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1 Introduction

The Krylov-Schur method was introduced in 2001 by Stewart and can be seen as an improvement
on traditional Krylov subspace methods such as Arnoldi and Lanczos. More precisely, the
Krylov-Schur method incorporates an effective and robust restarting scheme, resulting in fast
convergence in most cases.

Although this report is basically self-contained, the reader is recommended to consult also
the slepc Technical Reports STR-4,“Arnoldi Methods in slepc”, and STR-5,“Lanczos Methods
in slepc”, since all three methods share several common aspects both theoretically and in the
implementation. Remember that Arnoldi is a general method that can address non-Hermitian
problems, whereas Lanczos is restricted to Hermitian ones. In the case of the Krylov-Schur
method, slepc provides a single solver for both Hermitian and non-Hermitian problems. In the
description of the algorithm below, those steps of the algorithm that may be different depending
on whether symmetry is taken into account or not will be highlighted.

Section 2 provides a general description of the method. Then section 3 gives some details
that are particular to the slepc implementation. Also, this report includes some performance
results in various platforms (section 4).

2 Description of the Method

The main reference for the Krylov-Schur method is [Stewart, 2001], together with its addendum
[Stewart, 2002]. The interested reader is referred to these references for a detailed exposition.
A description of the algorithm can also be found in other sources such as [Kressner, 2005].
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2.1 Overview of Krylov Projection Methods

Projection methods for eigenvalue problems are intended for computing a partial eigensolution,
that is, given a square matrix A of order n, the objective is to compute a small number of
eigenpairs, λi, xi, i = 1, . . . , k, with k � n. The basic principle of projection methods is to find
the best approximations to the eigenvectors in a given subspace of small dimension. This is
achieved with the so-called Rayleigh-Ritz procedure, described next.

Given an n ×m matrix V , with k ≤ m � n, whose columns vi constitute an orthonormal
basis of a given subspace V, i.e. V TV = Im and span{v1, v2, . . . , vm} = V, the Rayleigh-Ritz
procedure consists in computing H = V TAV , which is a square matrix of order m, and then
solving the eigenvalue problem associated with it, Hyi = θiyi. The approximate eigenpairs
λ̃i, x̃i of the original eigenvalue problem are then λ̃i = θi and x̃i = V yi, which are called Ritz
values and Ritz vectors, respectively. Note that Ritz vectors belong to subspace V. It can be
shown that the Ritz values and vectors are the best possible approximations in that subspace.
Matrix H is the projection of A onto V, hence the name of this class of methods.

The above process works better when the subspace V approximates a certain invariant
subspace of A. This is the reason why the Rayleigh-Ritz projection is often combined with the
simultaneous iteration algorithm, in which case V = span(AsX1) for a given set of m initial
vectors X1 and increasing s. However, the overall process is much more effective if V is equal
to the Krylov subspace associated with matrix A and a given initial vector x1,

Km(A, x1) = span{x1, Ax1, A2x1, . . . , A
m−1x1} . (1)

The method of Arnoldi is a Krylov-based projection algorithm that computes an orthogonal
basis of the Krylov subspace and at the same time computes the projected matrix H, all this
in an efficient and numerically stable way.

Algorithm 1 (Basic Arnoldi)

Input: Matrix A, number of steps m, and initial vector v1 of norm 1
Output: (Vm, Hm, f, β) so that AVm = VmHm + fe∗m, β = ‖f‖2

For j = 1, 2, . . . ,m− 1
w = Avj
Orthogonalize w with respect to Vj (obtaining hi,j for i = 1, . . . , j)
hj+1,j = ‖w‖2 (if hj+1,j = 0, stop)
vj+1 = w/hj+1,j

end
f = Avm
Orthogonalize f with respect to Vm (obtaining hi,m for i = 1, . . . ,m)
β = ‖f‖2

In Algorithm 1, a subindex is used in H and V to make their dimension explicit. Note
that in each iteration of the algorithm, a new column of both H and V is computed. In the
case of Arnoldi, H has an unreduced upper Hessenberg form, that is, upper triangular with an
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additional non-zero subdiagonal. The orthogonalization operations in Algorithm 1 are typically
carried out by means of a Gram-Schmidt procedure, that removes all the components in the
directions of the Arnoldi vectors, v1, . . . , vj . The quantities computed by the algorithm satisfy
the following relation

AVm = VmHm + fe∗m, (2)

which is usually called m-step Arnoldi factorization or Arnoldi decomposition of order m. The
last computed vector f , called the residual, gives an indication of how close is V to an invariant
subspace. In particular, its norm β is used to assess the accuracy of the computed Ritz pairs,
since

‖Ax̃i − λ̃ix̃i‖2 = ‖AVmyi − θiVmyi‖2 = ‖(AVm − VmHm)yi‖2 = β|e∗myi|. (3)

With the Arnoldi process, the Ritz pairs will converge very fast provided that the initial
vector x1 is rich in the direction of the wanted eigenvectors. However, in practice this is usually
not the case and consequently many iterations are likely to be required. This is a serious problem
because increasing the number of iterations (m) implies a growth in storage requirements and,
more importantly, a growth of computational cost per iteration. A workaround for this is to do
a restart of the algorithm, that is, stop after m iterations and rerun the algorithm with a new
x1 computed from the recently obtained spectral approximations. One possible approach is to
explicitly compute x1 as a linear combination of a subset of the computed Ritz vectors. This
is called explicit restart. Other variants of explicit restart additionally apply a polynomial in
A of degree d, ψ(A), to the initial vector with the intent to filter out components in unwanted
directions.

The main difficulty in explicit restart is how to choose the parameters for building the new
starting vector. In the last years, an important research effort has been devoted to improving
the effectiveness of restarting in the context of Krylov eigensolvers, by eliminating the need to
explicitly compute a new vector x1.

Implicit restart is an alternative in which the Arnoldi process is combined with the implicitly
shifted QR algorithm. An m-step Arnoldi factorization is compacted into an (m − d)-step
Arnoldi factorization, which is then extended again to an m-step one. The key point is that the
small factorization retains the relevant eigeninformation of the large factorization, and this is
accomplished by applying several steps of the QR iteration. This process is more efficient than
explicit restart, and can be interpreted as an implicit application of a polynomial in A of degree
d to the initial vector, [Sorensen, 1992]. The implicit restart technique has been implemented
in the arpack software, [Lehoucq et al., 1998].

2.2 The Krylov-Schur Method

Implementing the implicit restart technique in a numerically stable way is difficult. A simpler
way of achieving the same effect is by the Krylov-Schur method proposed by Stewart [2001].

The Krylov-Schur method is defined by generalizing the Arnoldi decomposition of order m,

AVm = VmHm + βvm+1e
∗
m , (4)
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Figure 1: Scheme of a general Krylov decomposition (above) and a Krylov-Schur decomposition
(below).

computed by Algorithm 1, where vm+1 = f/β, to a so-called Krylov decomposition of order m,

AVm = VmBm + vm+1b
∗
m+1 , (5)

in which matrix Bm is not restricted to be upper Hessenberg and bm+1 is an arbitrary vector.
Assuming that all the vi vectors are mutually orthonormal, pre-multiplying Eq. 5 by V ∗

m shows
that Bm is the Rayleigh quotient V ∗

mAVm so the Rayleigh-Ritz procedure is still valid.
The last equation is equivalent to

AVm =
[
Vm vm+1

] [ Bm

b∗m+1

]
. (6)

A special case of the above relation is the Krylov-Schur decomposition, in which matrix Bm is
in real Schur form, that is, quasi-triangular form displaying eigenvalues in the 1 × 1 or 2 × 2
diagonal blocks. Figure 1 shows a graphical scheme of these factorizations. Note that for
simplicity the picture shows only 1× 1 diagonal blocks.
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The Arnoldi decomposition is a particular case of the Krylov decomposition. It can be
shown [Stewart, 2001, Th. 2.2] that any Krylov decomposition is equivalent to an Arnoldi
decomposition, that is, it has the same Ritz approximations. Also, it is possible to transform a
Krylov decomposition into an equivalent Krylov-Schur decomposition by means of orthogonal
similarity transformations. The basic idea of the Krylov-Schur method is to iteratively expand
(with the Arnoldi process) and contract a Krylov-Schur decomposition. A schematic description
of the method is given in Algorithm 2.

Algorithm 2 (Krylov-Schur Method)

Input: Matrix A, initial vector x1, and number of steps m
Output: k ≤ p Ritz pairs

1. Build an initial Krylov decomposition of order m
2. Apply orthogonal transformations to get a Krylov-Schur decomposition
3. Reorder the diagonal blocks of the Krylov-Schur decomposition
4. Truncate to a Krylov-Schur decomposition of order p
5. Extend to a Krylov decomposition of order m
6. If not satisfied, go to step 2

Step 1 can be accomplished for instance with an Arnoldi decomposition with Algorithm 1.
For step 2, it is necessary to apply the QR algorithm in order to compute an orthogonal matrix
Q1 such that Tm = Q∗

1BmQ1 has real Schur form, and then

AVmQ1 =
[
VmQ1 vm+1

] [ Tm
b∗m+1Q1

]
. (7)

At this point, the Ritz values are readily available from the diagonal blocks of Tm. These Ritz
values are divided in two subsets: Ωw containing p < m“wanted” Ritz values and Ωu containing
m − p “unwanted” Ritz values. The objective of step 3 is to move the subset of wanted Ritz
values to the leading principal submatrix of Tm. This can also be accomplished by means of an
orthogonal transformation Q2, resulting in the following reordered Krylov-Schur decomposition

AṼm =
[
Ṽm vm+1

]  Tw ?

0 Tu
b∗w ?

 , (8)

where Ṽm = VmQ1Q2, λ(Tw) = Ωw, λ(Tu) = Ωu, and b∗w is the length-p leading subvector of
b∗m+1Q1Q2. The truncation in step 4 of the algorithm is achieved simply by writing

AṼp =
[
Ṽp ṽp+1

] [ Tw
b∗w

]
, (9)

where Ṽp is equal to the first p columns of Ṽm, but ṽp+1 = vm+1. This step is illustrated in
Figure 2, in which the parts to be removed from the factorization are shadowed.
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Figure 2: Scheme of the truncation step in the reordered Krylov-Schur decomposition.

Tw

b∗w b∗w

bw

Figure 3: Scheme of matrix Bm after step 5 (before reduction to the Krylov-Schur form), in the
non-symmetric case (left) and the symmetric case (right).

Finally, step 5 is carried out by means of a variation of Algorithm 1 in which the vectors are
computed starting from vp+2 but vectors v1 to vp+1 are also taken into account in the orthogo-
nalization step. For example, Figure 3 (left) shows the shape of matrix Bm after expanding the
truncated matrix of order p to order m. In the picture, 4 new columns have been added (the
shadowed part), corresponding to four steps of the Arnoldi method with initial vector vm+1.

2.3 Symmetric Krylov-Schur

In the case that matrix A is symmetric (or Hermitian), some additional considerations can
be done. First of all, matrix Hm of the Arnoldi decomposition (2) is also symmetric and
thus tridiagonal. Also, zeros in the upper part of Hm indicate that orthogonality need not be
enforced explicitly against all the vj vectors, at least in exact arithmetic (this is not the case in
finite precision arithmetic). These special characteristics are exploited by the Lanczos method,
a very simple and elegant algorithm that may be viewed as a specialized variant of Arnoldi. A
more comprehensive description of the Lanczos method and its implementation in slepc can
be found in the slepc Technical Report STR-5, “Lanczos Methods in slepc”.

The Krylov-Schur method can be adapted similarly to the symmetric case. When the
symmetries in the Krylov-Schur decomposition are considered, one soon realizes that the Krylov-
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Schur method is equivalent in the symmetric case to another method that was proposed before:
the thick-restart Lanczos method, [Wu and Simon, 2000].

The most significant difference between the symmetric and non-symmetric cases is the shape
of matrix Bm. Figure 3 illustrates this difference graphically. The right part of the figure shows
the characteristic arrow-head shape that is obtained in the symmetric case, which then grows
from below by a number of Lanczos steps.

From the implementation point of view, the structure of this matrix Bm poses more diffi-
culties than in the case of a simple explicitly restarted variant of Lanczos, where the projected
matrix consisted of a diagonal part and a tridiagonal part. In thick-restart Lanczos, obtaining
the Krylov-Schur form of Bm is equivalent to diagonalizing it. For this, taking into account its
special structure may suppose a marginal reduction in the operation count for standard solvers
whose first stage is tridiagonalization. Therefore, it is appropriate to use a general dense sym-
metric method (note that this is not a big issue due to the small dimension of this matrix).
An alternative is to devise a specific algorithm for this particular structure, although it is not
obvious how to do this.

The other thing to be considered in the symmetric case is whether orthogonalization of the
Lanczos vectors should be carried out explicitly against all previous vectors, or, on the contrary,
it is worth using a technique for the cure of loss of orthogonality (such as partial orthogonal-
ization). In the context of thick-restart Lanczos, the conclusion is that full orthogonalization is
the best option, since it provides the maximum robustness (which may favor the convergence
of the method) at a moderate additional cost (in this context, orthogonalization with respect
to the first p vectors is required anyway).

2.4 Other Variants

This subsection describes very briefly some variations of the algorithm that may be of interest
in some situations.

Generalized Problems. When addressing a generalized eigenvalue problem, Ax = λBx,
usually a spectral transformation is used. In the symmetric case, symmetry is lost but can
be recovered by employing the so-called B-Lanczos process, which amounts to replacing the
standard Hermitian inner product, 〈x, y〉 = y∗x, by the B-inner product, 〈x, y〉B = y∗B x.
Similarly, the B-Arnoldi process may provide benefits from the numerical point of view. For a
more detailed description of this issue, see slepc reports STR-4 and STR-5.

These modifications are also relevant to the Krylov-Schur method, since it is ultimately
based on the Arnoldi and Lanczos recurrences.

Block Variant. A block Krylov method tries to extract approximate spectral information
from a block Krylov subspace

Km(A, V1) = span{V1, AV1, A2V1, . . . , A
m−1V1} , (10)
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where V1 has b columns. Both Arnoldi and Lanczos can be thought in terms of block Krylov
subspaces. Again, the reader is referred to slepc reports STR-4 and STR-5 for further discus-
sion. As before, this is also applicable to the Krylov-Schur method, inheriting both advantages
and complications. For a more detailed discussion of the block Krylov-Schur method, see [Zhou
and Saad, 2004].

2.5 Available Implementations

An implementation of the block Krylov-Schur method is available in the anasazi eigensolver
package, which is part of trilinos, a parallel object-oriented software framework for large-scale
multi-physics scientific applications. For additional information, see slepc Technical Report
STR-6, “A Survey of Software for Sparse Eigenvalue Problems”.

3 The slepc Implementation

slepc provides an implementation of the Krylov-Schur method. The corresponding solver is
EPSKRYLOVSCHUR (or -eps_type krylovschur from the command-line). Algorithm 3 represents
a detailed version of Algorithm 2, that intends to be closer to the actual slepc implementation.

Algorithm 3 (Krylov-Schur Method)

Input: Matrix A, initial vector v1, and dimension of the subspace m
Output: A partial Schur decomposition AV1:k = V1:kH1:k,1:k

Normalize v1
Initialize Vm = [v1], k = 0, p = 0
Restart loop

Perform m− p steps of Arnoldi with deflation
Reduce Hm to (quasi-)triangular form, Hm ← U∗

1HmU1

Sort the 1× 1 or 2× 2 diagonal blocks: Hm ← U∗
2HmU2

U = U1U2

Compute eigenpairs of Hm, Hmyi = yiθi
Compute residual norm estimates, τi = β|e∗myi|
Vm ← VmU
Exit if enough converged eigenpairs, otherwise lock newly converged vectors
Choose p and set ṽp+1 = vm+1

Compute bw and insert it in the appropriate positions of Hp

end

Selection of p. Currently, the slepc implementation sets the value of p to somewhere in-
between m (the maximum subspace dimension) and k (the number of currently converged
eigenpairs). Its value grows progressively as eigenvalues converge.
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3.1 Known Issues and Applicability

The Krylov-Schur method is usually much faster and effective than Arnoldi. Also, both methods
behave similarly in terms of robustness. For this reason, it is currently the default method in
slepc.

Supported problem types All

Allowed portion of the spectrum All

Support for complex numbers Yes

4 Performance Results

In this section we provide the results of some tests to illustrate parallel performance of the
Krylov-Schur solver in a typical situation.

The slepc Krylov-Schur implementation has been compared with arpack in two different
computing platforms. The first machine used for the tests is a cluster of 55 dual processor
nodes with Pentium Xeon processors at 2.8 GHz interconnected with an SCI network in a 2-D
torus configuration. In order to extend the analysis to more processors, the tests were repeated
in MareNostrum, an IBM JS21 cluster of 2,560 tetraprocessor nodes with PowerPC 970MP
processors at 2.3 GHz interconnected with a Myrinet network. Only one processor per node
was used in the tests reported in this section.

The tests consist in measuring the parallel speed-up when computing the 10 largest eigenval-
ues of two matrices from real-world applications, AF23560 and PRE2. The AF23560 matrix is
real non-symmetric of order 23,560 and it is the largest one from the NEP collection [Bai et al.,
1997]. The PRE2 matrix is real non-symmetric of order 659,033 from the University of Florida
Sparse Matrix Collection [Davis, 1992]. The speed-up is calculated as the ratio of elapsed time
with p processors to the elapsed time with one processor corresponding to the fastest algorithm.
This latter time corresponds in both cases to the slepc Krylov-Schur implementation. In these
tests both eigensolvers were configured with tolerance equal to 10−7 and a maximum of 30 basis
vectors (ncv).

Figure 4 shows the speed-up obtained with the two matrices in the Xeon cluster. Due to
the small size of the AF23560 matrix, the speed-up begins to flatten at around 30 processors.
This happens because the time spent doing computational work by each processor decreases
and the time spent doing communication between processors begins to dominate. With the
much larger PRE2 matrix this effect does not occur at all. In this cluster the performance of
slepc is slightly better than arpack.

The results with the same matrices in the PowerPC cluster (figure 5) show the same speed-
up stagnation when the number the processors is sufficiently large. However, this effect appears
only at around 250 processors with the largest matrix, which is a very good parallel performance
result. Also, the slepc performance is clearly better than arpack in this case.

In order to measure parallel performance without the problem-size effect and to be able
to analyze scalability to a larger number of processors, a synthetic test case has been used.
This test consists in measuring the scaled speed-up with the same solver parameters as before
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Figure 4: Speed-up in Xeon cluster for AF23560 (left) and PRE2 (right) matrices.

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60  70

S
p

e
e

d
-u

p

Number of processors

Krylov-Schur
ARPACK

Ideal

 0

 50

 100

 150

 200

 250

 300

 350

 0  50  100  150  200  250  300  350

S
p

e
e

d
-u

p

Number of processors

Krylov-Schur
ARPACK

Ideal

Figure 5: Speed-up in MareNostrum for AF23560 (left) and PRE2 (right) matrices.
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Figure 6: Scaled speed-up in MareNostrum for random tridiagonal matrices with sizes 10, 000×p
(left) and 100, 000× p (right).

but using tridiagonal matrices of increasing dimension with random entries. These tridiagonal
matrices have 10,000 and 100,000 rows per processor so the amount of computational work
remains constant as the number of processors increases. Figure 6 show the scaled speed-ups
taking into account the problem size with these two matrices. These tests show the good
scalability of the slepc and arpack implementations, with a slight performance advantage of
slepc over arpack.
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