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1 Introduction

The method of Arnoldi [1951] was proposed as a means of reducing a matrix to Hessenberg
form, but Arnoldi already suggested that the process could provide good approximations to
some eigenvalues if stopped before completion. This idea was fully developed in later work by
Saad [1980] and other authors, making the method evolve into one of the most successful ones
for non-Hermitian eigenproblems.

Many variants of the method have been proposed. This report provides a general description
of the algorithm (section 2) and then focuses on the particular variant implemented in SLEPc
(section 3).

2 Description of the Method

This section provides an overview of the Arnoldi method and some of its variations. For more
detailed background material the reader is referred to [Saad, 1992] or [Bai et al., 2000].

2.1 Basic Arnoldi Algorithm

Given a square matrix A of order n, if n steps of Arnoldi’s method are carried out then an
orthogonal reduction to Hessenberg form is achieved, AV = V H, where H is an upper Hessen-
berg matrix of order n with positive subdiagonal elements and V is an orthogonal matrix. V'
and H are uniquely determined by the first column of V', a unit-norm vector v; = Ve; that is
called the initial vector. For some initial vectors, Arnoldi’s method fails after m steps, and in
that case the algorithm produces an n x m matrix V,,, with orthogonal columns and an upper
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Hessenberg matrix of order m, H,,, that satisfy
AV, = Vi Hy, = 0, (1)

that is, the columns of V,,, span an invariant subspace of matrix A. In the general case in which
the algorithm does not break down, after m steps the following relation holds

AVm — Vol = fe:w (2)
where vector f is usually called the residual of the m-step Arnoldi factorization.

Algorithm 1 (Basic Arnoldi)

Input: Matrix A, number of steps m, and initial vector v, of norm 1
Output: (Vin, Hp, f, B) so that AV, — Vi, H,, = fek,, 8= |12
Forj=1,2,....m—1
w = Awv;
Orthogonalize w with respect to V; (obtaining hi.; ;)
hjt1, = llwl2
If hj+17j = 0, stop
Vi1 = w/hji1
end
f = Avp,
Orthogonalize f with respect to V;, (obtaining hi.m. m)
B =IIfll

It can be shown that Algorithm 1 builds an orthogonal basis of the Krylov subspace
Km(A,v1). In order to maintain a good level of orthogonality, an iterative Gram-Schmidt
procedure must be used for orthogonalization (for details, see SLEPc Technical Report STR-1,
“Orthogonalization Routines in SLEPc”). The computed basis vectors are the columns of V,,,
which are called Arnoldi vectors. If some w is zero after orthogonalization then the algorithm
breaks down before completing m steps and, in that case, the residual of the Arnoldi factor-
ization is zero and KCj(A,v1), j < m, is an exact invariant subspace of A, as mentioned above.
However, this situation is very unlikely in practice due to finite precision arithmetic.

Since V. f = 0 by construction, then by premultiplying equation (2) by V¥

Vi AViy = Hp, (3)

that is, matrix H,, represents the orthogonal projection of A onto the Krylov subspace, and
this fact allows us to compute Rayleigh-Ritz approximations of the eigenpairs of A. Let (\;, y;)
be an eigenpair of matrix H,,, then the Ritz value, \;, and the Ritz vector, x; = V,,y;, can
be taken as approximations of an eigenpair of A. Typically, only a small percentage of the m
approximations are good. This can be assessed by means of the residual norm for the Ritz pair,
which turns out to be very easy to compute:

|Azi — Niwill2 = [[AViy: — AiVinyill2 = [|(AVin = Vin Hi)yill2 = Bley, vil- (4)
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In practical situations, the number of steps, m, required to obtain good approximations
may be too large. The problem with a large m is not only storage but also the computational
cost that grows in every step. For this reason, a restarted version of the algorithm is necessary
in practice. The general idea of restarting is that after V,, has been computed, for a fixed
value of m, a new Arnoldi process is started, trying to benefit from the previously computed
information. In the sequel, m will denote the maximum number of vectors allowed for the basis
(ncv in the SLEPc terminology).

2.2 Explicit Restart

The idea of explicit restart is to iteratively compute different m-step Arnoldi factorizations with
successively “better” initial vectors. The initial vector for the next Arnoldi run is computed
from the information available in the most recent factorization. The simplest way to select
the new initial vector is to take the Ritz vector (or Schur vector) associated to the dominant
eigenvalue, v; = V,,,y1. This strategy is described below whereas more sophisticated approaches
are postponed until next subsection.

In order for a restarted method to be effective in computing more than one eigenpair, it is
necessary to keep track of already converged eigenpairs and perform some form of deflation.
This is done by a technique usually called locking, in which vectors associated to converged
eigenvalues are not modified in successive runs. Suppose that after certain Arnoldi run, the
first k eigenpairs have already converged to the desired accuracy, and write V,,, as

Vo= [ V| Vi | (5)

where the () superscript indicates locked vectors and the (a) superscript indicates active vectors.
In the next Arnoldi run, only m — k Arnoldi vectors must be computed, the active ones, and in
doing this the first k& vectors have to be deflated. This can be done simply by orthogonalizing
every new Arnoldi vector also with respect to the locked ones, as illustrated in Algorithm 2.

Algorithm 2 (Arnoldi with Deflation)

Input: Matrix A, number of steps m, Vi.k, Hi., with k& < m, and initial vector vgy; of norm 1
Output: (Viy, Hp, f, B) so that AV, — Vi, H,, = fel,, 8= |fll2
Forj=k+1,....m—1
w = Av;
Orthogonalize w with respect to V; (obtaining hy.; ;)
hjvi; = wllz2
if hj+1,j = 0, StOp
V1 =w/hj1
end
f=Av,
Orthogonalize f with respect to V5, (obtaining hi.m m)
B=1rl2
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Note that Algorithm 2 only modifies the last m — k columns of V,, and H,,, the active
part of the factorization. All the operations of the algorithm are performed on this active part.
These operations are the computation of the Arnoldi factorization with initial vector v, and
then the computation of the Schur form, see Algorithm 3.

Algorithm 3 (Explicitly Restarted Arnoldi)

Input: Matrix A, initial vector v;, and dimension of the subspace m
Output: A partial Schur decomposition AVy., = Vi Hik1:
Normalize vq
Initialize V;,, = [v1], k=0
Restart loop
Perform m — k steps of Arnoldi with deflation (Algorithm 2)
Reduce H,, to (quasi-)triangular form, H,, < U; H,,U;
Sort the 1 x 1 or 2 x 2 diagonal blocks: H,, < U5 H,,Us
U=UU,
Compute eigenvectors of H,,, Hp,y; = y:6;
Compute residual norm estimates, 7 = f|el, vl
Lock converged eigenpairs
Vi < Vi, U
end

Algorithm 3 is based on the (real) Schur form instead of the eigendecomposition in order
to be more robust. If we partition H,, conforming to (5), then after the computation of the
Arnoldi factorization, H,, has the following form

X X X X | X
X X X | X

X X | X

X | X

X

X

X X X|X X X X
X X X X|X X X X

X X X X X[X X X X
X X X X X[X X X X
c

that is, the leading submatrix of order k is upper (quasi-)triangular and the bottom right
block is upper Hessenberg. As the algorithm progresses, the lines in (6) descend as soon as
new eigenvalues converge. At the end, when the number of converged eigenvalues is sufficient
(k > nev), V1., and Hqy.p 1.4 constitute an approximate partial Schur decomposition of matrix
A. The transformation from Arnoldi vectors to Schur vectors is realized by the operation
Vin = ViU, which needs to be performed only on the newly converged vectors and also on the
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next initial vector. Note that the initial vector for the next restart is then the Schur vector of
the first non-converged eigenvalue. Note also the sorting operation needed to guarantee that
eigenvalues always converge in the required order.

2.3 Other Strategies for Restart

In the restarting strategy described above, the Arnoldi algorithm is rerun using as initial vector
the approximate Schur vector associated to the first not-yet-converged eigenvalue. This has
the effect that in the next Arnoldi run that particular eigenvalue will converge fast because
the initial vector already points in a direction close to the corresponding eigenvector. (Note
that this is not the case if the eigenvalue is complex and the algorithm runs in real arithmetic.)
However, when several eigenpairs have to be computed, this approach is not the best one,
because the other nearly converged eigenpairs are not represented in the initial vector. So a
better approach would be to set the initial vector as a linear combination of all the eigenvectors
(or Schur vectors). But in doing this, we might be including some directions which are not
of interest, so care must be taken to remove from the initial vector the directions associated
to unwanted eigenvalues. This more elaborate strategy is usually called filtering since in the
initial vector the directions corresponding to wanted eigenvalues are amplified whereas those
corresponding to unwanted ones are damped.

Polynomial filtering. One possibility for achieving the filtering effect is to take the initial
vector to be viy1 = z/||z|l2 where z = p(A)zp, being p a polynomial of degree d and zg
a linear combination of the approximate eigenvectors (or Schur vectors). As stated above,
this polynomial has to be defined in such a way that the new initial vector is rich in the
directions of wanted eigenvectors while other directions are removed. This goal can be achieved
by adapting the optimality properties of Chebyshev polynomials [Saad, 1984; Sadkane, 1993].
In this approach, p is a Chebyshev polynomial of the first kind of degree d, T4[(A — oI)/p],
where o and p give a translation and scaling of the part of the spectrum one wants to suppress.
In the case of non-Hermitian problems, this part of the spectrum is represented by an ellipse
containing all the unwanted eigenvalues. Since these eigenvalues are unknown and the optimal
ellipse is difficult to define, other alternative approaches have been proposed based on other
types of polynomials, such as least-squares polynomials, [Saad, 1987], or Faber polynomials,
[Heuveline and Sadkane, 1997].

Polynomial filtering as described here has several drawbacks. One of them is that it is
difficult, in general, to choose a linear combination zy of the eigenvectors that leads to balanced
convergence because it is hard to represent a whole subspace by a single vector. A cure for this
could be to apply the filtering in all the steps of the Arnoldi method and not just at the restart,
that is, replace matrix A by p(A). This is usually called polynomial preconditioning. Another
disadvantage is the wide variation in performance depending on the choice of the parameters
of the polynomial, making it difficult to implement a robust solver that works well in many
situations.
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Implicit restart. The restarting schemes discussed so far are explicit in the sense that an ini-
tial vector is computed and then a new Arnoldi process is started from scratch. Implicit restart
is an alternative in which the Arnoldi process is combined with the implicitly shifted QR algo-
rithm. An m-step Arnoldi factorization is compacted into an (m—d)-step Arnoldi factorization,
which is then extended again to an m-step one. The key point is that the small factorization
retains the relevant eigeninformation of the large factorization, and this is accomplished by
applying several steps of the QR iteration. This process is more efficient and numerically stable
than explicit restart, and can be interpreted as an implicit application of a polynomial in A of
degree d to the initial vector, [Sorensen, 1992]. This technique has been implemented in the
ARPACK software, [Lehoucq et al., 1998].

The implicit QR approach is generally superior to explicit restart, because the effect is that
the subspace generated by the algorithm contains the Krylov subspace associated to all the
approximate Schur vectors and not just one. For a more detailed discussion see [Morgan, 1996].

Krylov-Schur. Implementing the implicit restart technique in a numerically stable way is
difficult. A simpler way of achieving the same effect is by the so-called Krylov-Schur method,
[Stewart, 2001]. Since this method is also implemented in SLEPc, its description is provided
separately (see SLEPc Technical Report STR-7, “Krylov-Schur Methods in SLEPc”).

2.4 Other Variants

This subsection describes very briefly some variations of the algorithm that may be of interest
in some situations.

B-Arnoldi. When addressing a generalized eigenvalue problem, Az = ABzx, usually a spectral
transformation is used. In this case, it is sometimes useful to replace the standard Hermitian
inner product, (z,y) = y*z, by the B-inner product, (x,y)p = y*Bzx. In the context of
Algorithm 2, this can be accomplished by doing B-orthogonalization and replacing the 2-norm
with the B-norm, ||w||p = /{w,w)p. This modified algorithm is usually referred to as the
B-Arnoldi process.

In the case of Hermitian positive-definite pencils, symmetry is recovered in the transformed
operator, e.g. (A — oB)~!B, when the B-inner product is used. Of course, this property is
relevant only for solvers that exploit symmetry, such as Lanczos (see SLEPc Technical Report
STR-5, “Lanczos Methods in SLEPc”). However, the B-Arnoldi process is still useful in the case
that B is singular, even when A is not symmetric. If B is singular, then the bilinear form
(z,y)p is a semi-inner product, but the B-Arnoldi process is still well defined and can provide
a solution to the problem of eigenvector corruption due to infinite eigenvalues, see [Meerbergen
and Spence, 1997].

Block Methods. A block method tries to extract approximate spectral information from a
block Krylov subspace

K (A, V1) = span{Vy, AVy, A%Vy, ..., A1) (7)
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where V] has b columns. This kind of method has two main advantages. First, the convergence
behavior can be less problematic in cases with multiple or clustered eigenvalues, provided that b
is sufficiently large. Second, computational efficiency may be better in some situations, because
access to the elements of matrix A is amortized by multiplying several vectors and not just one.
On the other hand, one drawback is that in order for the algorithm to work with polynomials
of degree m, the required dimension of the subspace is m - b, which can be quite large. Another
drawback is that issues such as deflation, which are relatively simple to implement in unblocked
algorithms, become severe complications in the block variants.

Two approaches are generally possible for developing the above ideas. For distinguishing
them, they are sometimes referred to as block and band versions, respectively. The first one
is a straightforward block generalization of the simple algorithm, using block Gram-Schmidt
orthogonalization. In this case, matrix H,, is no longer Hessenberg but block Hessenberg. In
the other alternative, vectors are orthogonalized one at a time, with the usual Gram-Schmidt
procedure, resulting in a band Hessenberg matrix.

2.5 Available Implementations

ARNCHEB [Braconnier, 1993] is a Fortran software that implements the Arnoldi method with
explicit restart, via the Chebyshev polynomial technique described in section 2.3.

As mentioned above, ARPACK [Lehoucq et al., 1998] provides a Fortran implementation of
the Implicitly Restarted Arnoldi method, for both real and complex arithmetic. The software
can be downloaded from http://www.caam.rice.edu/software/ARPACK. A parallel version is
also available, based on BLACS or MPI message passing.

3 The sLEPc Implementation

The variant of the Arnoldi method provided by SLEPc is based on explicit restart with locking.
The corresponding solver is EPSARNOLDI (or -eps_type arnoldi from the command-line).

The algorithm actually implemented is Algorithm 3. Currently, the only restarting strategy
available is the simplest one of those described above, that is, the new initial vector is the Schur
vector of the first eigenvalue that has not converged yet. Krylov-Schur restart is implemented
in SLEPc as a separate eigensolver (see SLEPc Technical Report STR-7, “Krylov-Schur Methods
in SLEPc”). Implicit restart is indirectly available in SLEPc via wrapper code to interface to
ARPACK (solver EPSARPACK, see the SLEPc Users Manual for details on how to enable external
software).

Currently, block versions of the algorithms have not been considered in SLEPc. One of the
reasons is the limited support for multi-vectors in PETSc.

3.1 User Options

The only parameters that can be adjusted by the user are those related to the orthogonalization
technique used e.g. in the third line of Algorithm 2. Apart from the general orthogonalization
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options described in SLEPc Technical Report STR-1 (“Orthogonalization Routines in SLEPC”),
a specific option is available for the Arnoldi eigensolver, namely the activation of “delayed”
variants, which is a rather advanced feature.

EPSArnoldiSetDelayed(EPS eps,PetscTruth delayed)

This function activates (or deactivates) delayed Arnoldi variants, which are off by default.
Delayed variants can also be activated with the command-line option -eps_arnoldi_delayed.

The delayed variants introduce either delayed normalization or delayed refinement. These
are somewhat aggressive optimizations than may provide better scalability, but sometimes make
the solver converge less than the default algorithm. If the delayed flag is activated with the
above function, then either delayed normalization (if refinement is equal to never) or delayed
refinement (if refinement is equal to always) is carried out (see SLEPc Technical Report STR-1
for instructions on how to change the parameter refinement).

Full details about delayed variants, including numerical results and performance analysis,
can be found in [Hernandez et al., 2007].

3.2 Known Issues and Applicability

Arnoldi is probably the most robust SLEPc eigensolver. However, its simple restart mechanism
makes it converge generally slower compared to other solvers such as Krylov-Schur.

Large errors may appear in the computed eigenvectors in the case of a generalized eigen-
problem with singular B.

With respect to delayed variants, Arnoldi with delayed refinement may suffer from conver-
gence stagnation in some cases. For this reason, it is not used by default.

Supported problem types All
Allowed portion of the spectrum | All
Support for complex numbers Yes

References

Arnoldi, W. E. (1951). The Principle of Minimized Iterations in the Solution of the Matrix Eigenvalue
Problem. Quart. Appl. Math., 9:17-29.

Bai, Z., J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst (eds.) (2000). Templates for the
Solution of Algebraic Figenvalue Problems: A Practical Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Braconnier, T. (1993). The Arnoldi-Tchebycheff Algorithm for Solving Large Nonsymmetric Eigen-
problems. Technical Report TR/PA/93/25, CERFACS, Toulouse, France.

Hernandez, V., J. E. Roman, and A. Tomas (2007). Parallel Arnoldi Eigensolvers with Enhanced
Scalability via Global Communications Rearrangement. Parallel Comput., 33(7-8):521-540.




Arnoldi Methods in SLEPc STR-4

Heuveline, V. and M. Sadkane (1997). Arnoldi-Faber Method for Large non Hermitian Eigenvalue
Problems. FElectron. Trans. Numer. Anal., 5:62-76.

Lehoucq, R. B., D. C. Sorensen, and C. Yang (1998). ARPACK Users’ Guide, Solution of Large-Scale
FEigenvalue Problems by Implicitly Restarted Arnoldi Methods. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Meerbergen, K. and A. Spence (1997). Implicitly Restarted Arnoldi with Purification for the Shift-
Invert Transformation. Math. Comp., 66(218):667-689.

Morgan, R. B. (1996). On Restarting the Arnoldi Method for Large Nonsymmetric Eigenvalue Prob-
lems. Math. Comp., 65:1213-1230.

Saad, Y. (1980). Variations of Arnoldi’s Method for Computing Eigenelements of Large Unsymmetric
Matrices. Linear Algebra Appl., 34:269-295.

Saad, Y. (1984). Chebyshev Acceleration Techniques for Solving Nonsymmetric Eigenvalue Problems.
Math. Comp., 42:567-588.

Saad, Y. (1987). Least Squares Polynomials in the Complex Plane and their Use for Solving Nonsym-
metric Linear Systems. SIAM J. Numer. Anal., 24(1):155-169.

Saad, Y. (1992). Numerical Methods for Large Eigenvalue Problems: Theory and Algorithms. John
Wiley and Sons, New York.

Sadkane, M. (1993). A Block Arnoldi-Chebyshev Method for Computing Leading Eigenpairs of Large
Sparse Unsymmetric Matrices. Numer. Math., 64:181-194.

Sorensen, D. C. (1992). Implicit Application of Polynomial Filters in a k-Step Arnoldi Method. STAM
J. Matriz Anal. Appl., 13:357-385.

Stewart, G. W. (2001). A Krylov—Schur Algorithm for Large Eigenproblems. SIAM J. Matriz Anal.
Appl., 23(3):601-614.

— 10 —



	1 Introduction
	2 Description of the Method
	2.1 Basic Arnoldi Algorithm
	2.2 Explicit Restart
	2.3 Other Strategies for Restart
	2.4 Other Variants
	2.5 Available Implementations

	3 The SLEPcImplementation
	3.1 User Options
	3.2 Known Issues and Applicability


