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1 Introduction

The Contour Integral Spectrum Slicing method (CISS) is an eigensolver based on the Sakurai-
Suigura method [Sakurai and Sugiura, 2003] in the SLEPc library. Users can compute the
eigenvalues inside a specified region on the complex plane and corresponding eigenvectors using
CISS. CISS can be used for generalized eigenvalue problems such as Az = ABx (EPSCISS) and
nonlinear eigenvalue problems such as F(A)x = 0 (NEPCISS). In EPSCISS and NEPCISS, PETSc’s
complex scalars are used. However, users can utilize EPSCISS in real arithmetic by building the
real version of PETSc when matrices A and B are real symmetric and B is positive-definite (i.e.,
all eigenvalues are real). This report describes the utilization of EPSCISS (Section 2), EPSCISS

with real scalars (Section 3), and NEPCISS (Section 4).
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Additional details of the algorithms can be found in [Sakurai and Tadano, 2007], [Tkegami
et al., 2010], [Ikegami and Sakurai, 2010], [Asakura et al., 2009], and [Maeda et al., 2011].

2 Utilization of CISS for generalized eigenvalue problems

2.1 Execution with CISS

CISS for the generalized eigenvalue problems is embedded in the EPS object of SLEPc¢ (EPSCISS).
EPSCISS solves generalized eigenvalue problems such as Az = ABx. Users can select the solver
in the EPS object by means of the EPSSetType function (or —eps_type from the command line).
When selecting EPSCISS, users should also set a region object (RG) to the EPS object using the
EPSSetRG function (or -rg_type from the command line). The following is an example of
running an executable with EPSCISS:

$ mpirun -np (#process) ./(executable) -eps_type ciss -rg_type ellipse

2.2 Setting the region object in EPSCISS

EPSCISS computes the eigenvalues inside a specified region and corresponding eigenvectors.
Three types of regions, RGELLIPSE, RGINTERVAL, and RGRING, can be used in EPSCISS.

RGELLIPSE In RGELLIPSE, the region is defined as an ellipse on the complex plane. To
indicate the position and shape of the ellipse, the center, radius, and vertical scale (vscale) are
set with the input arguments of the RGEllipseSetParameters function. The default values
of the center, radius, and vertical scale are 0.0, 1.0, and 1.0, respectively (defining a precise
circle). Figure 1 illustrates the region and parameters of RGELLIPSE. A complex value of the
center can be provided in the command line as [£][value] [£][valuei], with no spaces (e.g.,
-rg_ellipse_center 1.0+2.0i). In RGELLIPSE, the closed Jordan curve I' is the boundary of
the region. The detail of T" is described in Section 2.4.1.
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Figure 1: RGELLIPSE and parameters
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Figure 2: RGINTERVAL and parameters for the general case (left), for an interval on the real axis
(center), and for an interval on the imaginary axis (right)

RGINTERVAL In RGINTERVAL, the region is defined as a rectangle [a,b] X [¢,d] on the
complex plane. To indicate the position of the rectangle, a,b,c, and d are set with the input
arguments of the RGIntervalSetEndpoints function. Figure 2 illustrates the region and pa-
rameters of RGINTERVAL. In EPSCISS, the eigenvalues (and corresponding eigenvectors) inside
the gray region are computed. In RGINTERVAL, the closed Jordan curve I' is the boundary
of the region, as shown in Figure 2. When ¢ = d = 0, EPSCISS computes the eigenvalues
(and corresponding eigenvectors) inside the interval [a,b] on the real axis. When a = b = 0,
EPSCISS computes the eigenvalues (and corresponding eigenvectors) inside the interval [¢, d] on
the imaginary axis. Figure 2 also illustrates the region of RGINTERVAL and the parameters for
the particular cases ¢ = d = 0 and a = b = 0. The quadrature points of EPSCISS are set on
segment L in these cases. The detail of the quadrature points is described in Section 2.4.1.

RGRING In RGRING, the region is defined as a partial ring on the complex plane. To indicate
the position and shape of the ring, the parameters for the center, radius, vertical scale (vscale),
start angle, end angle, and width are set with the input arguments of the RGRingSetParameters
function. The angles are provided in turns, i.e., a value ranging from 0.0 to 1.0 (1.0 means the
full circumference). The default values of the center, radius, and vertical scale are 0.0, 1.0,
and 1.0, respectively, and the default values of start_ang, end_ang, and width are 0.0, 1.0, and
0.5, respectively. Figure 3 illustrates the region and the parameters of RGRING. In EPSCISS, the
eigenvalues inside the gray region and the corresponding eigenvectors are computed. In RGRING,
the closed Jordan curve I' is the boundary of the region.

2.3 Setting parameters for EPSCISS

Users can set parameters in EPSCISS using the following 6 functions:

e EPSCISSSetSizes

o EPSCISSSetUseST

e EPSCISSSetQuadRule
e EPSCISSSetThreshold
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Figure 3: RGRING and parameters

e EPSCISSSetRefinement
e EPSCISSSetExtraction

The components of these functions indicate the input parameters for fine-tuning EPSCISS and
are described in the following subsections.

2.4 Input parameters in EPSCISS

Tables 1-6 show the input parameters of EPSCISSSetSizes, EPSCISSSetUseST, EPSCISSSetQuadRule,
EPSCISSSetThreshold, EPSCISSSetRefinement and EPSCISSSetExtraction, respectively.

In EPSCISS, the solutions of several linear systems are required. To solve linear systems,
preconditioner (PC) objects and Krylov Subspace Methods (KSP) objects in PETSc are used in
EPSCISS. Users can select PC objects and KSP objects as shown in Table 7.

In the following sections, the detail of the above parameters is discussed by describing the
algorithms of EPSCISS.

2.4.1 ip, bs, ms

To compute the eigenvalues (and corresponding eigenvectors) inside a specified region, a two-
step procedure is used in EPSCISS. The first step is to construct the subspace filtered for
eigenvectors, and the second step is to extract the eigenvalues (and corresponding eigenvectors)
inside the closed Jordan curve. The parameters ip, bs, and ms are used in the procedure for
constructing the subspace.

Let T be a positively oriented closed Jordan curve on the complex plane, and let Sk, k =

0,1,...,M — 1 be n x L matrices which are determined through the contour integration,
1 _
Sp=-— ¢ 2F(zB— A" BVdz, for k=0,1,...,M —1, (1)
2mi Jp

where zB — A is a regular matrix pencil on z € ', M is the moment size, and V is an n x L
matrix whose column vectors are linearly independent.
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Table 1: Input parameters of EPSCISSSetSizes

Input Description Condition Default Command line option

ip Number of integration ip > 0 andis 32 -eps_ciss_integration_points
points (V) an even value

bs Block size (L) bs >0 16 -eps_ciss_blocksize

ms Moment size (M) 0O<ms<ip 8 -eps_ciss_moments

npart Number of partitions npart > 1 1 -eps_ciss_partitions

bsmax Maximum block size bsmax > bs 128 -eps_ciss_maxblocksize

realmats A and B are real {true|false}  false -eps_ciss_realmats

Table 2: Input parameters of EPSCISSSetUseST

Input Description Condition Default Command line option
usest  Use the ST object or not  {true|false}  true -eps_ciss_usest

Table 3: Input parameters of EPSCISSSetQuadRule

Input Description Condition Command line option
quad  Quadrature  {EPS_CISS_QUADRULE_TRAPEZOIDAL| -eps_ciss_quadrule
rule EPS_CISS_QUADRULE_CHEBYSHEV}

Table 4: Input parameters of EPSCISSSetThreshold

Input Description Condition Default Command line option
delta  Threshold for numerical rank delta >0 107'2 -eps_ciss_delta
spur  Threshold to discard spuri- spur >0 1074 -eps_ciss_spurious_threshold

ous eigenpairs

Table 5: Input parameters of EPSCISSSetRefinement

Input Description Condition Default Command line option

inner Maximum refinement itera- inner >0 0 -eps_ciss_refine_inner
tion (inner loop)

blsize Maximum refinement itera- blsize >0 0 -eps_ciss_refine_blocksize
tion to increase block size

Table 6: Input parameters of EPSCISSSetExtraction

Input Description Condition Command line option
extraction Extraction {EPS_CISS_EXTRACTION_RITZ| -eps_ciss_extraction
technique EPS_CISS_EXTRACTION_HANKEL}

Table 7: Parameters for solving linear systems

Parameter Description Default Command line option
PC object  PC object for solving linear =~ PCLU -st_pc_type (usest = true)
systems -eps_ciss_pc_type (usest = false)
KSP object KSP object for solving linear KSPPREONLY -st_ksp_type (usest = true)
systems -eps_ciss_ksp_type (usest = false)
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Figure 4: Quadrature points and eigenvalues on the complex plane

To compute Eq. (1) numerically, an N-points trapezoidal quadrature rule is applied, that
is,

N
Sk~ Sk =Y wiCkX;, (2)
=0

where z;,(;, and w; are quadrature points, normalized quadrature points, and corresponding
weights, respectively, and X;, j = 0,1,..., N — 1 are the solutions of linear systems with
multiple right-hand side vectors,

(4B—A)X; =BV, j=0,1,...,N—1. (3)

EPSCISS uses a PC object and a KSP object to solve these linear systems. Users can select a PC
object and a KSP object, as shown in Table 7. EPSCISS constructs S = [50,5’1, .. SM 1] €
Cn*(EM) = Ag described in Figure 4, quadrature points are located on I', and EPSCISS computes
the eigenvalues located inside I' (blue cross marks). The components of Sy in the direction of
eigenvectors with eigenvalues outside I' are small.

The values of ip, bs, and ms in the input parameters of EPSCISS are the same as N, L, and
M in Eq. (1), respectively. The values of bs and ms provided by the user should be sufficiently
large for the method to work correctly: the value of bs should be greater than the maximum
multiplicity of eigenvalues inside the region, and bs * ms should be greater than the number of
eigenvalues inside the region.

2.4.2 npart
EPSCISS has the potential for hierarchical parallelism:

(I) Each region can be computed independently.
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Parallelism (I)
Utilize multiple
EPS objects of SLEPc
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Parallelism (III)
= Utilize KSP
object of PETSc
(sz — A)XJ = BV

Figure 5: Hierarchical parallelism of EPSCISS

(IT) Linear systems at each quadrature point can be solved independently.
(III) The linear systems in Eq. (3) can be computed in parallel.

Parallelism (I) can be implemented with multiple EPS objects of SLEPc, each of them having
different region parameters. Hence, users can manage Parallelism (I) themselves. Parallelism
(III) is implemented within the KSP object of PETSc. Finally, EPSCISS implements Parallelism
(IT) using MPI communicators in the EPS object. The above descriptions are illustrated in
Figure 5.

To implement Parallelism (IT), EPSCISS creates subcommunicators (from groups of the MPI
processes participating in the EPS object) and then assigns quadrature points to these sub-
communicators. Then, a copy of the matrices A and B is created redundantly in each of the
subcommunicators, enabling the simultaneous solution of linear systems in each subcommuni-
cator. The results of the linear systems are communicated from the subcommunicators to the
parent communicator. The number of subcommunicators can be set using npart. An example
of the above descriptions is illustrated in Figure 6.
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Figure 6: Example of Parallelism (IT) (#process = 8, ip = 8, and npart = 2)
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2.4.3 Dbsmax

To obtain good accuracy of eigenpairs, EPSCISS computes a stochastic estimation of the eigen-
value count. The estimated value is used for auto-tuning of the parameter bs.

Let m be the number of eigenvalues inside a specified region. The number of eigenvalues
inside the region m can be estimated by

N—
Z Z wytr( VTX
=0

where V' is an n X L matrix whose elements take the value 1 or —1 with equal probability, and
X, is the same as in Eq. (3). It is important to note that the accuracy of the estimation is
problem-dependent. The error could become arbitrarily large. To prevent the extreme increase
of bs, bsmax can be used to maintain bs < bsmax. The bsmax parameter can also be specified
indirectly via the ncv parameter in the EPSSetDimensions function. If users set the ncv
parameter, bsmax is set to ncv/ms. The ncv parameter can be set using -eps_ncv from the
command line.

2.4.4 realmats

When matrices A and B are real, and RGELLIPSE with a real center is used in EPSCISS, the
results of linear systems X; and Xy_1—j, (j =0,1,...,N/2 — 1) are a conjugate pair. Thus,
EPSCISS can reduce the computational cost by reusing the results of the linear systems. In this
case, users specify the realmats option to indicate that EPSCISS should use this property.

2.4.5 usest

If usest is true, the ST object in SLEPc is used for solving linear systems in Eq. (3). Using the
ST object, the memory usage associated with linear system solution is greatly reduced, since no
new KSP objects are created internally to EPSCISS. It is important to note that Parallelism (IT)
is not applicable (i.e., npart becomes 1) when usest is true.

2.4.6 quad

As explained in Section 2.4.1, EPSCISS applies an N-points trapezoidal rule as the quadrature
rule. Users can select the quadrature rule by setting quad in the EPSCISSSetQuadRule function.
If the “chebyshev” option is specified (EPS_CISS_QUADRULE_CHEBYSHEV), Chebyshev points are
used as quadrature points. It is important to note that the “chebyshev” option can be specified
when using RGINTERVAL with ¢ = d = 0, RGINTERVAL with a = b = 0, or RGRING.

2.4.7 delta

After constructing the subspace, EPSCISS extracts the eigenvalues inside the region using the
Rayleigh-Ritz approach.

— 10 —
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Let the singular value decomposition (SVD) of S = [S’o, Sy, SM_ﬂ € Cn*(LM) pe

S =Quwh,
where
Q=la1,9 -, qun] €CY, B =diag(or, 02, oLM),
01>02>...>20LM, W e CLMx=LM

To refine the approximation of the eigenpairs, EPSCISS omits singular values less than ¢ and
constructs Q = [q,qs, - - -, qx] € C*E where K > m, and ok > 010 > 0x+1. The parameter
delta is the same as the threshold ¢.

2.4.8 spur

EPSCISS computes all eigenvalues of the small eigenvalue problem
(C%QHBQ - QHAQ)ul = 03 QHAQ7QHBQ € CKXK)

where «; is the eigenvalue of the matrix pencil aiQAHBQA - QHAQ and wu; is the eigenvector
corresponding to «;. Then the eigenvalues of the matrix pencil A — AB are given by \; = «;,
and the corresponding eigenvectors are given by x; = Qui fori=1,2,..., K.

Some of the approximated eigenvalues may lie outside the region. EPSCISS keeps the eigen-
value )\; inside the region for i = 1,2, ..., m, where m is the number of approximated eigenvalues
inside the region, and discards the rest.

Spurious eigenvalues may be contained in the approximated eigenvalues. EPSCISS removes
the eigenvalues with res; > 7 inside I' as spurious eigenvalues, where res; is the relative residual
norm for the eigenpairs (\;, ;). The spur parameter is the same as the threshold 7.

2.4.9 inner

To obtain eigenpairs with good accuracy, EPSCISS applies three types of recurrence refinements
as described below. It is important to note that these recurrence refinements are the aids for
improving accuracy. To improve the accuracy of eigenpairs clearly, it is recommended that users
change the parameters ip, bs, and ms instead of inner, blsize, and maxit.

Let S,(CT) be the rth refinement of S‘k,
S = F8Y k=0,1,...,M—1,

where Fj, = Zé\’:o wjgjl?(sz — A)7'B. When r > 0, the components of 5',(:) in the di-
rection of eigenvectors with eigenvalues outside I' are smaller than Sj. EPSCISS constructs

S = [S}S’"), .SA'Y)7 . gf\}ll] and extracts eigenpairs. The refinement is terminated if the smallest

singular value of S becomes sufficiently small with a threshold of ¢ or the iteration number
r becomes inner.
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2.4.10 Number of outer iterations

In case some residuals of the approximated eigenpairs are not small enough for a given tolerance,
EPSCISS can improve the resulting approximate eigenpairs by setting V' as

V= [121,332,...,wm]0

where C' € R™*L the elements of which are given by random numbers, and x1, o, ..., T are
the approximated eigenvectors inside the region. After setting V', EPSCISS reconstructs Sy, and
extracts eigenpairs again. The refinement is terminated if the largest residual of the approxi-
mated eigenpairs becomes sufficiently small with a given tolerance tol in the EPSSetTolerances
function. The refinement is also terminated if the iteration number becomes maxit in the
EPSSetTolerances function. The tol and maxit parameters can be set using -eps_tol and
-eps_max_it from the command line.

2.4.11 Dblsize

Section 2.4.3 describes how EPSCISS may increase the value of L by estimating the number of
eigenvalues inside I'. EPSCISS can also perform additional increasing of L iteratively, as follows.
Let H € CEMXEM he the block Hankel matrix,

TO T1 PR TM_1
T, T, ... Ty
H = :
T]\/[—l TM e TQM_Q

where T}, = V1S, € CL*L. The smallest singular value of H becomes small when LM is greater
than the number of eigenvalues inside I'. If the smallest singular value of H is not sufficiently
small, EPSCISS increases L and constructs H iteratively. The refinement is terminated if the
smallest singular value of H becomes sufficiently small with a threshold of §, or the iteration
number becomes blsize.

The flowchart of the three types of recurrence refinement is shown in Figure 7.

2.4.12 extraction

After constructing the subspace, EPSCISS extracts the eigenvalues inside the region. In Section
2.4.7, EPSCISS uses the Rayleigh-Ritz approach for extracting eigenvalues. EPSCISS can also
extract the eigenvalues inside the region using the block Hankel matrix. Users can specify the
extraction technique using extraction in the EPSCISSSetExtraction function. The default
value of extraction is “ritz” (EPS_CISS_EXTRACTION_RITZ). If the “hankel” option is spec-
ified (EPS_CISS_EXTRACTION_HANKEL), then a block Hankel matrix is used as the extraction
technique. This section describes the extraction technique using the block Hankel matrix.
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Figure 7: The recurrence refinement part of the flowchart of the EPSCISS algorithm using the
Rayleigh-Ritz approach

Let H, H< € CIMXEM he the block Hankel matrices,

To T v Thq T T . T
" T ... Tu T Ty ... T
H = : o : , H-= . : , : ;
Tv-1 Ty ... Top—2 Ty Ty - Tomr—

where T}, = V1S, € CL*L | and let the singular values of H be
01,02,...,00LM, 012022 ...20LM-

To refine the approximation of eigenpairs, EPSCISS omits singular values less than § and con-
structs H = H(1: K,1: K) and H< = H<(1: K,1: K), where K is greater than the number
of eigenvalues inside " and o > 016 > 0k 11. The parameter delta is the same as threshold
0 in Section 2.4.7.

13 —
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Figure 8: The recurrence refinement part of the flowchart of the EPSCISS algorithm using a
block Hankel matrix

EPSCISS computes all eigenvalues of the small eigenvalue problem
(;H — H)u; =0, H, H< e CK*XK,

where q; is the eigenvalue of the matrix pencil oy H — H< and w; is the eigenvector corresponding
to ;. Then the eigenvalues of the matrix pencil A — AB are given by \; = «;, and the
corresponding eigenvectors are given by x; = 5’(:, 1:K)u; fori=1,2,..., K.

Some of the approximated eigenvalues may lie outside the region. EPSCISS keeps the eigen-
value )\; inside the region for i = 1,2, ..., m, where m is the number of approximated eigenvalues
inside the region, and discards the rest.

Spurious eigenvalues may be contained in the approximated eigenvalues. EPSCISS removes
the eigenvalues with res; > 7 inside I' as spurious eigenvalues, where res; is a relative residual
for the eigenpairs (\;, x;). spur is the same as threshold 7 in Section 2.4.8.

To obtain good accuracy of eigenpairs, EPSCISS using a block Hankel matrix applies two
types of recurrence refinement, as described in Section 2.4.10 and Section 2.4.11. The inner
loop does not apply in this case because S is not constructed in EPSCISS using a block Hankel
matrix. The flowchart of the two types of recurrence refinement is shown in Figure 8. It is
important to note that these recurrence refinements are aids for improving good accuracy. To
improve the accuracy properly, it is recommended that users change the parameters ip, bs, and
ms instead of maxit, and blsize.
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3 Utilization of CISS for linear problems with real scalars

The description of Section 2 assumes that users should build the complex version of PETSc for
utilizing EPSCISS. When matrices A and B are real symmetric and B is positive-definite (i.e.,
all eigenvalues are real), users can also utilize EPSCISS by building the real version of PETSc.

3.1 Setting the region object in real-type-EPSCISS
In real-type-EPSCISS, two types of regions can be used: RGINTERVAL and RGELLIPSE.

RGINTERVAL In RGINTERVAL, the region is defined as an interval [a, b] on the real axis. To
indicate the position, a and b are set with the input arguments of the RGIntervalSetEndpoints
function. The complex values ¢ and d in the RGIntervalSetEndpoints function are not used
in this case. Figure 9 illustrates the region and the parameters of RGINTERVAL. In real-type-
EPSCISS, all eigenvalues (and the corresponding eigenvectors) inside the interval [a, b] are com-
puted. The quadrature points of EPSCISS are set on the interval [a,b]. The detail of the
quadrature points is described in Sections 2.4.1 and 2.4.6.

L

J J
)i 1.7
a
Real b

Figure 9: RGINTERVAL and parameters in real-type-EPSCISS

RGELLIPSE In RGELLIPSE, the region is defined as an ellipse on the complex plane. To indi-
cate the position, the center and radius are set with the input arguments of the RGE1lipseSet-
Parameters function. The vscale parameter in the RGE1lipseSetParameters function is not
used in real-type-EPSCISS. The default values of the center and radius are 0.0 and 1.0, re-
spectively. Figure 10 illustrates the region and the parameters of RGELLIPSE. In real-type-
EPSCISS, all eigenvalues (and the corresponding eigenvectors) inside the interval [center —
radius, center + radius] are computed. The quadrature points of EPSCISS are set on the in-
terval [center — radius, center + radius]. The detail of the quadrature points is described in
Sections 2.4.1 and 2.4.6.

‘ center ‘

‘ Rgal

radius

Figure 10: RGELLIPSE and parameters in real-type-EPSCISS

— 15 —
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3.2 Setting parameters for real-type-EPSCISS

Users can set parameters in real-type-EPSCISS in the same way as that in complex-type-EPSCISS
in Section 2.3. However, the parameter realmats is not used in real-type-EPSCISS.

4 Utilization of CISS for nonlinear eigenvalue problems

CISS for nonlinear eigenvalue problems is embedded in the NEP object of SLEPc (NEPCISS).
NEPCISS solves nonlinear eigenvalue problems such as F'(A)x = 0. Users can select the solver in
the NEP object using the NEPSetType function (or -nep_type from the command line). When
selecting NEPCISS, users should also set a region object (RG) to the NEP object using the NEPSetRG
function (or -rg_type from the command line). The following is one example of running an
executable with NEPCISS:

$ mpirun -np (#process) ./(executable) -nep_type ciss -rg_type ellipse

4.1 Setting the region object in NEPCISS

NEPCISS computes all eigenvalues (and corresponding eigenvectors) inside a specified region.
Two types of regions can be used in NEPCISS: RGELLIPSE and RGINTERVAL. The parameters of
RGELLIPSE and RGINTERVAL are the same as the parameters described in Section 2.2.

4.2 Setting parameters for NEPCISS

Users can set parameters in NEPCISS using the following three functions:

e NEPCISSSetSizes
e NEPCISSSetThreshold
o NEPCISSSetRefinement

The components of these functions indicate the input parameters for fine-tuning NEPCISS.
Tables 8, 9, 10 show the input parameters of NEPCISSSetSizes, NEPCISSSetThreshold and
NEPCISSSetRefinement, respectively.

All parameters of NEPCISS are the same as the parameters of EPSCISS, as described in
Section 2.3. In NEPCISS, the block Hankel matrix is used as an extraction technique, as described
in Section 2.4.12. The Rayleigh-Ritz approach cannot be used with NEPCISS. The difference in
the algorithms between EPSCISS and NEPCISS is the procedure for constructing the subspace.
In the procedure for constructing the subspace, NEPCISS solves the following linear systems
with multiple right-hand side vectors instead of Eq. (3),

F(Zj)Xj:F/(Zj)V, j:(),].,...,N—].,
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Table 8: Input parameters of NEPCISSSetSizes

Input Description Condition Default Command line option
ip Number of integration ip > 0 and is 32 -nep_ciss_integration_points
points an even value
bs Block size bs >0 16 -nep_ciss_blocksize
ms Moments size O<ms<ip 8 -nep_ciss_moments
npart Number of partitions npart > 1 1 -nep_ciss_partitions
bsmax Maximum block size bsmax > bs 128 -nep_ciss_maxblocksize
realmats F'(z) is real for real z  {true|false}  false -nep_ciss_realmats
Table 9: Input parameters of NEPCISSSetThreshold

Input Description Condition Default Command line option
delta  Threshold for numerical rank delta >0 107!?  -nep_ciss_delta
spur  Threshold to discard spuri- spur >0 107% -nep_ciss_spurious_threshold

ous eigenpairs

Table 10: Input parameters of NEPCISSSetRefinement

Input Description Condition Default Command line option
inner Maximum refinement itera- inner >0 0 -nep_ciss_refine_inner

tion (inner loop)
blsize Maximum refinement itera- blsize >0 0 -nep_ciss_refine_blocksize

tion to increase block size

17—
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where F(z) is the matrix function that satisfies F(A)z = 0, and

dF (2)

F'(z) = —

Z=zj

Users set the matrix function F'(z) and F’(z) using NEPSetSplitOperator or NEPSetFunction
and NEPSetJacobian functions. To solve linear systems, PC objects and KSP objects in PETSc
are used in NEPCISS. Users can select PC objects and KSP objects as shown in Table 7, with the
prefix -nep_ciss instead of -eps_ciss.
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