 Direct and Inverse Iteration
	2.2 Rayleigh Quotient Iteration
	2.3 Variations of the Algorithms
	2.4 Survey of Available Implementations

	3 The SLEPcImplementation
	3.1 User Options
	3.2 Known Issues and Applicability

