
Departamento de
Sistemas Informáticos

y Computación

Technical Report DSIC-II/24/02

SLEPc Users Manual
Scalable Library for Eigenvalue Problem Computations

http://www.grycap.upv.es/slepc

Vicente Hernández
José E. Román
Andrés Tomás
Vicent Vidal

To be used with slepc 2.3.3
June, 2007

http://www.grycap.upv.es/slepc

Abstract

This document describes slepc, the Scalable Library for Eigenvalue Problem Computations, a
software package for the solution of large sparse eigenproblems on parallel computers. It can
be used for the solution of problems formulated in either standard or generalized form, as well
as other related problems such as the singular value decomposition. slepc is a general library
in the sense that it covers both Hermitian and non-Hermitian problems, with either real or
complex arithmetic.

The emphasis of the software is on methods and techniques appropriate for problems in which
the associated matrices are large and sparse, for example, those arising after the discretization
of partial differential equations. Therefore, most of the methods offered by the library are
projection methods such as Arnoldi, Lanczos or Subspace Iteration. In addition to its own
solvers, slepc provides transparent access to some external software packages such as arpack.
These packages are optional and their installation is not required to use slepc. See section 5.5
for details. Apart from eigensolvers and SVD solvers, slepc also provides built-in support for
spectral transformations such as shift-and-invert.

slepc is built on top of petsc, the Portable, Extensible Toolkit for Scientific Computation
[Balay et al., 2007]. It can be considered an extension of petsc providing all the functionality
necessary for the solution of eigenvalue problems. This means that petsc must be previously
installed in order to use slepc. petsc users will find slepc very easy to use, since it enforces
the same programming paradigm. Those readers that are not acquainted with petsc are highly
recommended to familiarize with it before proceeding with slepc.

How to get slepc

All the information related to slepc can be found at the following web site:

http://www.grycap.upv.es/slepc.

The distribution file is available for download at this site. Other information is provided there,
such as installation instructions and contact information. Instructions for installing the software
can also be found in section 1.2 of this document.

petsc can be downloaded from http://www.mcs.anl.gov/petsc. petsc is supported, and
information on contacting support can be found at that site.

Additional Documentation

This manual provides a general description of slepc. In addition, manual pages for individual
routines are included in the distribution file in hypertext format, and are also available on-line at
http://www.grycap.upv.es/slepc/document.htm. These manual pages provide hyperlinked
indices to the source code and enable easy movement among related topics. Finally, there are
also several hands-on exercises available, which are intended to learn the basic concepts easily.

i

http://www.grycap.upv.es/slepc
http://www.mcs.anl.gov/petsc
http://www.grycap.upv.es/slepc/document.htm

How to Read this Manual

Users that are already familiar with petsc can read chapter 1 very fast. Section 2.1 provides
a brief overview of eigenproblems and the general concepts used by eigensolvers, so it can be
skipped by experienced users. Chapters 2, 3 and 4 describe the main slepc functionality, and
include an advanced usage section that can be skipped at a first reading. Finally, chapter 5
contains less important, additional information.

slepc Technical Reports

The information contained in this manual is complemented by a set of Technical Reports, which
provide technical details that normal users typically do not need to know but may be useful
for experts in order to identify the particular method implemented in slepc. These reports are
not included in the slepc distribution file but can be accessed via the slepc web site. A list of
available reports is included at the end of the Bibliography.

Acknowledgments

We thank all the petsc team for their help and support. We also thank Osni Marques and
Tony Drummond for helping us raise awareness of slepc in the context of the ACTS project.

The initial development of slepc was partially funded by the Science and Technology Of-
fice of the Valencian Regional Government under grant number CTIDB/2002/54. Additional
funding is listed below:

• Directorate of Research and Technology Transfer, Valencian Regional Administration,
grant number GV06/091, PI: Jose E. Roman.

Conditions of Use

This software is provided ’as is’, with absolutely no warranty, expressed or implied. Any use is at your
own risk. In no event will the authors be liable for any direct or indirect damages arising in any way
out of the use of this software.

The user will acknowledge (using reference [1]) the contribution of the software in any publication of
material dependent on its use.

The user can modify the code but at no time will the right or title to all or any part of this software pass
to the user. A modified version of the software cannot be redistributed. The software (or a modified
version) may not be sold.

This software is free for academic and research use. This means that a person working in an academic
or research institution such as a university or a government laboratory can use the software without
formally requiring a license.

For commercial use, it is necessary to sign a software license agreement. This includes all users working
for a private company, even if the software is going to be used only for in-house research activities. A
reasonable testing period is allowed before asking for the license.

[1] V. Hernandez, J. E. Roman and V. Vidal (2005), SLEPc: A Scalable and Flexible Toolkit for the
Solution of Eigenvalue Problems, ACM Trans. Math. Softw. 31(3), 351-362.

ii

Contents

1 Getting Started 1
1.1 SLEPc and PETSc . 2
1.2 Installation . 4
1.3 Running SLEPc Programs . 6
1.4 Writing SLEPc Programs . 7

1.4.1 Simple SLEPc Example . 8
1.4.2 Writing Application Codes with SLEPc 12

2 EPS: Eigenvalue Problem Solver 13
2.1 Eigenvalue Problems . 13
2.2 Basic Usage . 15
2.3 Defining the Problem . 18
2.4 Selecting the Eigensolver . 19
2.5 Retrieving the Solution . 21

2.5.1 The Computed Solution . 21
2.5.2 Reliability of the Computed Solution . 23
2.5.3 Controlling and Monitoring Convergence 24

2.6 Advanced Usage . 24
2.6.1 Initial Vectors . 24
2.6.2 Dealing with Deflation Subspaces . 25
2.6.3 Orthogonalization . 26

3 ST: Spectral Transformation 27
3.1 General Description . 27
3.2 Basic Usage . 28
3.3 Available Transformations . 28

3.3.1 Shift of Origin . 29
3.3.2 Spectrum Folding . 30
3.3.3 Shift-and-invert . 31

iii

3.3.4 Cayley . 32
3.4 Advanced Usage . 33

3.4.1 Solution of Linear Systems . 33
3.4.2 Explicit Computation of Coefficient Matrix 34
3.4.3 Preserving the Symmetry in Generalized Eigenproblems 36
3.4.4 Purification of Eigenvectors . 36

4 SVD: Singular Value Decomposition 39
4.1 The Singular Value Decomposition . 39
4.2 Basic Usage . 42
4.3 Defining the Problem . 43
4.4 Selecting the SVD Solver . 44
4.5 Retrieving the Solution . 46

5 Additional Information 49
5.1 Supported PETSc Features . 49
5.2 Supported Matrix Types . 50
5.3 Extending SLEPc . 51
5.4 Directory Structure . 52
5.5 Wrappers to External Libraries . 53
5.6 Fortran Interface . 57

Bibliography 61

Index 65

Chapter 1

Getting Started

slepc, the Scalable Library for Eigenvalue Problem Computations, is a software library for the
solution of large sparse eigenvalue problems on parallel computers.

Together with linear systems of equations, eigenvalue problems are a very important class
of linear algebra problems. The need for the numerical solution of these problems arises in
many situations in science and engineering, in problems associated with stability and vibration
analysis in practical applications. These are usually formulated as large sparse eigenproblems.

Computing eigenvalues is essentially more difficult than solving linear systems of equations.
This has resulted in a very active research activity in the area of computational methods for
eigenvalue problems in the last years, with many remarkable achievements. However, these
state-of-the-art methods and algorithms are not easily transferred to the scientific community,
and, apart from a few exceptions, most user still rely on simpler, well-established techniques.

The reasons for this situation are diverse. First, new methods are increasingly complex and
difficult to implement and therefore robust implementations must be provided by computational
specialists, for example as software libraries. The development of such libraries requires to invest
a lot of effort but sometimes they do not reach normal users due to a lack of awareness.

In the case of eigenproblems, using libraries is not straightforward. It is usually recom-
mended that the user understands how the underlying algorithm works and typically the prob-
lem is successfully solved only after several cycles of testing and parameter tuning. Methods are
often specific for a certain class of eigenproblems (e.g. complex symmetric) and this leads to an
explosion of available algorithms from which the user has to choose. Not all these algorithms
are available in the form of software libraries, even less frequently with parallel capabilities.

Another difficulty resides in how to represent the operator matrix. Unlike in dense methods,
there is no widely accepted standard for basic sparse operations in the spirit of blas. This is due
to the fact that sparse storage is more complicated, admitting of more variation, and therefore

1

1.1. SLEPc and PETSc Chapter 1. Getting Started

less standardized. For this reason, sparse libraries have an added level of complexity. This
holds even more so in the case of parallel distributed-memory programming, where the data of
the problem have to be distributed across the available processors.

The first implementations of algorithms for sparse matrices required a prescribed storage
format for the sparse matrix, which is an obvious limitation. An alternative way of matrix
representation is by means of a user-provided subroutine for the matrix-vector product. Apart
from being format-independent this solution allows to solve problems in which the matrix is
not available explicitly. The drawback is the restriction to a fixed-prototype subroutine.

A better solution for the matrix representation problem is the well-known reverse commu-
nication interface, a technique that allows to implement iterative methods disregarding the
implementation details of various operations. Whenever the iterative method subroutine needs
the results of one of the operations, it returns control to the user’s subroutine that called it. The
user’s subroutine then invokes the module that performs the operation. The iterative method
subroutine is invoked again with the results of the operation.

Several libraries with any of the interface schemes mentioned above are publicly available.
For a survey of such software see the slepc Technical Report [STR-6], “A Survey of Software
for Sparse Eigenvalue Problems”, and references therein. Some of the most recent libraries are
even prepared for parallel execution (some of them can be used from within slepc, see section
5.5). However, they still lack some flexibility or require too much programming effort from the
user.

A further obstacle appears when these libraries have to be used in the context of large
software projects carried out by inter-disciplinary teams. In this scenery, libraries must be able
to interoperate with already existing software and with other libraries. In order to cope with
the complexity associated with such projects, libraries must be designed carefully in order to
overcome hurdles such as different storage formats or programming languages. In the case of
parallel software, care must be taken also to achieve portability to a wide range of platforms
with good performance and still retain flexibility and usability.

1.1 SLEPc and PETSc

The slepc library is an attempt to provide a solution to the situation described in the previous
paragraphs. It is intended to be a general library for the solution of eigenvalue problems that
arise in different contexts, covering standard and generalized problems, both Hermitian and non-
Hermitian, with either real or complex arithmetic. Issues such as usability, portability, efficiency
and interoperability are addressed, and special emphasis is put on flexibility, providing data-
structure neutral implementations and multitude of run-time options. slepc offers a growing
number of eigensolvers as well as interfaces to integrate well-established eigenvalue packages
such as arpack. In addition, a specific module for SVD computation is included as well.

slepc is based on petsc, the Portable, Extensible Toolkit for Scientific Computation [Balay
et al., 2007], and, therefore, a large percentage of the software complexity is avoided since many
petsc developments are leveraged, including matrix storage formats and linear solvers, to name

— 2 —

Chapter 1. Getting Started 1.1. SLEPc and PETSc

a few. slepc focuses on high level features for eigenproblems, structured around a few object
types as described below.

petsc uses modern programming paradigms to ease the development of large-scale scientific
application codes in Fortran, C, and C++ and provides a powerful set of tools for the numerical
solution of partial differential equations and related problems on high-performance computers.
Its approach is to encapsulate mathematical algorithms using object-oriented programming
techniques, which allow to manage the complexity of efficient numerical message-passing codes.
All the petsc software is free and used around the world in a variety of application areas.

The design philosophy is not to try to completely conceal parallelism from the application
programmer. Rather, the user initiates a combination of sequential and parallel phases of com-
putations, but the library handles the detailed message passing required during the coordination
of computations. Some of the design principles are described in [Balay et al., 1997].

petsc is built around a variety of data structures and algorithmic objects. The application
programmer works directly with these objects rather than concentrating on the underlying data
structures. Each component manipulates a particular family of objects (for instance, vectors)
and the operations one would like to perform on the objects. The three basic abstract data
objects are index sets, vectors and matrices. Built on top of this foundation are various classes of
solver objects, which encapsulate virtually all information regarding the solution procedure for
a particular class of problems, including the local state and various options such as convergence
tolerances, etc.

slepc can be considered an extension of petsc providing all the functionality necessary for
the solution of eigenvalue problems. Figure 1.1 shows a diagram of all the different objects
included in petsc (on the left) and those added by slepc (on the right). petsc is a prerequisite
for slepc and users should be familiar with basic concepts such as vectors and matrices in
order to use slepc. Therefore, together with this manual we recommend to use the petsc
Users Manual [Balay et al., 2007].

Each of these components consists of an abstract interface (simply a set of calling sequences)
and one or more implementations using particular data structures. Both petsc and slepc are
written in C, which lacks direct support for object-oriented programming. However, it is still
possible to take advantage of the three basic principles of object-oriented programming to
manage the complexity of such a large package. petsc uses data encapsulation in both vector
and matrix data objects. Application code accesses data through function calls. Also, all the
operations are supported through polymorphism. The user calls a generic interface routine,
which then selects the underlying routine that handles the particular data structure. Finally,
petsc also uses inheritance in its design. All the objects are derived from an abstract base
object. From this fundamental object, an abstract base object is defined for each petsc object
(Mat, Vec and so on), which in turn has a variety of instantiations that, for example, implement
different matrix storage formats.

petsc/slepc provide clean and effective codes for the various phases of solving PDEs, with
a uniform approach for each class of problems. This design enables easy comparison and use of
different algorithms (for example, to experiment with different Krylov subspace methods, pre-
conditioners, or eigensolvers). Hence, petsc, together with slepc, provide a rich environment

— 3 —

1.2. Installation Chapter 1. Getting Started

PETSc

Vectors

Index Sets

Indices Block Indices Stride Other

Matrices

Compressed
Sparse Row (AIJ)

Block Compressed
Sparse Row (BAIJ)

Block Diagonal
(BDIAG) Dense Other

Preconditioners

Additive
Schwarz

Block
Jacobi

Jacobi ILU ICC LU Other

Krylov Subspace Methods

GMRES CG CGS Bi-CGStab TFQMR Richardson Chebychev Other

Nonlinear Systems

Line
Search

Trust
Region

Other

Time Steppers

Euler
Backward

Euler

Pseudo Time
Stepping

Other

SLEPc
SVD Solvers

Cross
Product

Cyclic
Matrix

Lanczos
Thick Res.
Lanczos

Eigensolvers

Krylov-Schur Arnoldi Lanczos Other

Spectral Transform

Shift Shift-and-invert Cayley Fold

Figure 1.1: Numerical components of petsc and slepc.

for modeling scientific applications as well as for rapid algorithm design and prototyping.
Options can be specified by means of calls to subroutines in the source code and also as

command-line arguments. Runtime options allow the user to test different tolerances, for exam-
ple, without having to recompile the program. Also, since petsc provides a uniform interface
to all of its linear solvers —the Conjugate Gradient, GMRES, etc.— and a large family of
preconditioners —block Jacobi, overlapping additive Schwarz, etc.—, one can compare several
combinations of method and preconditioner by simply specifying them at execution time. slepc
shares this good property.

The components enable easy customization and extension of both algorithms and imple-
mentations. This approach promotes code reuse and flexibility, and separates the issues of
parallelism from the choice of algorithms. The petsc infrastructure creates a foundation for
building large-scale applications.

1.2 Installation

This section gives an overview of the installation procedure. For full up-to-date installation
instructions see http://www.grycap.upv.es/slepc/install.htm.

Previously to the installation of slepc, the system must have an appropriate version of petsc
installed. Table 1.1 shows a list of slepc versions and their corresponding petsc versions. slepc

— 4 —

http://www.grycap.upv.es/slepc/install.htm

Chapter 1. Getting Started 1.2. Installation

slepc version petsc versions Major Release date
2.1.0 2.1.0 ? Not released
2.1.1 2.1.1, 2.1.2, 2.1.3 Dec 2002
2.1.5 2.1.5, 2.1.6 May 2003
2.2.0 2.2.0 ? Apr 2004
2.2.1 2.2.1 ? Aug 2004
2.3.0 2.3.0 ? Jun 2005
2.3.1 2.3.1 Mar 2006
2.3.2 2.3.1, 2.3.2 ? Oct 2006
2.3.3 2.3.3 ? Jun 2007

Table 1.1: Correspondence between slepc and petsc releases.

versions marked as major releases are those which incorporate some new functionality. The rest
are just adaptations required for a new petsc release and may also include bug fixes.

The installation process for slepc is very similar to petsc, with two stages: configuration
and compilation. slepc configuration is much simpler because most of the configuration in-
formation is taken from petsc, including compiler options and scalar type (real or complex).
Several configurations can coexist in the same directory tree, being referred by different values
of PETSC_ARCH, so that one can, for instance, have a slepc compiled with real scalars and
another one with complex scalars.

The main steps for the installation are described next. Note that prior to this steps, optional
packages must have been installed. If any of these packages is installed afterwards, reconfigura-
tion and recompilation is necessary. Refer to http://www.grycap.upv.es/slepc/install.htm
or to section 5.5 for details about installation of some of these packages.

1. Unbundle the distribution file with gunzip -c slepc.tgz | tar xvf - or an equivalent
command. This will create a directory and unpack the software there.

2. Refer to http://www.grycap.upv.es/slepc/download.htm for available patches to the
latest slepc release.

3. Set the environment variable SLEPC_DIR to the full path of the slepc home directory, for
example,

setenv SLEPC_DIR /home/username/slepc-2.3.x

In addition to this variable, PETSC_DIR (and optionally PETSC_ARCH) must also be set
appropriately.

4. In the slepc directory, execute

./config/configure.py

— 5 —

http://www.grycap.upv.es/slepc/install.htm
http://www.grycap.upv.es/slepc/download.htm

1.3. Running SLEPc Programs Chapter 1. Getting Started

Note that in order to enable external packages (see subsection 5.5), this command must be
run with appropriate options. To see all the available options use ./config/configure.py
--help.

5. In the slepc home directory, type

make

6. Optionally, if an installation directory has been specified during configuration (with option
--prefix in step 4 above), then type

make install

This is useful for building as a regular user and then copying the libraries and include
files to the system directories as root.

7. If the installation went smoothly, then try running some test examples with

make test

Examine the output for any obvious errors or problems.

Note about complex scalar versions: petsc supports the use of complex scalars by
defining the data type PetscScalar either as a real or complex number. This implies that two
different versions of the petsc libraries can be built separately, one for real numbers and one
for complex numbers, but they cannot be used at the same time. slepc inherits this property.
In slepc it is not possible to completely separate real numbers and complex numbers because
the solution of non-symmetric real-valued eigenvalue problems may be complex. slepc has
been designed trying to provide a uniform interface to manage all the possible cases. However,
there are slight differences between the interface in each of the two versions. In this manual,
differences are clearly identified.

1.3 Running SLEPc Programs

Before using slepc, the user must first set the environment variable SLEPC_DIR, indicating the
full path of the directory in which slepc has been installed. For example, under the UNIX C
shell a command of the form

setenv SLEPC_DIR /software/slepc

can be placed in the user’s .cshrc file. In addition, the user must set the environment variable
required by petsc, that is, PETSC_DIR, to indicate the full path of the petsc installation.
Optionally, the variable PETSC_ARCH can be set to specify a particular architecture and set of
options.

All petsc programs use the MPI (Message Passing Interface) standard for message-passing
communication [MPI Forum, 1994]. Thus, to execute slepc programs, users must know the

— 6 —

Chapter 1. Getting Started 1.4. Writing SLEPc Programs

procedure for launching MPI jobs on their selected computer system(s). For instance, when
using the mpich implementation of MPI and many others, the mpirun command can be used
to initiate a program as in the following example that uses eight processes:

mpirun -np 8 slepc_program [command-line options]

In MPI-2 compliant systems, the command mpiexec can be used instead. Note that MPI may
be deactivated during configuration of PETSc, if one wants to run only serial programs in a
laptop, for example.

All petsc-compliant programs support the use of the -h or -help option as well as the
-v or -version option. In the case of slepc programs, specific information for slepc is also
displayed.

1.4 Writing SLEPc Programs

Most slepc programs begin with a call to SlepcInitialize

SlepcInitialize(int *argc,char ***argv,char *file,char *help);

which initializes slepc, petsc and MPI. This subroutine is very similar to PetscInitial-
ize, and the arguments have the same meaning. In fact, internally SlepcInitialize calls
PetscInitialize.

After this initialization, slepc programs can use communicators defined by petsc. In most
cases users can employ the communicator PETSC_COMM_WORLD to indicate all processes in a given
run and PETSC_COMM_SELF to indicate a single process. MPI provides routines for generating
new communicators consisting of subsets of processes, though most users rarely need to use
these features. slepc users need not program much message passing directly with MPI, but
they must be familiar with the basic concepts of message passing and distributed memory
computing.

All slepc programs should call SlepcFinalize as their final (or nearly final) statement

ierr = SlepcFinalize();

This routine handles options to be called at the conclusion of the program, and calls PetscFi-
nalize if SlepcInitialize began petsc.

Note to Fortran Programmers: In this manual all the examples and calling sequences
are given for the C/C++ programming languages. However, Fortran programmers can use most
of the functionality of slepc and petsc from Fortran, with only minor differences in the user
interface. For instance, the two functions mentioned above have their corresponding Fortran
equivalent:

call SlepcInitialize(file,ierr)

call SlepcFinalize(ierr)

Section 5.6 provides a summary of the differences between using slepc from Fortran and
C/C++, as well as a complete Fortran example.

— 7 —

1.4. Writing SLEPc Programs Chapter 1. Getting Started

1.4.1 Simple SLEPc Example

A simple example is listed next that solves an eigenvalue problem associated with the one-
dimensional Laplacian operator discretized with finite differences. This example can be found
in ${SLEPC_DIR}/src/examples/ex1.c. Following the code we highlight a few of the most
important parts of this example.

/*
- -

SLEPc - Scalable Library for Eigenvalue Problem Computations
Copyright (c) 2002-2007, Universidad Politecnica de Valencia, Spain

5

This file is part of SLEPc. See the README file for conditions of use
and additional information.

- -
*/

10

static char help[] = "Standard symmetric eigenproblem corresponding to the Laplacian operator in 1 dimension.\n\n"
"The command line options are:\n"
" -n <n>, where <n> = number of grid subdivisions = matrix dimension.\n\n";

15 #include "slepceps.h"

#undef __FUNCT__
#define __FUNCT__ "main"
int main(int argc, char **argv)

20 {
Mat A; /* operator matrix */
EPS eps; /* eigenproblem solver context */
EPSType type;
PetscReal error, tol,re, im;

25 PetscScalar kr, ki;
Vec xr, xi;
PetscErrorCode ierr;
PetscInt n=30, i, Istart, Iend, col[3];
int nev, maxit,its, nconv;

30 PetscTruth FirstBlock=PETSC_FALSE, LastBlock=PETSC_FALSE;
PetscScalar value[3];

SlepcInitialize(&argc,&argv,(char*)0,help);

35 ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD,"\n1-D Laplacian Eigenproblem, n=%d\n\n",n);CHKERRQ(ierr);

/* -
Compute the operator matrix that defines the eigensystem, Ax=kx

40 - */

ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n);CHKERRQ(ierr);
ierr = MatSetFromOptions(A);CHKERRQ(ierr);

45

ierr = MatGetOwnershipRange(A,&Istart,&Iend);CHKERRQ(ierr);
if (Istart==0) FirstBlock=PETSC_TRUE;
if (Iend==n) LastBlock=PETSC_TRUE;
value[0]=-1.0; value[1]=2.0; value[2]=-1.0;

50 for(i=(FirstBlock? Istart+1: Istart); i<(LastBlock? Iend-1: Iend); i++) {
col[0]=i-1; col[1]=i; col[2]=i+1;
ierr = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);

}
if (LastBlock) {

55 i=n-1; col[0]=n-2; col[1]=n-1;

— 8 —

Chapter 1. Getting Started 1.4. Writing SLEPc Programs

ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
}
if (FirstBlock) {

i=0; col[0]=0; col[1]=1; value[0]=2.0; value[1]=-1.0;
60 ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);

}

ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

65

ierr = MatGetVecs(A,PETSC_NULL,&xr);CHKERRQ(ierr);
ierr = MatGetVecs(A,PETSC_NULL,&xi);CHKERRQ(ierr);

/* -
70 Create the eigensolver and set various options

- */
/*

Create eigensolver context
*/

75 ierr = EPSCreate(PETSC_COMM_WORLD,&eps);CHKERRQ(ierr);

/*
Set operators. In this case, it is a standard eigenvalue problem

*/
80 ierr = EPSSetOperators(eps,A,PETSC_NULL);CHKERRQ(ierr);

ierr = EPSSetProblemType(eps,EPS_HEP);CHKERRQ(ierr);

/*
Set solver parameters at runtime

85 */
ierr = EPSSetFromOptions(eps);CHKERRQ(ierr);

/* -
Solve the eigensystem

90 - */

ierr = EPSSolve(eps);CHKERRQ(ierr);
ierr = EPSGetIterationNumber(eps, &its);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD," Number of iterations of the method: %d\n",its);CHKERRQ(ierr);

95 /*
Optional: Get some information from the solver and display it

*/
ierr = EPSGetType(eps,&type);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type);CHKERRQ(ierr);

100 ierr = EPSGetDimensions(eps,&nev,PETSC_NULL);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %d\n",nev);CHKERRQ(ierr);
ierr = EPSGetTolerances(eps,&tol,&maxit);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD," Stopping condition: tol=%.4g, maxit=%d\n",tol,maxit);CHKERRQ(ierr);

105 /* -
Display solution and clean up

- */
/*

Get number of converged approximate eigenpairs
110 */

ierr = EPSGetConverged(eps,&nconv);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD," Number of converged eigenpairs: %d\n\n",nconv);CHKERRQ(ierr);

if (nconv>0) {
115 /*

Display eigenvalues and relative errors
*/
ierr = PetscPrintf(PETSC_COMM_WORLD,

— 9 —

1.4. Writing SLEPc Programs Chapter 1. Getting Started

" k ||Ax-kx||/||kx||\n"
120 " ----------------- ------------------\n");CHKERRQ(ierr);

for(i=0; i<nconv; i++) {
/*

Get converged eigenpairs: i-th eigenvalue is stored in kr (real part) and
125 ki (imaginary part)

*/
ierr = EPSGetEigenpair(eps,i,&kr,&ki,xr,xi);CHKERRQ(ierr);
/*

Compute the relative error associated to each eigenpair
130 */

ierr = EPSComputeRelativeError(eps,i,&error);CHKERRQ(ierr);

#ifdef PETSC_USE_COMPLEX
re = PetscRealPart(kr);

135 im = PetscImaginaryPart(kr);
#else

re = kr;
im = ki;

#endif
140 if (im!=0.0) {

ierr = PetscPrintf(PETSC_COMM_WORLD," %9f%+9f j %12g\n",re,im,error);CHKERRQ(ierr);
} else {

ierr = PetscPrintf(PETSC_COMM_WORLD," %12f %12g\n",re,error);CHKERRQ(ierr);
}

145 }
ierr = PetscPrintf(PETSC_COMM_WORLD,"\n");CHKERRQ(ierr);

}

/*
150 Free work space

*/
ierr = EPSDestroy(eps);CHKERRQ(ierr);
ierr = MatDestroy(A);CHKERRQ(ierr);
ierr = VecDestroy(xr);CHKERRQ(ierr);

155 ierr = VecDestroy(xi);CHKERRQ(ierr);
ierr = SlepcFinalize();CHKERRQ(ierr);
return 0;

}

Include Files

The C/C++ include files for slepc should be used via statements such as
#include "slepceps.h"

where slepceps.h is the include file for the EPS component. Each slepc program must specify
an include file that corresponds to the highest level slepc objects needed within the program;
all of the required lower level include files are automatically included within the higher level
files. For example, slepceps.h includes slepcst.h (spectral transformations), and slepc.h
(base slepc file). Some petsc header files are included as well, such as petscksp.h. The slepc
include files are located in the directory ${SLEPC_DIR}/include.

The Options Database

All the petsc functionality related to the options database is available in slepc. This al-
lows the user to input control data at run time very easily. In this example the command

— 10 —

Chapter 1. Getting Started 1.4. Writing SLEPc Programs

PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL); checks whether the user has pro-
vided a command line option to set the value of n, the problem dimension. If so, the variable
n is set accordingly; otherwise, n remains unchanged.

Vectors and Matrices

Usage of matrices and vectors in slepc is exactly the same as in petsc. The user can create a
new parallel or sequential matrix, A, which has M global rows and N global columns, with

MatCreate(MPI_Comm comm,Mat *A);

MatSetSizes(Mat A,int m,int n,int M,int N);

MatSetFromOptions(Mat A);

where the matrix format can be specified at runtime. The example creates a matrix, sets the
nonzero values with MatSetValues and then assembles it.

Eigensolvers

Usage of eigensolvers is very similar to other kinds of solvers provided by petsc. After creating
the matrix (or matrices) that define the problem, Ax = kx (or Ax = kBx), the user can then
use EPS to solve the system with the following sequence of commands:

EPSCreate(MPI_Comm comm,EPS *eps);

EPSSetOperators(EPS eps,Mat A,Mat B);

EPSSetProblemType(EPS eps,EPSProblemType type);

EPSSetFromOptions(EPS eps);

EPSSolve(EPS eps);

EPSGetConverged(EPS eps, int *nconv);

EPSGetEigenpair(EPS eps,int i,PetscScalar *kr,PetscScalar *ki,Vec xr,Vec xi);

EPSDestroy(EPS eps);

The user first creates the EPS context and sets the operators associated with the eigensystem
as well as the problem type. The user then sets various options for customized solution, solves
the problem, retrieves the solution, and finally destroys the EPS context. Chapter 2 describes
in detail the EPS package, including the options database that enables the user to customize
the solution process at runtime by selecting the solution algorithm and also specifying the
convergence tolerance, the number of eigenvalues, the dimension of the subspace, etc.

Spectral Transformation

In the example program shown above there is no explicit reference to spectral transforma-
tions. However, an ST object is handled internally so that the user is able to request different
transformations such as shift-and-invert. Chapter 3 describes the ST package in detail.

— 11 —

1.4. Writing SLEPc Programs Chapter 1. Getting Started

Error Checking

All slepc routines return an integer indicating whether an error has occurred during the call.
The error code is set to be nonzero if an error has been detected; otherwise, it is zero. The
petsc macro CHKERRQ(ierr) checks the value of ierr and calls the petsc error handler upon
error detection. CHKERRQ(ierr) should be placed after all subroutine calls to enable a complete
error traceback. See the petsc documentation for full details.

1.4.2 Writing Application Codes with SLEPc

The examples provided in the src/examples directory demonstrate the software usage and can
serve as templates for developing custom applications. To write a new application program
using slepc, we suggest the following procedure:

1. Install and test slepc according to the instructions given in the documentation.

2. Copy the slepc example that corresponds to the class of problem of interest (e.g. singular
value decomposition).

3. Copy the makefile within the example directory (or create a new one as explained below);
compile and run the example program.

4. Use the example program as a starting point for developing a custom code.

Application program makefiles can be set up very easily just by including one file from
the slepc makefile system. All the necessary petsc definitions are loaded automatically. The
following sample makefile illustrates how to build C and Fortran programs:

default: ex1

include ${SLEPC_DIR}/bmake/slepc_common

5 ex1: ex1.o chkopts

-${CLINKER} -o ex1 ex1.o ${SLEPC_LIB}

${RM} ex1.o

ex1f: ex1f.o chkopts

10 -${FLINKER} -o ex1f ex1f.o ${SLEPC_LIB}

${RM} ex1f.o

— 12 —

Chapter 2

EPS: Eigenvalue Problem Solver

The Eigenvalue Problem Solver (EPS) is the main object provided by slepc. It is used to
specify an eigenvalue problem, either in standard or generalized form, and provides uniform
and efficient access to all of the eigensolvers included in the package. Conceptually, the level of
abstraction occupied by EPS is similar to other solvers in petsc such as KSP for solving linear
systems of equations.

2.1 Eigenvalue Problems

In this section, we present very briefly some basic concepts about eigenvalue problems as well
as general techniques used to solve them. The description is not intended to be exhaustive. The
objective is simply to define terms that will be referred to throughout the rest of the manual.
Readers who are familiar with the terminology and the solution approach can skip this section.
For a more comprehensive description, we refer the reader to monographs such as [Stewart,
2001], [Bai et al., 2000], [Saad, 1992] or [Parlett, 1980]. A historical perspective of the topic
can be found in [Golub and van der Vorst, 2000]. See also the slepc technical reports.

In the standard formulation, the eigenvalue problem consists in the determination of λ ∈ C
for which the equation

Ax = λx (2.1)

has nontrivial solution, where A ∈ Cn×n and x ∈ Cn. The scalar λ and the vector x are called
eigenvalue and (right) eigenvector, respectively. Note that they can be complex even when the
matrix is real. If λ is an eigenvalue of A then λ̄ is an eigenvalue of its conjugate transpose, A∗,
or equivalently

y∗A = λ y∗ , (2.2)

13

2.1. Eigenvalue Problems Chapter 2. EPS: Eigenvalue Problem Solver

where y is called the left eigenvector.
In many applications, the problem is formulated as

Ax = λBx , (2.3)

where B ∈ Cn×n, which is known as the generalized eigenvalue problem. Usually, this problem
is solved by reformulating it in standard form, for example B−1Ax = λx if B is non-singular.

slepc focuses on the solution of problems in which the matrices are large and sparse. Hence,
only methods that preserve sparsity are considered. These methods obtain the solution from the
information generated by the application of the operator to various vectors (the operator is a
simple function of matrices A and B), that is, matrices are only used in matrix-vector products.
This not only maintains sparsity but allows the solution of problems in which matrices are not
available explicitly.

In practical analyses, from the n possible solutions, typically only a few eigenpairs (λ, x)
are considered relevant, either in the extremities of the spectrum, in an interval, or in a region
of the complex plane. Depending on the application, either eigenvalues or eigenvectors or both
are required. In some cases, left eigenvectors are also of interest.

Projection Methods. Most eigensolvers provided by slepc perform a Rayleigh-Ritz pro-
jection for extracting the spectral approximations, that is, they project the problem onto a
low-dimensional subspace that is built appropriately. Suppose that an orthogonal basis of this
subspace is given by Vj = [v1, v2, . . . , vj]. If the solutions of the projected (reduced) problem
Bjs = θs (i.e., V T

j AVj = Bj) are assumed to be (θi, si), i = 1, 2, . . . , j, then the approximate
eigenpairs (λ̃i, x̃i) of the original problem (Ritz value and Ritz vector) are obtained as

λ̃i = θi , (2.4)
x̃i = Vjsi . (2.5)

Starting from this general idea, eigensolvers differ from each other in which subspace is used,
how it is built and other technicalities aimed at improving convergence, reducing storage re-
quirements, etc.

The subspace
Km(A, v) ≡ span

{
v,Av,A2v, . . . , Am−1v

}
, (2.6)

is called the m-th Krylov subspace corresponding to A and v. Methods that use subspaces of
this kind to carry out the projection are called Krylov methods. One example of such methods
is the Arnoldi algorithm: starting with v1, ‖v1‖2 = 1, the Arnoldi basis generation process can
be expressed by the recurrence

vj+1hj+1,j = wj = Avj −
j∑

i=1

hi,jvi , (2.7)

where hi,j are the scalar coefficients obtained in the Gram-Schmidt orthogonalization of Avj

with respect to vi, i = 1, 2, . . . , j, and hj+1,j = ‖wj‖2. Then, the columns of Vj span the Krylov

— 14 —

Chapter 2. EPS: Eigenvalue Problem Solver 2.2. Basic Usage

subspace Kj(A, v1) and Ax = λx is projected into Hjs = θs, where Hj is an upper Hessenberg
matrix with elements hi,j , which are 0 for i ≥ j + 2. The related Lanczos algorithms obtain a
projected matrix that is tridiagonal.

A generalization to the above methods are the block Krylov strategies, in which the starting
vector v1 is replaced by a full rank n×p matrix V1, which allows for better convergence properties
when there are multiple eigenvalues and can provide better data management on some computer
architectures. Block tridiagonal and block Hessenberg matrices are then obtained as projections.

It is generally assumed (and observed) that the Lanczos and Arnoldi algorithms find so-
lutions at the extremities of the spectrum. Their convergence pattern, however, is strongly
related to the eigenvalue distribution. Slow convergence may be experienced in the presence
of tightly clustered eigenvalues. The maximum allowable j may be reached without having
achieved convergence for all desired solutions. Then, restarting is usually a useful technique
and different strategies exist for that purpose. However, convergence can still be very slow
and acceleration strategies must be applied. Usually, these techniques consists in computing
eigenpairs of a transformed operator and then recovering the solution of the original problem.
The aim of these transformations is twofold. On one hand, they allow to obtain eigenvalues
other than those lying in the boundary of the spectrum. On the other hand, the separation of
the eigenvalues of interest is improved in the transformed spectrum thus leading to fast conver-
gence. The most commonly used spectral transformation is called shift-and-invert, which works
with operator (A − σI)−1. It allows to compute the eigenvalues closest to σ with very good
separation properties. When using this approach, a linear system of equations, (A− σI)y = x,
must be solved in each iteration of the eigenvalue process.

Related Problems. In many applications such as the analysis of damped vibrating systems
the eigenproblem to be solved is quadratic,

(Aλ2 + Bλ + C)x = 0 . (2.8)

It is possible to transform this problem to a generalized eigenproblem by increasing the order
of the system. For example, let the eigenvector be v = [λx, x]T , then the equivalent system is[

−B −C

I 0

]
v = λ

[
A 0
0 I

]
v . (2.9)

Another linear algebra problem that is very closely related to the eigenvalue problem is the
singular value decomposition (SVD). slepc provides a specific package for SVD computation,
so the description is postponed until chapter 4.

2.2 Basic Usage

The EPS module in slepc is used in a similar way as petsc modules such as KSP. All the
information related to an eigenvalue problem is handled via a context variable. The usual object
management functions are available (EPSCreate, EPSDestroy, EPSView, EPSSetFromOptions).

— 15 —

2.2. Basic Usage Chapter 2. EPS: Eigenvalue Problem Solver

EPS eps; /* eigensolver context */

Mat A; /* matrix of Ax=kx */

Vec xr, xi; /* eigenvector, x */

PetscScalar kr, ki; /* eigenvalue, k */

5 int j, nconv;

PetscReal error;

EPSCreate(PETSC_COMM_WORLD, &eps);

EPSSetOperators(eps, A, PETSC_NULL);

10 EPSSetProblemType(eps, EPS_NHEP);

EPSSetFromOptions(eps);

EPSSolve(eps);

EPSGetConverged(eps, &nconv);

for (j=0; j<nconv; j++) {

15 EPSGetEigenpair(eps, j, &kr, &ki, xr, xi);

EPSComputeRelativeError(eps, j, &error);

}

EPSDestroy(eps);

Figure 2.1: Example code for basic solution with EPS.

In addition, the EPS object provides functions for setting several parameters such as the number
of eigenvalues to compute, the dimension of the subspace, the portion of the spectrum of interest,
the requested tolerance or the maximum number of iterations allowed.

The solution of the problem is obtained in several steps. First of all, the matrices associated
to the eigenproblem are specified via EPSSetOperators and EPSSetProblemType is used to
specify the type of problem. Then, a call to EPSSolve is done that invokes the subroutine for
the selected eigensolver. EPSGetConverged can be used afterwards to determine how many of
the requested eigenpairs have converged to working accuracy. EPSGetEigenpair is finally used
to retrieve the eigenvalues and eigenvectors.

In order to illustrate the basic functionality of the EPS package, a simple example is shown in
figure 2.1. The example code implements the solution of a simple standard eigenvalue problem.
Code for setting up the matrix A is not shown and error-checking code is omitted.

All the operations of the program are done over a single EPS object. This solver context is
created in line 8 with the command

EPSCreate(MPI_Comm comm,EPS *eps);

Here comm is the MPI communicator, and eps is the newly formed solver context. The com-
municator indicates which processes are involved in the EPS object. Most of the EPS operations
are collective, meaning that all the processes collaborate to perform the operation in parallel.

Before actually solving an eigenvalue problem with EPS, the user must specify the matrices
associated to the problem, as in line 9, with the following routine

EPSSetOperators(EPS eps,Mat A,Mat B);

— 16 —

Chapter 2. EPS: Eigenvalue Problem Solver 2.2. Basic Usage

The example specifies a standard eigenproblem. In the case of a generalized problem, it would
be necessary also to provide matrix B as the third argument to the call. The matrices specified
in this call can be in any petsc format. In particular, EPS allows the user to solve matrix-free
problems by specifying matrices created via MatCreateShell. A more detailed discussion of
this issue is given in section 5.2.

After setting the problem matrices, the problem type is set with EPSSetProblemType. This
is not strictly necessary since if this step is skipped then the problem type is assumed to be non-
symmetric. More details are given in section 2.3. At this point, the value of the different options
could optionally be set by means of a function call such as EPSSetTolerances (explained later
in this chapter). After this, a call to EPSSetFromOptions should be made as in line 11,

EPSSetFromOptions(EPS eps);

The effect of this call is that options specified at runtime in the command line are passed
to the EPS object appropriately. In this way, the user can easily experiment with different
combinations of options without having to recompile. All the available options as well as the
associated function calls are described later in this chapter.

Line 12 launches the solution algorithm, simply with the command

EPSSolve(EPS eps);

The subroutine that is actually invoked depends on which solver has been selected by the user.
After the call to EPSSolve has finished, all the data associated to the solution of the eigen-

problem is kept internally. This information can be retrieved with different function calls, as in
lines 13 to 17. This part is described in detail in subsection 2.5.

Once the EPS context is no longer needed, it should be destroyed with the command

EPSDestroy(EPS eps);

The above procedure is sufficient for general use of the EPS package. As in the case of the
KSP solver, the user can optionally explicitly call

EPSSetUp(EPS eps);

before calling EPSSolve to perform any setup required for the eigensolver.
Internally, the EPS object works with an ST object (spectral transformation, described in

chapter 3). To allow application programmers to set any of the spectral transformation options
directly within the code, the following routine is provided to extract the ST context,

EPSGetST(EPS eps,ST *st);

With the command

EPSView(EPS eps,PetscViewer viewer);

it is possible to examine the information relevant to the EPS object, such as the value of the
different parameters, including also data related to the associated ST object.

— 17 —

2.3. Defining the Problem Chapter 2. EPS: Eigenvalue Problem Solver

Problem Type EPSProblemType Command line key

Hermitian EPS_HEP -eps_hermitian

Non-Hermitian EPS_NHEP -eps_non_hermitian

Generalized Hermitian EPS_GHEP -eps_gen_hermitian

Generalized Non-Hermitian EPS_GNHEP -eps_gen_non_hermitian

GNHEP with positive (semi-)definite B EPS_PGNHEP -eps_pos_gen_non_hermitian

Table 2.1: Problem types considered in EPS.

2.3 Defining the Problem

slepc is able to cope with different kinds of problems. Currently supported problem types
are listed in table 2.1. An eigenproblem is generalized (Ax = λBx) if the user has specified
two matrices (see EPSSetOperators above), otherwise it is standard (Ax = λx). A standard
eigenproblem is Hermitian if matrix A is Hermitian (i.e., A = A∗) or, equivalently in the
case of real matrices, if matrix A is symmetric (i.e., A = AT). A generalized eigenproblem
is Hermitian if matrix A is Hermitian (symmetric) and matrix B is Hermitian (symmetric)
and positive (semi-)definite. A special case of generalized non-Hermitian problem is when A is
non-Hermitian but B is Hermitian and positive (semi-)definite, see sections 3.4.3 and 3.4.4 for
discussion.

The problem type can be specified at run time with the corresponding command line key
or, more usually, within the program with the function

EPSSetProblemType(EPS eps,EPSProblemType type);

By default, slepc assumes that the problem is non-Hermitian. Some eigensolvers are able
to exploit symmetry, that is, they compute a solution for Hermitian problems with less storage
and/or computational cost than other methods that ignore this property. Also, symmetric
solvers are typically more accurate. On the other hand, some eigensolvers in slepc only have
a symmetric version and will abort if the problem is non-Hermitian. In the case of generalized
eigenproblems some considerations apply regarding symmetry, especially in the case of singular
B. This topic is tackled in subsections 3.4.3 and 3.4.4. For all these reasons, the user is strongly
recommended to always specify the problem type in the source code.

The type of the problem can be determined with the functions

EPSIsGeneralized(EPS eps,PetscTruth *gen);

EPSIsHermitian(EPS eps,PetscTruth *her);

The user can specify how many eigenvalues (and eigenvectors) to compute. The default is
to compute only one. The function

EPSSetDimensions(EPS eps,int nev,int ncv);

allows the specification of the number of eigenvalues to compute, nev. The last argument can
be set to prescribe the number of column vectors to be used by the solution algorithm, ncv,

— 18 —

Chapter 2. EPS: Eigenvalue Problem Solver 2.4. Selecting the Eigensolver

EPSWhich Command line key Sorting criterion

EPS_LARGEST_MAGNITUDE -eps_largest_magnitude Largest |λ|
EPS_SMALLEST_MAGNITUDE -eps_smallest_magnitude Smallest |λ|
EPS_LARGEST_REAL -eps_largest_real Largest Re(λ)

EPS_SMALLEST_REAL -eps_smallest_real Smallest Re(λ)

EPS_LARGEST_IMAGINARY -eps_largest_imaginary Largest Im(λ)1

EPS_SMALLEST_IMAGINARY -eps_smallest_imaginary Smallest Im(λ)1

Table 2.2: Available possibilities for selection of the eigenvalues of interest.

that is, the largest dimension of the working subspace. These two parameters can also be set
at run time with the options -eps_nev and -eps_ncv. For example, the command line

$ program -eps_nev 10 -eps_ncv 24

requests 10 eigenvalues and instructs to use 24 column vectors. Note that ncv must be at least
equal to nev, although in general it is recommended (depending on the method) to work with
a larger subspace, for instance ncv ≥ 2 · nev or even more.

For the selection of the portion of the spectrum of interest, there are several alternatives.
In real symmetric problems, one may want to compute the largest or smallest eigenvalues in
magnitude, or the leftmost or rightmost ones. In other problems, in which the eigenvalues can
be complex, then one can select eigenvalues depending on the magnitude, or the real part or
even the imaginary part. Table 2.2 sumarizes all the possibilities available for the function

EPSSetWhichEigenpairs(EPS eps,EPSWhich which);

which can also be specified at the command line. This criterion is used both for configuring how
the eigensolver seeks eigenvalues (note that not all these possibilities are available for all the
solvers) and also for sorting the computed values. The default is to compute the largest mag-
nitude eigenvalues, except for those solvers in which this option is not available. To compute
eigenvalues located in the interior part of the spectrum, the user should use a spectral transfor-
mation (see chapter 3). Note that in this case, the value of which applies to the transformed
spectrum.

2.4 Selecting the Eigensolver

The available methods for solving the eigenvalue problems are the following:

• Power Iteration with deflation. When combined with shift-and-invert (see chapter 3), it
is equivalent to the Inverse Iteration. Also, this solver embeds the Rayleigh Quotient
Iteration (RQI) by allowing variable shifts.

1If slepc is compiled for real scalars, then the absolute value of the imaginary part, |Im(λ)|, is used for
eigenvalue selection and sorting.

— 19 —

2.4. Selecting the Eigensolver Chapter 2. EPS: Eigenvalue Problem Solver

Options

Method EPSType Database Name

Power / Inverse / RQI EPSPOWER power

Subspace Iteration EPSSUBSPACE subspace

Arnoldi EPSARNOLDI arnoldi

Lanczos EPSLANCZOS lanczos

Krylov-Schur EPSKRYLOVSCHUR krylovschur

lapack solver EPSLAPACK lapack

Wrapper to arpack EPSARPACK arpack

Wrapper to primme EPSPRIMME primme

Wrapper to blzpack EPSBLZPACK blzpack

Wrapper to trlan EPSTRLAN trlan

Wrapper to blopex EPSBLOPEX blopex

Table 2.3: Eigenvalue solvers available in the EPS module.

• Subspace Iteration with Rayleigh-Ritz projection and locking.

• Arnoldi method with explicit restart and deflation.

• Lanczos with explicit restart and deflation, using different reorthogonalization strategies.

• Krylov-Schur, which is a variation of Arnoldi/Lanczos with a very effective restarting
technique.

The default solver is Krylov-Schur. A detailed description of the implemented algorithms is
provided in the slepc Technical Reports. In addition to these methods, slepc also provides
wrappers to external packages such as arpack, blzpack, or trlan. A complete list of these
interfaces can be found in section 5.5.

As an alternative, slepc provides an interface to some LAPACK routines. These routines
operate in dense mode with only one processor and therefore are suitable only for moderate
size problems. This solver should be used only for debugging purposes.

The solution method can be specified procedurally or via the command line. The application
programmer can set it by means of the command

EPSSetType(EPS eps,EPSType method);

while the user writes the options database command -eps_type followed by the name of the
method (see table 2.3).

Not all the methods can be used for all problem types. Table 2.4 summarizes the scope of
each eigensolver by listing which portion of the spectrum can be selected (as defined in table
2.2), which problem types are supported (as defined in table 2.1) and whether they are available
or not in the complex version of slepc. Also, the default value of some parameters differ from
one solver to the other, as shown in Table 2.5. This table also illustrates the different storage
requirements. All solvers need memory at least for storing ncv vectors, but in addition some

— 20 —

Chapter 2. EPS: Eigenvalue Problem Solver 2.5. Retrieving the Solution

Method Portion of spectrum Problem type Complex
power Largest |λ| all yes

subspace Largest |λ| all yes
arnoldi all all yes
lanczos all EPS_HEP, EPS_GHEP yes

krylovschur all all yes
lapack all all yes
arpack all all yes
primme Largest and smallest Re(λ) EPS_HEP yes
blzpack Smallest Re(λ) EPS_HEP, EPS_GHEP no
trlan Largest and smallest Re(λ) EPS_HEP no
blopex Smallest Re(λ) EPS_HEP no

Table 2.4: Supported problem types for all eigensolvers available in slepc.

extra work storage such as auxiliary vectors is necessary. The last columns of Table 2.5 indicates
the number of auxiliary vectors required in each case.

2.5 Retrieving the Solution

Once the call to EPSSolve is complete, all the data associated to the solution of the eigenproblem
is kept internally in the EPS object. This information can be obtained by the calling program
by means of a set of functions described in this section.

As explained below, the number of computed solutions depends on the convergence and,
therefore, it may be different from the number of solutions requested by the user. So the first
task is to find out how many solutions are available, with

EPSGetConverged(EPS eps,int *nconv);

Usually, the number of converged solutions, nconv, will be equal to nev, but in general it
will be a number ranging from 0 to ncv (here, nev and ncv are the arguments of function
EPSSetDimensions).

2.5.1 The Computed Solution

Normally, the user is interested in the eigenvalues, or the eigenvectors, or both. The function

EPSGetEigenpair(EPS eps,int j,PetscScalar *kr,PetscScalar *ki, Vec xr, Vec xi);

returns the j-th computed eigenvalue/eigenvector pair. Typically, this function is called inside
a loop for each value of j from 0 to nconv–1. Note that eigenvalues are ordered according to
the same criterion specified with function EPSSetWhichEigenpairs for selecting the portion of
the spectrum of interest.

— 21 —

2.5. Retrieving the Solution Chapter 2. EPS: Eigenvalue Problem Solver

Method ncv max_it Storage
power nev max(2000, 100N) 2

subspace max(2 · nev, nev + 15) max(100, d2N/ncve) ncv

arnoldi max(2 · nev, nev + 15) max(100, d2N/ncve) 1
lanczos max(2 · nev, nev + 15) max(100, d2N/ncve) 1

krylovschur max(2 · nev, nev + 15) max(100, d2N/ncve) 1
lapack N - N

arpack max(20, 2·nev+1) max(300, d2N/ncve) 4
primme max(20, 2·nev+1) max(1000, N) 3
blzpack min(nev+10, 2·nev) max(1000, N) > 187
trlan nev max(1000, N) nev + 1
blopex nev max(100, d2N/ncve) nev

Table 2.5: Default parameter values for all eigensolvers available in slepc.

The meaning of the last 4 parameters depends on whether slepc has been compiled for real
or complex scalars, as detailed below. In all cases, the eigenvectors are normalized so that they
have a unit 2-norm.

Real slepc. In this case, all Mat and Vec objects are real. The computed approximate solution
returned by the function EPSGetEigenpair is stored in the following way: kr and ki contain the
real and imaginary parts of the eigenvalue, respectively, and xr and xi contain the associated
eigenvector. Two cases can be distinguished:

• When ki is zero, it means that the j-th eigenvalue is a real number. In this case, kr is
the eigenvalue and xr is the corresponding eigenvector. The vector xi is set to all zeros.

• If ki is different from zero, then the j-th eigenvalue is a complex number and, therefore, it
is part of a complex conjugate pair. Thus, the j-th eigenvalue is kr+ i·ki. With respect to
the eigenvector, xr stores the real part of the eigenvector and xi the imaginary part, that
is, the j-th eigenvector is xr+ i·xi. The (j +1)-th eigenvalue (and eigenvector) will be the
corresponding complex conjugate and will be returned when function EPSGetEigenpair
is invoked with index j+1. Note that the sign of the imaginary part is returned correctly
in all cases (users need not change signs).

Complex slepc. In this case, all Mat and Vec objects are complex. The computed solution
returned by function EPSGetEigenpair is the following: kr contains the (complex) eigenvalue
and xr contains the corresponding (complex) eigenvector. In this case, ki and xi are not used
(set to all zeros).

— 22 —

Chapter 2. EPS: Eigenvalue Problem Solver 2.5. Retrieving the Solution

2.5.2 Reliability of the Computed Solution

In this subsection, we discuss how a-posteriori error bounds can be obtained in order to assess
the accuracy of the computed solutions. These bounds are based on the so-called residual
vector, defined as

r = Ax̃− λ̃x̃ , (2.10)

or r = Ax̃ − λ̃Bx̃ in the case of a generalized problem, where λ̃ and x̃ represent any of the
nconv computed eigenpairs delivered by EPSGetEigenpair (note that this function returns a
normalized x̃).

In the case of Hermitian problems, it is possible to demonstrate the following property (see
for example [Saad, 1992, ch. 3]):

|λ− λ̃| ≤ ‖r‖2 , (2.11)

where λ is an exact eigenvalue. Therefore, the 2-norm of the residual vector can be used as a
bound for the absolute error in the eigenvalue. The following slepc function

EPSComputeResidualNorm(EPS eps,int j,PetscReal *norm)

computes the 2-norm of rj . If we want to express the error relative to the eigenvalue, then the
following function can be used instead:

EPSComputeRelativeError(EPS eps,int j,PetscReal *error);

In the case of non-Hermitian problems, the situation is worse because no simple relation
such as Eq. 2.11 is available. This means that in this case the error bounds may still give
an indication of the actual error but the user should be aware that they may sometimes be
completely wrong, especially in the case of highly non-normal matrices.

With respect to eigenvectors, we have a similar scenario in the sense that bounds for the
error may be established in the Hermitian case only, for example the following one:

sin θ(x, x̃) ≤ ‖r‖2
δ

, (2.12)

where θ(x, x̃) is the angle between the computed and exact eigenvectors, and δ is the distance
from λ̃ to the rest of the spectrum. This bound is not provided by slepc because δ is not
available. The above expression is given here simply to warn the user about the fact that
accuracy of eigenvectors may be deficient in the case of clustered eigenvalues.

In the case of non-Hermitian problems, slepc provides the alternative of retrieving an
orthonormal basis of an invariant subspace instead of getting individual eigenvectors. This
is done with function

EPSGetInvariantSubspace(EPS eps,Vec *v)

This is sufficient in some applications and is safer from the numerical point of view.

— 23 —

2.6. Advanced Usage Chapter 2. EPS: Eigenvalue Problem Solver

2.5.3 Controlling and Monitoring Convergence

All the eigensolvers provided by slepc are iterative in nature, meaning that the solutions are
(usually) improved at each iteration until they are sufficiently accurate, that is, until convergence
is obtained. The number of iterations required by the process can be obtained with the function

EPSGetIterationNumber(EPS eps,int *its);

which returns in argument its either the iteration number at which convergence was successfully
reached, or the iteration at which a problem was detected.

The user specifies when a solution should be considered sufficiently accurate by means of
a tolerance. An approximate eigenvalue is considered to be converged if the error estimate
associated to it is below the specified tolerance. Note that the error estimates can be computed
differently depending on the solution method. The default value of the tolerance is 10−7 and
can be changed at run time with -eps_tol <tol> or inside the program with the function

EPSSetTolerances(EPS eps,PetscReal tol,int max_it);

The third parameter of this function allows the programmer to modify the maximum number
of iterations allowed to the solution algorithm, which can also be set via -eps_max_it <its>.

Error estimates used internally by eigensolvers for checking convergence may be different
from the error bounds provided by EPSComputeRelativeError. At the end of the solution
process, error estimates are available via

EPSGetErrorEstimate(EPS eps,int j,PetscReal *errest);

Error estimates can also be displayed during execution of the solution algorithm, as a way of
monitoring convergence. The user can activate this feature by using -eps_monitor within the
options database. By default, the solvers run silently without displaying information about the
iteration. When the option -eps_monitor is given, then the approximate eigenvalues together
with the associated error estimates are printed in each iteration. Application programmers can
provide their own routines to perform the monitoring by using the function EPSMonitorSet.

Graphical monitoring (in an X display) is also available with -eps_monitor_draw. Also, the
options database key -eps_plot_eigs instructs slepc to plot the computed approximations of
the eigenvalues at the end of the process. See Fig. 2.2 for an example.

2.6 Advanced Usage

This section includes the description of several advanced features of the eigensolver object. The
default settings are appropriate for most applications and modification is not necessary for
normal usage.

2.6.1 Initial Vectors

Most of the algorithms implemented in slepc iteratively build and refine a basis of a certain
subspace. This basis is constructed starting from an initial vector, v1. EPS initializes this

— 24 —

Chapter 2. EPS: Eigenvalue Problem Solver 2.6. Advanced Usage

Figure 2.2: Graphical output in slepc: convergence monitor (left) and eigenvalue plot (right).

starting vector randomly. This default is a reasonable choice. However, it is also possible to
supply the starting vector with the command

EPSSetInitialVector(EPS eps,Vec v0);

In some cases, a suitable starting vector can accelerate convergence. For this, the initial vector
should be rich in the directions of wanted eigenvectors. This is the case for example when the
eigenvalue calculation is one of a sequence of closely related problems and the starting vector
is built by taking a linear combination of the eigenvectors computed in a previously converged
eigenvalue calculation.

2.6.2 Dealing with Deflation Subspaces

In some applications, when solving an eigenvalue problem the user wishes to use a priori knowl-
edge about the solution. This is the case when an invariant subspace has already been computed
(e.g. in a previous EPSSolve call) or when a basis of the null-space is known.

Consider the following example. Given a graph G, with vertex set V and edges E, the
Laplacian matrix of G is a sparse symmetric positive semidefinite matrix L such that

lij =


d(vi) if i = j

−1 if eij ∈ E

0 otherwise

where d(vi) is the degree of vertex vi. This matrix is singular since all row sums are equal to zero.
The constant vector is an eigenvector with zero eigenvalue, and if the graph is connected then all
other eigenvalues are positive. The so-called Fiedler vector is the eigenvector associated to the
smallest nonzero eigenvalue and can be used in heuristics for a number of graph manipulations

— 25 —

2.6. Advanced Usage Chapter 2. EPS: Eigenvalue Problem Solver

such as partitioning. One possible way of computing this vector with slepc is to instruct the
eigensolver to search for the smallest eigenvalue (with EPSSetWhichEigenpairs or by using a
spectral transformation as described in next chapter) but preventing it from computing the
already known eigenvalue. For this, the user must provide a basis for the invariant subspace
(in this case just vector [1, 1, . . . , 1]T) so that the eigensolver can deflate this subspace. This
process is very similar to what eigensolvers normally do with invariant subspaces associated
to eigenvalues as they converge. In other words, when a deflation space has been specified,
the eigensolver works with the restriction of the problem to the orthogonal complement of this
subspace.

The following function can be used to provide the EPS object with some basis vectors cor-
responding to a subspace that should be deflated during the solution process.

EPSAttachDeflationSpace(EPS eps,int n,Vec *ds,PetscTruth ortho)

The value n indicates how many vectors are passed in argument ds. This function can be called
several times. The last parameter indicates whether all the provided vectors are known to be
mutually orthonormal or not. If not, they are explicitly orthonormalized internally.

The deflation space can be any subspace but typically it is most useful in the case of an
invariant subspace or a null-space. In any case, slepc internally checks to see if all (or part of)
the provided subspace is a null-space of the associated linear system (see section 3.4.1). In this
case, this null-space is passed to the linear solver (see petsc’s function KSPSetNullSpace) to
enable the solution of singular systems. In practice, this allows the computation of eigenvalues
of singular pencils (i.e. when A and B share a common null-space).

2.6.3 Orthogonalization

Internally, eigensolvers in EPS often need to orthogonalize a vector against a set of vectors (for
instance, when building an orthonormal basis of a Krylov subspace). This operation is carried
out typically by a Gram-Schmidt orthogonalization procedure. The user is able to adjust several
options related to this algorithm, although the default behavior is good for most cases. This
topic is covered in detail in [STR-1].

— 26 —

Chapter 3

ST: Spectral Transformation

The Spectral Transformation (ST) is the slepc object that encapsulates the functionality re-
quired for acceleration techniques based on the transformation of the spectrum. All the eigen-
solvers provided in EPS work by applying an operator to a set of vectors and this operator can
adopt different forms. The ST object handles all the different possibilities in a uniform way, so
that the solver can proceed without knowing which transformation has been selected. The type
of spectral transformation can be specified at run time, as well as several parameters such as
the value of the shift.

3.1 General Description

Spectral transformations are powerful tools for adjusting the way in which eigensolvers behave
when coping with a problem. The general strategy consists in transforming the original problem
into a new one in which eigenvalues are mapped to a new position while eigenvectors remain
unchanged. These transformations can be used with several goals in mind:

• Compute internal eigenvalues. In some applications, the eigenpairs of interest are not
the extreme ones (largest magnitude, smallest magnitude, rightmost, leftmost), but those
contained in a certain interval or those closest to a certain value of the complex plane.

• Accelerate convergence. Convergence properties typically depend on how close the eigen-
values are from each other. With some spectral transformations, difficult eigenvalue dis-
tributions can be remapped in a more favorable way in terms of convergence.

• Handle some special situations. For instance, in generalized problems when matrix B is
singular, it may be necessary to use a spectral transformation.

27

3.2. Basic Usage Chapter 3. ST: Spectral Transformation

slepc separates spectral transformations from solution methods so that any combination of
them can be specified by the user. To achieve this, all the eigensolvers contained in EPS must be
implemented in such a way that they are independent of which transformation has been selected
by the user. That is, the solver algorithm has to work with a generic operator, whose actual
form depends on the transformation used. After convergence, eigenvalues are transformed back
appropriately.

For technical details of the transformations described in this chapter, the interested user is
referred to [Ericsson and Ruhe, 1980], [Scott, 1982], [Nour-Omid et al., 1987], and [Meerbergen
et al., 1994].

3.2 Basic Usage

The ST module is the analogue to some petsc modules such as PC. The user does not usually
need to create a stand-alone ST object explicitly. Instead, every EPS object internally sets up an
associated ST. Therefore, the usual object management methods such as STCreate, STDestroy,
STView, STSetFromOptions, are not usually called by the user.

Although the ST context is hidden inside the EPS object, the user still has control over all
the options, by means of the command line, or also inside the program. To allow application
programmers to set any of the spectral transformation options directly within the code, the
following routine is provided to extract the ST context from the EPS object,

EPSGetST(EPS eps,ST *st);

After this, one is able to set any options associated to the ST object. For example, to set
the value of the shift, the following function is available

STSetShift(ST st,PetscScalar shift);

This can also be done with the command line option -st_shift <shift>. Note that the
argument shift is defined as a PetscScalar, and this means that complex shifts are not
allowed unless the complex version of slepc is used.

Other object operations are available, which are not usually called by the user. The most
important of such functions are STApply, which applies the operator to a vector, and STSetUp,
which prepares all the necessary data structures before the solution process starts. The term
“operator” refers to one of A, B−1A, A + σI, ... depending on which kind of spectral transfor-
mation is being used.

3.3 Available Transformations

This section describes the spectral transformations that are provided in slepc. As in the case
of eigensolvers, the spectral transformation to be used can be specified procedurally or via the
command line. The application programmer can set it by means of the command

STSetType(ST st,STType type);

— 28 —

Chapter 3. ST: Spectral Transformation 3.3. Available Transformations

Options

Spectral Transformation STType Name Operator

Shift of Origin STSHIFT shift B−1A + σI

Spectrum Folding STFOLD fold (B−1A − σI)2

Shift-and-invert STSINV sinvert (A − σB)−1B

Cayley STCAYLEY cayley (A − σB)−1(A + τB)

Shell Transformation STSHELL shell user-defined

Table 3.1: Spectral transformations available in the ST package.

ST Choice of σ, τ Standard problem Generalized problem

shift σ = 0 A B−1A

σ 6= 0 A + σI B−1A + σI

fold σ = 0 A2 (B−1A)2

σ 6= 0 (A − σI)2 (B−1A − σI)2

sinvert σ = 0 A−1 A−1B

σ 6= 0 (A − σI)−1 (A − σB)−1B

cayley σ 6= 0, τ = 0 (A − σI)−1A (A − σB)−1A

σ = 0, τ 6= 0 I + τA−1 I + τA−1B

σ 6= 0, τ 6= 0 (A − σI)−1(A + τI) (A − σB)−1(A + τB)

Table 3.2: Operators used in each spectral transformation mode.

where type can be one of STSHIFT, STFOLD, STSINV, STCAYLEY or STSHELL. The ST type can
also be set with the command-line option -st_type followed by the name of the method (see
table 3.1). The first four spectral transformations are described in detail in the rest of this sec-
tion. The last possibility, STSHELL, uses a specific, application-provided spectral transformation.
Section 5.3 describes how to implement one of these transformations.

The last column of Table 3.1 shows a general form of the operator used in each case. This
generic operator can adopt different particular forms depending on whether the eigenproblem
is standard or generalized, or whether the value of the shift (σ) and anti-shift (τ) is zero or not.
All the possible combinations are illustrated in table 3.2.

The expressions shown in table 3.2 are not built explicitly. Instead, the appropriate oper-
ations are carried out when applying the operator to a certain vector. The inverses imply the
solution of a linear system of equations that is managed by setting up an associated KSP object.
The user can control the behavior of this object by adjusting the appropriate options, as will
be illustrated with examples in section 3.4.1.

3.3.1 Shift of Origin

By default, no spectral transformation is performed. This is equivalent to a shift of origin
(STSHIFT) with σ = 0, that is, the first line of table 3.2. The solver works with the original

— 29 —

3.3. Available Transformations Chapter 3. ST: Spectral Transformation

expressions of the eigenvalue problems,

Ax = λx , (3.1)

for standard problems, and Ax = λBx for generalized ones. Note that this last equation is
actually treated internally as

B−1Ax = λx . (3.2)

When the eigensolver in EPS requests the application of the operator to a vector, a matrix-vector
multiplication by matrix A is carried out (in the standard case) or a matrix-vector multiplication
by matrix A followed by a linear system solve with coefficient matrix B (in the generalized case).
Note that in the last case, the operation will fail if matrix B is singular.

When the shift, σ, is given a value different from the default, 0, the effect is to move the
whole spectrum by that exact quantity, σ, which is called shift of origin. To achieve this, the
solver works with the shifted matrix, that is, the expressions it has to cope with are

(A + σI)x = θx , (3.3)

for standard problems, and
(B−1A + σI)x = θx , (3.4)

for generalized ones. The important property that is used is that shifting does not alter the
eigenvectors and that it does change the eigenvalues in a simple known way, it shifts them by
σ. In both the standard and the generalized problems, the following relation holds

θ = λ + σ . (3.5)

This means that after the solution process, the value σ has to be subtracted from the computed
eigenvalues, θ, in order to retrieve the solution of the original problem, λ. This is done by
means of the function STBackTransform, which does not need to be called directly by the user.

3.3.2 Spectrum Folding

Spectrum folding refers to a spectral transformation that involves squaring in addition to shift-
ing. The transformed problems to be addressed are the following

(A− σI)2x = θx , (3.6)

for standard problems, and
(B−1A− σI)2x = θx , (3.7)

for generalized ones. In both cases, the following relation holds

θ = (λ− σ)2 . (3.8)

The effect of this transformation is that the spectrum is folded around the value of σ. Thus,
eigenvalues that are closest to the shift become the smallest eigenvalues in the folded spectrum,

— 30 —

Chapter 3. ST: Spectral Transformation 3.3. Available Transformations

θ

σ λ
λ1

θ1

λ2

θ2

λ3

θ3

θ=(λ−σ)2

Figure 3.1: Illustration of the effect of spectrum folding.

as illustrated in Figure 3.1 for an example with real eigenvalues. For this reason, spectrum
folding is commonly used in combination with eigensolvers that compute the smallest eigenval-
ues, for instance in the context of electronic structure calculations, [Canning et al., 2000]. This
transformation can be an effective, low-cost alternative to shift-and-invert (explained below).

Warning : It is possible that some eigenpairs have a very large associated error when using
this transformation. There is a simple explanation for this: since the sign is lost when squaring,
there is no way to determine if the original eigenvalue is located to the left or to the right of σ.
As a consequence, the eigenvalue returned by STBackTransform is computed as λ =

√
θ + σ,

always taking the positive sign for the square root. This guess is wrong for values located on
the left, which will have a large error even when the eigenvector is correct. This behavior can
be changed by the user with the following function

STFoldSetLeftSide(ST st,PetscTruth left);

(or with -st_fold_leftside), so that the negative sign is taken for the square root. In this
case those eigenvalues located on the left side of σ will be returned correctly but not the right
ones.

3.3.3 Shift-and-invert

The shift-and-invert spectral transformation (STSINV) is used to enhance convergence of eigen-
values in the neighborhood of a given value. In this case, the solver deals with the expressions

(A− σI)−1x = θx , (3.9)
(A− σB)−1Bx = θx , (3.10)

for standard and generalized problems, respectively. This transformation is effective for finding
eigenvalues near σ since the eigenvalues θ of the operator that are largest in magnitude corre-

— 31 —

3.3. Available Transformations Chapter 3. ST: Spectral Transformation

θ

0 σ λ
λ1

θ1

λ2

θ2

θ= 1
λ−σ

Figure 3.2: The shift-and-invert spectral transformation.

spond to the eigenvalues λ of the original problem that are closest to the shift σ in absolute
value, as illustrated in Figure 3.2 for an example with real eigenvalues. Once the wanted eigen-
values have been found, they may be transformed back to eigenvalues of the original problem.
Again, the eigenvectors remain unchanged. In this case, the relation between the eigenvalues
of both problems is

θ = 1/(λ− σ) . (3.11)

Therefore, after the solution process, the operation to be performed in function STBackTrans-
form is λ = σ + 1/θ for each of the computed eigenvalues.

3.3.4 Cayley

The generalized Cayley transform (STCAYLEY) is defined from the expressions

(A− σI)−1(A + τI)x = θx , (3.12)
(A− σB)−1(A + τB)x = θx , (3.13)

for standard and generalized problems, respectively. Sometimes, the term Cayley transform is
applied for the particular case in which τ = σ. This is the default if τ is not given a value
explicitly. The value of τ (the anti-shift) can be set with the following function

— 32 —

Chapter 3. ST: Spectral Transformation 3.4. Advanced Usage

STCayleySetAntishift(ST st,PetscScalar tau);

or in the command line with -st_antishift.
This transformation is mathematically equivalent to shift-and-invert and, therefore, it is

effective for finding eigenvalues near σ as well. However, in some situations it is numerically ad-
vantageous with respect to shift-and-invert (see [Bai et al., 2000, §11.2], [Lehoucq and Salinger,
2001]).

In this case, the relation between the eigenvalues of both problems is

θ = (λ + τ)/(λ− σ) . (3.14)

Therefore, after the solution process, the operation to be performed in function STBackTrans-
form is λ = (θσ + τ)/(θ − 1) for each of the computed eigenvalues.

3.4 Advanced Usage

Using the ST object is very straightforward. However, when using spectral transformations many
things are happening behind the scenes, mainly the solution of linear systems of equations. The
user must be aware of what is going on in each case, so that it is possible to guide the solution
process in the most beneficial way. This section describes several advanced aspects that can
have a considerable impact on efficiency.

3.4.1 Solution of Linear Systems

In many of the cases shown in table 3.2, the operator contains an inverted matrix, which means
that a linear system of equations must be solved whenever the application of the operator to a
vector is required. These cases are handled internally by means of a KSP object.

In the simplest case, a generalized problem is to be solved with a zero shift. A sample
command line could be

$ program -eps_type subspace -eps_tol 1e-6 -eps_monitor

In this case, assuming that the program solves a generalized problem, the ST object associated to
the EPS solver creates a KSP object whose coefficient matrix is B. This KSP object will be set with
the default values, that is, GMRES with ILU preconditioning (see the petsc documentation
for details).

The default values corresponding to the KSP object can be modified via the command line.
For instance,

$ program -eps_type subspace -eps_tol 1e-6 -eps_monitor

-st_ksp_type cg -st_pc_type jacobi -st_ksp_rtol 1e-5

specifies some additional options for the solution of this linear system. In particular, this
example selects the CG solver with Jacobi preconditioning and a relative tolerance of 10−5.
The -st_ prefix signifies that the option corresponds to the linear solver within ST.

— 33 —

3.4. Advanced Usage Chapter 3. ST: Spectral Transformation

If an iterative method is used for the linear system solves, usually a slightly more stringent
tolerance must be required of the linear solves relative to the desired accuracy of the eigenvalue
calculation. It is also possible to select any of the direct linear solvers available in petsc. In
this case, the factorization is only carried out at the beginning of the eigenvalue calculation and
this cost is amortized in each subsequent application of the operator. This is also the case for
iterative methods with preconditioners with high-cost set-up such as ILU.

The application programmer is able to set the desired linear systems solver options also
from within the code. In order to do this, first the context of the KSP object must be retrieved
with the following function

STGetKSP(ST st,KSP *ksp);

The above functionality is also applicable to the other spectral transformations. In this
other example, the spectrum is shifted by σ = 0.5 and several options are specified for the
linear systems

$ program -st_type shift -st_shift 0.5 -st_ksp_type cgs -st_pc_factor_levels 1

Similarly, for the shift-and-invert technique with σ = 10:

$ program -st_type sinvert -st_shift 10 -st_pc_type jacobi

The shift-and-invert and Cayley transformations deserve special consideration. In these cases,
the coefficient matrix is not a simple matrix but an expression that can be explicitly constructed
or not, depending on the user’s choice. This issue is examined in detail in section 3.4.2 below.

In many cases, especially if a shift-and-invert or Cayley transformation is being used, iter-
ative methods may not be well suited for solving linear systems (because of the properties of
the coefficient matrix that can be indefinite and badly conditioned). In such cases, during the
execution of the application, the user may get the following message:

[0]PETSC ERROR: Warning: KSP did not converge (-3)!

If this happens, chances are that the EPS object fails to compute the eigensolution or that the
retrieved solution is wrong whatsoever. In that situation, it is necessary to use a direct method
for solving the linear systems. See the PETSc documentation for a list of available possibilities.
The simplest one is to use the LU decomposition as in the following example:

$ program -st_type sinvert -st_ksp_type preonly -st_pc_type lu

3.4.2 Explicit Computation of Coefficient Matrix

Three possibilities can be distinguished regarding the form of the coefficient matrix of the
linear systems of equations associated to the different spectral transformations. The possible
coefficient matrices are:

• Simple: B.

— 34 —

Chapter 3. ST: Spectral Transformation 3.4. Advanced Usage

• Shifted: A− σI.

• Axpy: A− σB.

The first case has already been described and presents no difficulty. In the other two cases,
there are three possible approaches:

“shell” To work with the corresponding expression without forming the matrix explicitly. This
is achieved by internally setting a matrix-free matrix with MatCreateShell.

“inplace” To build the coefficient matrix explicitly. This is done by means of a MatShift or
a MatAXPY operation, which overwrites matrix A with the corresponding expression. This
alteration of matrix A is reversed after the eigensolution process has finished.

“copy” To build the matrix explicitly, as in the previous option, but using a working copy of
the matrix, that is, without modifying the original matrix A.

The default behavior is to build the coefficient matrix explicitly in a copy of A (option “copy”).
The user can change this as in the following example

$ program -st_type sinvert -st_shift 10 -st_pc_type jacobi -st_matmode shell

As always, the procedural equivalent is also available for specifying this option in the code of
the program:

STSetMatMode(ST st,STMatMode mode);

The user must consider which approach is the most appropriate for the particular applica-
tion. The different options have advantages and drawbacks. The first approach is the simplest
one but severely restricts the number of possibilities available for solving the system, in partic-
ular most of the petsc preconditioners would not be available, including direct methods. The
only preconditioners that can be used in this case are Jacobi (only if matrices A and B have
the operation MATOP_GET_DIAGONAL) or a user-defined one.

The second approach (“inplace”) can be much faster, specially in the generalized case.
A more important advantage of this approach is that, in this case, the linear system solver
can be combined with any of the preconditioners available in petsc, including those which
need to access internal matrix data-structures such as ILU. The main drawback is that, in the
generalized problem, this approach probably makes sense only in the case that A and B have
the same sparse pattern, because otherwise the function MatAXPY can be very inefficient. If
the user knows that the pattern is the same (or a subset), then this can be specified with the
function

STSetMatStructure(ST st,MatStructure str);

Note that when the value of the shift σ is very close to an eigenvalue, then the linear system
will be ill-conditioned and using iterative methods may be problematic. On the other hand,
in symmetric definite problems, the coefficient matrix will be indefinite whenever σ is a point

— 35 —

3.4. Advanced Usage Chapter 3. ST: Spectral Transformation

in the interior of the spectrum and in that case it is not possible to use a symmetric definite
factorization (Cholesky or ICC).

The third approach (“copy”) uses more memory but avoids a potential problem that could
appear in the “inplace” approach: the recovered matrix might be slightly different from the
original one (due to roundoff).

3.4.3 Preserving the Symmetry in Generalized Eigenproblems

As mentioned in section 2.3, some eigensolvers can exploit symmetry and compute a solution
for Hermitian problems with less storage and/or computational cost than other methods. Also,
symmetric solvers can be more accurate in some cases. However, in the case of generalized
eigenvalue problems in which both A and B are symmetric, it happens that, due to the spectral
transformation, symmetry is lost since none of the transformed operators B−1A + σI, (A −
σB)−1B, etc. is symmetric (the same applies in the Hermitian case for complex matrices).

The solution proposed in slepc is based on selecting different kinds of inner products.
Currently, we have the following choice of inner products:

• Standard Hermitian inner product: 〈x, y〉 = x∗y.

• B-inner product: 〈x, y〉B = x∗B y.

The second one can be used for preserving the symmetry in symmetric definite generalized
problems, as described below. Note that 〈x, y〉B is a genuine inner product only if B is symmetric
positive definite (for the case of symmetric positive semi-definite B see subsection 3.4.4).

It can be shown that Rn with the 〈x, y〉B inner product is isomorphic to the Euclidean
n-space Rn with the standard Hermitian inner product. This means that if we use 〈x, y〉B
instead of the standard inner product, we are just changing the way lengths and angles are
measured, but otherwise all the algebraic properties are maintained and therefore algorithms
remain correct. What is interesting to observe is that the transformed operators such as B−1A
or (A− σB)−1B are self-adjoint with respect to 〈x, y〉B .

Internally, slepc operates with the abstraction illustrated in figure 3.3. The operations in-
dicated by dashed arrows are implemented as virtual functions: IPInnerProduct and STApply.
From the user point of view, all the above explanation is transparent. The only thing he/she
has to care about is to set the problem type appropriately with EPSSetProblemType (see section
2.3). In the case of the Cayley transform, slepc is using 〈x, y〉A+τB as the inner product for
preserving symmetry.

Using the B-inner product may be attractive also in the non-symmetric case (A non-
symmetric) as described in the next subsection.

3.4.4 Purification of Eigenvectors

In generalized eigenproblems, the case of singular B deserves especial consideration. Note that
in this case the default spectral transformation (STSHIFT) cannot be used since B−1 does not
exist.

— 36 —

Chapter 3. ST: Spectral Transformation 3.4. Advanced Usage

Appropriate
inner product
is performed

Appropriate
matrix-vector

 product
is performed

The user can specify
the spectral transform

The user can specify
the problem type

General
Hermitian Positive Definite
Complex Symmetric

Shift
Shift-and-invert
Cayley
Fold

The user selects the solver

Power / RQI
Subspace Iteration
Arnoldi
Lanczos
Krylov-Schur
External Solvers

Figure 3.3: Abstraction used by slepc solvers.

In shift-and-invert with operator matrix T = (A − σB)−1B, when B is singular all the
eigenvectors that belong to finite eigenvalues are also eigenvectors of T and belong to the range
of T , R(T). In this case, the bilinear function 〈x, y〉B introduced in subsection 3.4.3 is a semi-
inner product and ‖x‖B =

√
〈x, x〉B is a semi-norm. As before, T is self-adjoint with respect

to this inner product since B T = T ∗B. Also, 〈x, y〉B is a true inner product on R(T).
The implication of all this is that, for singular B, if the B-inner product is used through-

out the eigensolver then, assuming that the initial vector has been forced to lie in R(T), the
computed eigenvectors should be correct, i.e. they should belong to R(T) as well. Neverthe-
less, finite precision arithmetic spoils this nice picture, and computed eigenvectors are easily
corrupted by components of vectors in the null-space of B. Additional computation is required
for achieving the desired property. This is usually referred to as eigenvector purification.

Although more elaborate purification strategies have been proposed (usually trying to reduce
the computational effort, see [Nour-Omid et al., 1987] and [Meerbergen and Spence, 1997]), the
approach in slepc is simply to explicitly force the initial vector in the range of B, with v0 = Tv0,
as well as the computed eigenvectors at the end, xi = Txi.

A final comment is that eigenvector corruption happens also in the non-symmetric case.
If A is non-symmetric but B is symmetric positive semi-definite, then the scheme presented
above (B-inner product together with purification) can still be applied and is generally more
successful than the straightforward approach with the standard inner product. For using this
scheme in slepc, the user has to specify the special problem type EPS_PGNHEP, see table 2.1.

— 37 —

3.4. Advanced Usage Chapter 3. ST: Spectral Transformation

— 38 —

Chapter 4

SVD: Singular Value Decomposition

The Singular Value Decomposition (SVD) solver object can be used for computing a partial
SVD of a rectangular matrix. It provides uniform and efficient access to several specific SVD
solvers included in slepc, and also gives the possibility to compute the decomposition via the
eigensolvers provided in the EPS package.

In many aspects, the user interface of SVD resembles that of EPS. For this reason, this chapter
and chapter 2 have a very similar structure.

4.1 The Singular Value Decomposition

In this section, some basic concepts about the singular value decomposition are presented. The
objective is to set up the notation and also to justify some of the solution approaches, partic-
ularly those based on the EPS object. As in the case of eigensolvers, some of the implemented
methods are described in detail in the slepc technical reports.

For background material about the SVD, see for instance [Bai et al., 2000, ch. 6]. Many
other books such as [Björck, 1996] or [Hansen, 1998] present the SVD from the perspective of its
application to the solution of least squares problems and other related linear algebra problems.

The singular value decomposition (SVD) of an m× n matrix A can be written as

A = UΣV ∗, (4.1)

where U = [u1, . . . , um] is an m ×m unitary matrix (U∗U = I), V = [v1, . . . , vn] is an n × n
unitary matrix (V ∗V = I), and Σ is an m × n diagonal matrix with diagonal entries Σii = σi

for i = 1, . . . ,min{m,n}. If A is real, U and V are real and orthogonal. The vectors ui are
called the left singular vectors, the vi are the right singular vectors, and the σi are the singular
values.

39

4.1. The Singular Value Decomposition Chapter 4. SVD: Singular Value Decomposition

A = Un Σn

V ∗n

Figure 4.1: Scheme of the thin SVD of a rectangular matrix A.

In the following, we will assume that m ≥ n. If m < n then A should be replaced by A∗

(note that in slepc this is done transparently as described later in this chapter and the user
need not worry about this). In the case that m ≥ n, the top n rows of Σ contain diag(σ1, . . . , σn)
and its bottom m− n rows are zero. The relation 4.1 may also be written as AV = UΣ, or

Avi = uiσi , i = 1, . . . , n , (4.2)

and also as A∗U = V Σ∗, or

A∗ui = viσi , i = 1, . . . , n , (4.3)
A∗ui = 0 , i = n + 1, . . . ,m . (4.4)

The last left singular vectors corresponding to Eq. 4.4 are often not computed, especially if
m� n. In that case, the resulting factorization is sometimes called the thin SVD, A = UnΣnV ∗n ,
and is depicted in Figure 4.1. This factorization can also be written as

A =
n∑

i=1

σiuiv
∗
i . (4.5)

Each (σi, ui, vi) is called a singular triplet.
The singular values are real and nonnegative, σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σn = 0,

where r = rank(A). It can be shown that {u1, . . . , ur} span the range of A, R(A), whereas
{vr+1, . . . , vn} span the null space of A, N (A).

If the zero singular values are dropped from the sum in Eq. 4.5, the resulting factorization,
A =

∑r
i=1 σiuiv

∗
i , is called the compact SVD, A = UrΣrV

∗
r .

In the case of a very large and sparse A, it is usual to compute only a subset of k ≤ r
singular triplets. We will refer to this decomposition as the truncated SVD of A. It can be
shown that the matrix Ak = UkΣkV ∗k is the best rank-k approximation to matrix A, in the
least squares sense.

In general, one can take an arbitrary subset of the summands in Eq. 4.5, and the resulting
factorization is called the partial SVD of A. As described later in this chapter, slepc allows the
computation of a partial SVD corresponding to either the k largest or smallest singular triplets.

— 40 —

Chapter 4. SVD: Singular Value Decomposition 4.1. The Singular Value Decomposition

Equivalent Eigenvalue Problems. It is possible to formulate the problem of computing the
singular triplets of a matrix A as an eigenvalue problem involving a Hermitian matrix related
to A. There are two possible ways of achieving this:

1. With the cross product matrix, either A∗A or AA∗.

2. With the cyclic matrix, H(A) =
[

0 A
A∗ 0

]
.

In slepc, the computation of the SVD is always based on one of these two alternatives, either
by passing one of these matrices to an EPS object or by performing the computation implicitly.

By pre-multiplying Eq. 4.2 by A∗ and then using Eq. 4.3, the following relation results

A∗Avi = σ2
i vi , (4.6)

that is, the vi are the eigenvectors of matrix A∗A with corresponding eigenvalues equal to σ2
i .

Note that after computing vi the corresponding left singular vector, ui, is readily available
through Eq. 4.2 with just a matrix-vector product, ui = 1

σi
Avi.

Alternatively, one could compute first the left vectors and then the right ones. For this,
pre-multiply Eq. 4.3 by A and then use Eq. 4.2 to get

AA∗ui = σ2
i ui . (4.7)

In this case, the right singular vectors are obtained as vi = 1
σi

A∗ui.
The two approaches represented in Eqs. 4.6 and 4.7 are very similar. Note however that

A∗A is a square matrix of order n whereas AA∗ is of order m. In cases where m � n, the
computational effort will favor the A∗A approach. On the other hand, the eigenproblem 4.6
has n − r zero eigenvalues and the eigenproblem 4.7 has m − r zero eigenvalues. Therefore,
continuing with the assumption that m ≥ n, even in the full rank case the AA∗ approach may
have a large null space resulting in difficulties if the smallest singular values are sought. In
slepc, this will be referred to as the cross product approach and will use whichever matrix is
smaller, either A∗A or AA∗.

Computing the SVD via the cross product approach may be adequate for determining the
largest singular triplets of A, but the loss of accuracy can be severe for the smallest singular
triplets. The cyclic matrix approach is an alternative that avoids this problem, but at the
expense of significantly increasing the cost of the computation. Consider the eigendecomposition
of

H(A) =
[

0 A

A∗ 0

]
, (4.8)

which is a Hermitian matrix of order (m+n). It can be shown that ±σi is a pair of eigenvalues
of H(A) for i = 1, . . . , r and the other m + n − 2r eigenvalues are zero. The unit eigenvectors
associated to ±σi are 1√

2

[±ui
vi

]
. Thus it is possible to extract the singular values and the left

and right singular vectors of A directly from the eigenvalues and eigenvectors of H(A). Note
that in this case singular values are not squared, and therefore the computed values will be
more accurate. The drawback in this case is that small eigenvalues are located in the interior
of the spectrum.

— 41 —

4.2. Basic Usage Chapter 4. SVD: Singular Value Decomposition

SVD svd; /* SVD solver context */

Mat A; /* problem matrix */

Vec u, v; /* singular vectors */

PetscReal sigma; /* singular value */

5 int j, nconv;

PetscReal error;

SVDCreate(PETSC_COMM_WORLD, &svd);

SVDSetOperator(svd, A);

10 SVDSetFromOptions(svd);

SVDSolve(svd);

SVDGetConverged(svd, &nconv);

for (j=0; j<nconv; j++) {

SVDGetSingularTriplet(svd, j, &sigma, u, v);

15 SVDComputeRelativeError(svd, j, &error);

}

SVDDestroy(svd);

Figure 4.2: Example code for basic solution with SVD.

4.2 Basic Usage

From the perspective of the user interface, the SVD package is very similar to EPS, with some
differences that will be highlighted shortly.

The basic steps for computing a partial SVD with slepc are illustrated in Figure 4.2. The
steps are more or less the same as those described in chapter 2 for the eigenvalue problem.
First, the solver context is created with SVDCreate. Then the problem matrix has to be spec-
ified with SVDSetOperator. Then, a call to SVDSolve invokes the actual solver. After that,
SVDGetConverged is used to determine how many solutions have been computed, which are
retrieved with SVDGetSingularTriplet. Finally, SVDDestroy cleans up everything.

If one compares this example code with the EPS example in Figure 2.1, the most outstanding
differences are the following:

• The singular value is a PetscReal, not a PetscScalar.

• Each singular vector is defined with a single Vec object, not two as was the case for
eigenvectors.

• Function SVDSetOperator only admits one Mat argument.

• There is no equivalent to EPSSetProblemType.

The reason for the last two differences is that slepc does not currently support different kinds
of SVD problems. This may change in future versions if some generalization of the SVD such
as the GSVD is added.

— 42 —

Chapter 4. SVD: Singular Value Decomposition 4.3. Defining the Problem

4.3 Defining the Problem

Defining the problem consists in specifying the problem matrix, A, and the portion of the
spectrum to be computed. In the case of the SVD, the number of possibilities will be much
more limited than in the case of eigenproblems.

The problem matrix is provided with the following function

SVDSetOperator(SVD svd,Mat A);

where A can be any matrix, not necessarily square, stored in any allowed petsc format including
the matrix-free mechanism (see section 5.2 for a detailed discussion).

It is important to note that all SVD solvers in slepc make use of both A and A∗, as
suggested by the description in section 4.1. A∗ is not explicitly passed as an argument to
SVDSetOperator, therefore it will have to stem from A. There are two possibilities for this:
either A is transposed explicitly and A∗ is created as a distinct matrix, or A∗ is handled
implicitly via MatMultTranspose operations whenever a matrix-vector product is required in
the algorithm. The default is to build A∗ explicitly, but this behavior can be changed with

SVDSetTransposeMode(SVD svd,SVDTransposeMode mode);

In section 4.1, it was mentioned that in slepc the cross product approach chooses the
smallest of the two possible cases A∗A or AA∗, that is, A∗A is used if A is a tall, thin matrix
(m ≥ n), and AA∗ is used if A is a fat, short matrix (m < n). In fact, what slepc does
internally is that if m < n the roles of A and A∗ are reversed. This is equivalent to transposing
all the SVD factorization, so left singular vectors become right singular vectors and vice versa.
This is actually done in all singular value solvers, not only the cross product approach. The
objective is to simplify the number of cases to be treated internally by slepc, as well as to
reduce the computational cost in some situations. Note that this is done transparently and the
user need not worry about transposing the matrix, only to indicate how the transpose has to
be handled, as explained above.

The user can specify how many singular values and vectors to compute. The default is to
compute only one singular triplet. The function

SVDSetDimensions(EPS eps,int nsv,int ncv);

allows the specification of the number of singular values to compute, nsv. The last argument
can be set to prescribe the number of column vectors to be used by the solution algorithm, ncv,
that is, the largest dimension of the working subspace. These two parameters can also be set
at run time with the options -svd_nsv and -svd_ncv. For example, the command line

$ program -svd_nsv 10 -svd_ncv 24

requests 10 singular values and instructs to use 24 column vectors. Note that ncv must be at
least equal to nsv, although in general it is recommended (depending on the method) to work
with a larger subspace, for instance ncv ≥ 2 · nsv or even more.

— 43 —

4.4. Selecting the SVD Solver Chapter 4. SVD: Singular Value Decomposition

SVDWhich Command line key Sorting criterion

SVD_LARGEST -svd_largest Largest σ

SVD_SMALLEST -svd_smallest Smallest σ

Table 4.1: Available possibilities for selection of the singular values of interest.

For the selection of the portion of the spectrum of interest, there are only two possibilities in
the case of SVD: largest and smallest singular values, see Table 4.1. The default is to compute
the largest ones, but this can be changed with

SVDSetWhichSingularTriplets(SVD svd,SVDWhich which);

which can also be specified at the command line. This criterion is used both for configuring
how the algorithm seeks singular values and also for sorting the computed values. In contrast
to the case of EPS, computing singular values located in the interior part of the spectrum is
difficult, the only possibility is to use an EPS object combined with a spectral transformation
(this possibility is explained in detail in the next section). Note that in this case, the value of
which applies to the transformed spectrum.

4.4 Selecting the SVD Solver

The available methods for computing the partial SVD are shown in Table 4.2. These methods
can be classified in the following three groups:

• Solvers based on EPS. These solvers set up an EPS object internally, thus using the available
eigensolvers for solving the SVD problem. The two possible approaches in this case are
the cross product matrix and the cyclic matrix, as described in section 4.1.

• Specific SVD solvers. These are typically eigensolvers that have been adapted algorithmi-
cally to exploit the structure of the SVD problem. There are currently two solvers in this
category: Lanczos and thick-restart Lanczos. A detailed description of these methods can
be found in the slepc Technical Reports.

• The lapack solver. This is an interface to some LAPACK routines, analog to those in
the case of eigenproblems. These routines operate in dense mode with only one processor
and therefore are suitable only for moderate size problems. This solver should be used
only for debugging purposes.

The default solver is the one that uses the cross product matrix (cross), usually the fastest
and most memory-efficient approach. See a more detailed explanation below.

The solution method can be specified procedurally or via the command line. The application
programmer can set it by means of the command

SVDSetType(SVD svd,SVDType method);

— 44 —

Chapter 4. SVD: Singular Value Decomposition 4.4. Selecting the SVD Solver

Options

Method SVDType Database Name

Cross Product SVDCROSS cross

Cyclic Matrix SVDCYCLIC cyclic

Lanczos SVDLANCZOS lanczos

Thick-restart Lanczos SVDTRLANCZOS trlanczos

lapack solver SVDLAPACK lapack

Table 4.2: List of solvers available in the SVD module.

while the user writes the options database command -svd_type followed by the name of the
method (see table 4.2).

The EPS-based solvers deserve some additional comments. These SVD solvers work by
creating an EPS object internally and setting up an eigenproblem of type EPS_HEP. These solvers
implement the cross product matrix approach, Eq. 4.6, and the cyclic matrix approach, Eq. 4.8.
Therefore, the operator matrix associated to the EPS object will be A∗A in the case of the cross
solver and H(A) in the case of the cyclic solver.

In the case of the cross solver, the matrix A∗A is not built explicitly, since sparsity would
be lost. Instead, a shell matrix is created internally in the SVD object and passed to the EPS
object. In the case of the cyclic solver, the situation is different since H(A) is still a sparse
matrix. slepc gives the possibility to handle it implicitly as a shell matrix (the default), or
to create H(A) explicitly, that is, storing its elements in a distinct matrix. The function for
setting this option is

SVDCyclicSetExplicitMatrix(SVD svd,PetscTruth explicit);

The EPS object associated to the cross and cyclic SVD solvers is created with a set of
reasonable default parameters. However, it may sometimes be necessary to change some of the
EPS options such as the eigensolver. To allow application programmers to set any of the EPS
options directly within the code, the following routines are provided to extract the EPS context
from the SVD object,

SVDCrossGetEPS(SVD svd,EPS *eps);

SVDCyclicGetEPS(SVD svd,EPS *eps);

A more convenient way of changing EPS options is through the command-line. This is achieved
simply by prefixing the EPS options with -svd_ as in the following example:

$ program -svd_type cross -svd_eps_type lanczos

At this point, one may consider changing also the options of the ST object associated to the
EPS object in cross and cyclic SVD solvers, for example to compute singular values located
at the interior of the spectrum via a shift-and-invert transformation. This is indeed possible,
but some considerations have to be taken into account. When A∗A or H(A) are managed as
shell matrices, then the potential of the spectral transformation is limited seriously, because

— 45 —

4.5. Retrieving the Solution Chapter 4. SVD: Singular Value Decomposition

some of the required operations will not be defined (this is discussed briefly in sections 5.2 and
3.4.2). Therefore, computing interior singular values is more likely to be successful if using the
cyclic solver with explicit H(A) matrix. To illustrate this, here is a complicated command-line
example for computing singular values close to 12.0:

$ program -svd_type cyclic -svd_cyclic_explicitmatrix -svd_st_type sinvert

-svd_st_shift 12.0 -svd_st_ksp_type preonly -svd_st_pc_type lu

4.5 Retrieving the Solution

Once the call to SVDSolve is complete, all the data associated to the computed partial SVD is
kept internally in the SVD object. This information can be obtained by the calling program by
means of a set of functions described below.

As in the case of eigenproblems, the number of computed singular triplets depends on the
convergence and, therefore, it may be different from the number of solutions requested by the
user. So the first task is to find out how many solutions are available, with

SVDGetConverged(SVD svd,int *nconv);

Usually, the number of converged solutions, nconv, will be equal to nsv, but in general it
will be a number ranging from 0 to ncv (here, nsv and ncv are the arguments of function
SVDSetDimensions).

Normally, the user is interested in the singular values only, or the complete singular triplets.
The function

SVDGetSingularTriplet(SVD svd, int j, PetscReal *sigma, Vec u, Vec v);

returns the j-th computed singular triplet, (σj , uj , vj), where both uj and vj are normalized to
have unit norm. Typically, this function is called inside a loop for each value of j from 0 to
nconv–1. Note that singular values are ordered according to the same criterion specified with
function SVDSetWhichSingularTriplets for selecting the portion of the spectrum of interest.

In some applications, it may be enough to compute only the right singular vectors. This is
especially important in cases in which memory requirements are critical (remember that both
Uk and Vk are dense matrices, and Uk may require much more storage than Vk, see Figure 4.1).
In slepc, there is no general option for specifying this, but the default behavior of some solvers
is to compute only right vectors and allocate/compute left vectors only in the case that the user
requests them. This is done in the cross solver and in some special variants of other solvers
such as one-sided Lanczos (consult the slepc technical reports for specific solver options).

Reliability of the Computed Solution. In SVD computations, a-posteriori error bounds
are much the same as in the case of Hermitian eigenproblems, due to the equivalence discussed
in section 4.1. The residual vector is defined in terms of the cyclic matrix, H(A), so its norm is

‖r‖2 =
(
‖Aṽ − σ̃ũ‖22 + ‖A∗ũ− σ̃ṽ‖22

) 1
2 /

(
‖ũ‖22 + ‖ṽ‖22

) 1
2 , (4.9)

— 46 —

Chapter 4. SVD: Singular Value Decomposition 4.5. Retrieving the Solution

where σ̃, ũ and ṽ represent any of the nconv computed singular triplets delivered by SVD-
GetSingularTriplet.

Given the above definition, the following relation holds

|σ − σ̃| ≤ ‖r‖2 , (4.10)

where σ is an exact singular value. The following slepc function

SVDComputeResidualNorms(SVD svd,int j,PetscReal *norm1,PetscReal *norm2)

computes the two partial 2-norms separately, ‖Aṽ− σ̃ũ‖2 and ‖A∗ũ− σ̃ṽ‖2. The relative error
can be obtained with the following function:

SVDComputeRelativeError(SVD svd,int j,PetscReal *error);

Controlling and Monitoring Convergence. Similarly to the case of eigensolvers, in SVD
the number of iterations carried out by the solver can be determined with SVDGetItera-
tionNumber, and the tolerance and maximum number of iterations can be set with SVDSet-
Tolerances. Also, convergence can be monitored with command-line keys -svd_monitor or
-svd_monitor_draw. See section 2.5.3 for additional details.

— 47 —

4.5. Retrieving the Solution Chapter 4. SVD: Singular Value Decomposition

— 48 —

Chapter 5

Additional Information

This chapter contains miscellaneous information as a complement to the previous chapters,
which can be regarded as less important.

5.1 Supported PETSc Features

slepc relies on petsc for all the features that are not directly related to eigenvalue problems.
All the functionality associated to vectors and matrices as well as linear systems of equations is
provided by petsc. Also, low level details are inherited directly from petsc. In particular, the
parallelism within slepc methods is handled completely by petsc’s vector and matrix modules.

slepc only contains high level objects, as depicted in figure 1.1. These object classes have
been designed and implemented following the philosophy of other high level objects in petsc.
In this way, slepc benefits from a number of petsc’s good properties such as the following (see
petsc users guide for details):

• Portability and scalability in a wide range of platforms. Different architecture builds can
coexist in the same installation. Where available, dynamic libraries are used to reduce
disk space of executable files.

• Support for profiling of programs:

– Display performance statistics with -log_summary, including also slepc’s objects.
The collected data are flops and execution times as well as information about parallel
performance, for individual subroutines and the possibility of user-defined stages.

– Event logging, including user-defined events.
– Direct wall-clock timing with PetscGetTime.

49

5.2. Supported Matrix Types Chapter 5. Additional Information

– Display detailed profile information and trace of events.

• Convergence monitoring, both textual and graphical.

• Support for debugging of programs:

– Debugger startup and attachment of parallel processes.
– Automatic generation of back-traces of the call stack.
– Detection of memory leaks.

• A number of viewers for visualization of data, including built-in graphics capabilities
that allow for sparse pattern visualization, graphic convergence monitoring, operator’s
spectrum visualization and other user-defined operations.

• Easy handling of runtime options.

5.2 Supported Matrix Types

Methods implemented in EPS merely require vector operations and matrix-vector products. In
petsc, mathematical objects such as vectors and matrices have an interface that is independent
of the underlying data structures. slepc manipulates vectors and matrices via this interface and,
therefore, it can be used with any of the matrix representations provided by petsc, including
dense, sparse, block-diagonal and symmetric formats, either sequential or parallel.

The above statement must be reconsidered when using EPS in combination with ST. As
explained in chapter 3, in many cases the operator associated to a spectral transformation not
only consists in pure matrix-vector products but also other operations may be required as well,
most notably a linear system solve (see table 3.2). In this case, the limitation is that there must
be support for the requested operation for the selected matrix representation. For instance, if
one wants to use cholesky for the solution of the linear systems, then it may be necessary to
work with a symmetric matrix format such as MATSEQSBAIJ.

Shell Matrices. In many applications, the matrices that define the eigenvalue problem are
not available explicitly. Instead, the user knows a way of applying these matrices to a vector.

An intermediate case is when the matrices have some block structure and the different
blocks are stored separately. There are numerous situations in which this occurs, such as the
discretization of equations with a mixed finite-element scheme. An example is the eigenproblem
arising in the stability analysis associated with Stokes problems,[

A C

C∗ 0

] [
x

p

]
= λ

[
B 0
0 0

] [
x

p

]
, (5.1)

where x and p denote the velocity and pressure fields. Similar formulations also appear in many
other situations, such as the quadratic eigenvalue problem, see Eq. 2.9.

— 50 —

Chapter 5. Additional Information 5.3. Extending SLEPc

Many of these problems can be solved by reformulating them as a reduced-order standard
or generalized eigensystem, in which the matrices are equal to certain operations of the blocks.
These matrices are not computed explicitly to avoid losing sparsity.

All these cases can be easily handled in slepc by means of shell matrices. These are matrices
that do not require explicit storage of the component values. Instead, the user must provide
subroutines for all the necessary matrix operations, typically only the application of the linear
operator to a vector.

Shell matrices, also called matrix-free matrices, are created in petsc with the command
MatCreateShell. Then, the function MatShellSetOperation is used to provide any user-
defined shell matrix operations (see the petsc documentation for additional details). Several
examples are available in slepc that illustrate how to solve a matrix-free eigenvalue problem.

In the simplest case, defining matrix-vector product operations (MATOP_MULT) is enough for
using EPS with shell matrices. However, in the case of generalized problems, if matrix B is also
a shell matrix then it may be necessary to define other operations in order to be able to solve
the linear system successfully, for example MATOP_GET_DIAGONAL to use Jacobi preconditioning.
On the other hand, if the shift-and-invert ST is to be used, then in addition it may also be
necessary to define MATOP_SHIFT or MATOP_AXPY (see section 3.4.2 for discussion).

In the case of SVD, both A and A∗ are required to solve the problem. So when computing
the SVD, the shell matrix needs to have the MATOP_MULT_TRANSPOSE operation in addition to
MATOP_MULT. Alternatively, if A∗ is to be built explicitly, MATOP_TRANSPOSE is then the required
operation (for details see the manual page for SVDSetTransposeMode).

5.3 Extending SLEPc

Shell matrices are a simple mechanism of extensibility, in the sense that the package is extended
with new user-defined matrix objects. Once the new matrix has been defined, it can be used
by slepc in the same way as the rest of the matrices as long as the required operations are
provided.

A similar mechanism is available in slepc also for extending the system incorporating new
spectral transformations (ST). This is done by using the STSHELL spectral transformation type,
in a similar way as shell matrices or shell preconditioners. In this case, the user defines how the
operator is applied to a vector and optionally how the computed eigenvalues are transformed
back to the solution of the original problem (see section 5.3 for details). This tool is intended
for simple spectral transformations. For more sophisticated transformations, the user should
register a new ST type (see below).

At least, user-defined spectral transformations have to define how the operator is to be
applied to a vector. Optionally, they can also specify the way in which computed eigenvalues
must be transformed back to the solution of the original eigenproblem. An example program
is provided in the slepc distribution in order to illustrate the use of shell transformations.

The function

STShellSetApply(ST,int(*)(void*,Vec,Vec),void*);

— 51 —

5.4. Directory Structure Chapter 5. Additional Information

has to be invoked after the creation of the ST object in order to provide a routine that applies
the operator to a vector. And the function

STShellSetBackTransform(ST,int(*)(void*,PetscScalar*,PetscScalar*));

can be used optionally to specify the routine for the back-transformation of eigenvalues. The
two functions provided by the user receive a pointer to a user-defined context that can con-
tain any useful information. This context must be passed as the last argument in the call to
STShellSetApply.

Finally, the application programmer can use the following function

STShellSetName(ST,char*);

to specify a name for the new shell transformation in order to identify it in the program’s output
(STView).

slepc further supports extensibility by allowing application programmers to code their own
subroutines for unimplemented features such as new eigensolvers or new spectral transforma-
tions. It is possible to register these new methods to the system and use them as the rest of
standard subroutines. For example, to implement a variant of the Subspace Iteration method,
one could copy the slepc code associated to the subspace solver, modify it and register a new
EPS type with the following line of code

EPSRegister("newsubspace",0,"EPSCreate_NEWSUB",EPSCreate_NEWSUB);

After this call, the new solver could be used in the same way as the rest of slepc solvers. For
instance,

$ program -eps_type newsubspace

EPSRegister can be used to register new types whose code is linked into the executable.
To register types in a dynamic library use EPSRegisterDynamic.

A similar mechanism is available for registering new types of classes ST and SVD.

5.4 Directory Structure

The directory structure of the slepc software is very similar to that in petsc. The root directory
of slepc contains the following directories:

bmake - Base slepc makefile directory. Includes subdirectories for each value of PETSC_ARCH.

config - slepc configuration files.

docs - All documentation for slepc, including this manual. The subdirectory manualpages
contains the on-line manual pages of each slepc routine.

include - All include files for slepc that are public.

— 52 —

Chapter 5. Additional Information 5.5. Wrappers to External Libraries

include/finclude - slepc include files for Fortran programmers using the .F suffix.

lib - Location of all the generated libraries for each value of PETSC_ARCH.

src - The source code for all slepc components, which currently includes:

sys - general system-related routines.
eps - eigenvalue problem solver.
st - spectral transformation.
svd - singular value decomposition solver.
ip - inner product, for developer use only.
examples - example programs.
mat/examples - matrices used by some examples.

Each slepc source code component directory has the following subdirectories:

interface - The calling sequences for the abstract interface to the components. Code here
does not know about particular implementations.

impls - Source code for one or more implementations.

5.5 Wrappers to External Libraries

slepc interfaces to several external libraries for the solution of eigenvalue problems. This section
provides a short description of each of these packages as well as some hints for using them with
slepc, including pointers to the respective websites from which the software can be downloaded.
The description may also include method-specific parameters, that can be set in the same way
as other slepc options, either procedurally or via the command-line.

slepc uses a configuration and makefile system very similar to that of petsc. All platform
specific setting are taken directly from the petsc installation. In order to use slepc together
with an external library such as arpack, this external software must be enabled during config-
uration of slepc.

To use these eigensolvers, one needs to do the following.

1. Install the external software, with the same compilers and MPI that will be used for
petsc/slepc.

2. Enable the utilization of the external software from slepc by adding specific command-
line parameters when executing config/configure.py. For example, to use arpack,
specify the following options (with the appropriate paths):

config/configure.py --with-arpack-dir=/usr/software/ARPACK

--with-arpack-flags=-lparpack,-larpack

3. Build the slepc libraries.

— 53 —

5.5. Wrappers to External Libraries Chapter 5. Additional Information

4. Use the runtime option -eps_type <type> to select the solver.

Exceptions to the above rule are lapack and blopex, which should be enabled during
petsc’s configuration.

lapack

References. [Anderson et al., 1992].

Website. http://www.netlib.org/lapack.

Version. 3.0 or later.

Summary. lapack (Linear Algebra PACKage) is a software package for the solution of many
different dense linear algebra problems, including various types of eigenvalue problems
and singular value decompositions.

slepc explicitly creates the operator matrix in dense form and then the appropriate
lapack driver routine is invoked. Therefore, this interface should be used only for testing
and validation purposes and not in a production code. The operator matrix is created by
applying the operator to the columns of the identity matrix.

Installation. The slepc interface to lapack can be used directly.

arpack

References. [Lehoucq et al., 1998], [Maschhoff and Sorensen, 1996].

Website. http://www.caam.rice.edu/software/ARPACK.

Version. Release 2 (plus patches).

Summary. arpack (ARnoldi PACKage) is a software package for the computation of a few
eigenvalues and corresponding eigenvectors of a general n × n matrix A. It is most
appropriate for large sparse or structured matrices, where structured means that a matrix-
vector product w ← Av requires order n rather than the usual order n2 floating point
operations.

arpack is based upon an algorithmic variant of the Arnoldi process called the Implicitly
Restarted Arnoldi Method (IRAM). When the matrix A is symmetric it reduces to a
variant of the Lanczos process called the Implicitly Restarted Lanczos Method (IRLM).
These variants may be viewed as a synthesis of the Arnoldi/Lanczos process with the
Implicitly Shifted QR technique that is suitable for large scale problems.

It can be used for standard and generalized eigenvalue problems, both in real and complex
arithmetic. It is implemented in Fortran 77 and it is based on the reverse communica-
tion interface. A parallel version, parpack, is available with support for both MPI and
BLACS.

— 54 —

http://www.netlib.org/lapack
http://www.caam.rice.edu/software/ARPACK

Chapter 5. Additional Information 5.5. Wrappers to External Libraries

Installation. First of all, unpack arpack96.tar.gz and also the patch file patch.tar.gz. If
arpack is to be used with more than one processor, then it is necessary to uncompress
also the contents of the file parpack96.tar.gz together with the patches ppatch.tar.gz.
Make sure you delete any mpif.h files that could exist in the directory tree. After setting
all the directories, modify the ARmake.inc file and then compile the software with make
all. It is recommended that arpack is installed with its own lapack version since it
may give unexpected results with more recent versions of lapack.

primme

References. [Stathopoulos, 2007].

Website. http://www.cs.wm.edu/~andreas/software.

Version. 1.1.

Summary. primme (PReconditioned Iterative MultiMethod Eigensolver) is a C library for
finding a number of eigenvalues and their corresponding eigenvectors of a real symmetric
(or complex Hermitian) matrix. This library provides a multimethod eigensolver, based on
Davidson/Jacobi-Davidson. Particular methods include GD+1, JDQMR, and LOBPCG.
It supports preconditioning as well as the computation of interior eigenvalues.

Installation. Type make lib after customizing the file Make_flags appropriately.

Specific options. The slepc interface to this package allows the user to specify the maximum
allowed block size with the function EPSPRIMMESetBlockSize or at run time with the
option -eps_primme_block_size <size>.

For changing the particular algorithm within primme, use the function EPSPRIMMESet-
Method. Other options related to the method are the use of preconditioning (with function
EPSPRIMMESetPrecond) and the restarting strategy (EPSPRIMMESetRestart).

blzpack

References. [Marques, 1995].

Website. http://crd.lbl.gov/~osni/#Software.

Version. 04/00.

Summary. blzpack (Block LancZos PACKage) is a standard Fortran 77 implementation of
the block Lanczos algorithm intended for the solution of the standard eigenvalue problem
Ax = µx or the generalized eigenvalue problem Ax = µBx, where A and B are real, sparse
symmetric matrices. The development of this eigensolver was motivated by the need to
solve large, sparse, generalized problems from free vibration analysis in structural engi-
neering. Several upgrades were performed afterwards aiming at the solution of eigenvalue
problems from a wider range of applications.

— 55 —

http://www.cs.wm.edu/~andreas/software
http://crd.lbl.gov/~osni/#Software

5.5. Wrappers to External Libraries Chapter 5. Additional Information

blzpack uses a combination of partial and selective re-orthogonalization strategies. It
can be run in either sequential or parallel mode, by means of MPI or PVM interfaces, and
it uses the reverse communication strategy.

Installation. For the compilation of the libblzpack.a library, first check the appropriate
architecture file in the directory sys/MACROS and then type creator -mpi.

Specific options. The slepc interface to this package allows the user to specify the block size
with the function EPSBlzpackSetBlockSize or at run time with the option -eps_blzpack_
block_size <size>. Also, the function EPSBlzpackSetNSteps can be used to set the
maximum number of steps per run (also with -eps_blzpack_nsteps).

For the spectrum slicing feature, slepc allows the programmer to provide the computa-
tional interval with the option -eps_blzpack_interval, or with the function EPSBlz-
packSetInterval in the program source.

trlan

References. [Wu and Simon, 2001].

Website. http://crd.lbl.gov/~kewu/trlan.html.

Summary. This package provides a Fortran 90 implementation of the dynamic thick-restart
Lanczos algorithm. This is a specialized version of Lanczos that targets only the case in
which one wants both eigenvalues and eigenvectors of a large real symmetric eigenvalue
problem that cannot use the shift-and-invert scheme. In this case the standard non-
restarted Lanczos algorithm requires to store a large number of Lanczos vectors, what
can cause storage problems and make each iteration of the method very expensive.

trlan requires the user to provide a matrix-vector multiplication routine. The parallel
version uses MPI as the message passing layer.

Installation. To install this package, it is necessary to have access to a Fortran 90 compiler.
The compiler name and the options used are specified in the file called Make.inc. To
generate the library, type make libtrlan_mpi.a in the TRLan directory.

blopex

References. [Knyazev, 2001].

Website. http://www-math.cudenver.edu/~aknyazev/software/BLOPEX.

Summary. blopex is a package that implements the Locally Optimal Block Preconditioned
Conjugate Gradient (LOBPCG) method for computing several extreme eigenpairs of
symmetric positive generalized eigenproblems. Numerical comparisons suggest that this
method is a genuine analog for eigenproblems of the standard preconditioned conjugate
gradient method for symmetric linear systems.

Installation. In order to use blopex from slepc, it is a prior requirement that petsc has been
configured with ./config/configure.py --download-hypre --download-blopex.

— 56 —

http://crd.lbl.gov/~kewu/trlan.html
http://www-math.cudenver.edu/~aknyazev/software/BLOPEX

Chapter 5. Additional Information 5.6. Fortran Interface

5.6 Fortran Interface

slepc provides an interface for Fortran 77 programmers, very much like petsc. As in the
case of petsc, there are slight differences between the C and Fortran slepc interfaces, due to
differences in Fortran syntax. For instance, the error checking variable is the final argument of
all the routines in the Fortran interface, in contrast to the C convention of providing the error
variable as the routine’s return value.

The following code is a sample program written in Fortran 77. It is the Fortran equivalent of
the program given in section 1.4.1 and can be found in ${SLEPC_DIR}/src/examples/ex1f.F.

! -
! SLEPc - Scalable Library for Eigenvalue Problem Computations
! Copyright (c) 2002-2007, Universidad Politecnica de Valencia, Spain
!

5 ! This file is part of SLEPc. See the README file for conditions of use
! and additional information.
! -
!
! Program usage: mpirun -np n ex1f [-help] [-n <n>] [all SLEPc options]

10 !
! Description: Simple example that solves an eigensystem with the EPS object.
! The standard symmetric eigenvalue problem to be solved corresponds to the
! Laplacian operator in 1 dimension.
!

15 ! The command line options are:
! -n <n>, where <n> = number of grid points = matrix size
!
! --
!

20 program main
implicit none

#include "finclude/petsc.h"
#include "finclude/petscvec.h"

25 #include "finclude/petscmat.h"
#include "finclude/slepc.h"
#include "finclude/slepceps.h"

! -
30 ! Declarations

! -
!
! Variables:
! A operator matrix

35 ! eps eigenproblem solver context

Mat A
EPS eps
EPSType type

40 PetscReal tol, error
PetscScalar kr, ki
integer rank, n, nev, ierr, maxit, i, its, nconv
integer col(3), Istart, Iend
PetscTruth flg

45 PetscScalar value(3)

! -
! Beginning of program
! -

— 57 —

5.6. Fortran Interface Chapter 5. Additional Information

50

call SlepcInitialize(PETSC_NULL_CHARACTER,ierr)
call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr)
n = 30
call PetscOptionsGetInt(PETSC_NULL_CHARACTER,’-n’,n,flg,ierr)

55

if (rank .eq. 0) then
write(*,100) n

endif
100 format (/’1-D Laplacian Eigenproblem, n =’,I3,’ (Fortran)’)

60

! -
! Compute the operator matrix that defines the eigensystem, Ax=kx
! -

65 call MatCreate(PETSC_COMM_WORLD,A,ierr)
call MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n,ierr)
call MatSetFromOptions(A,ierr)

call MatGetOwnershipRange(A,Istart,Iend,ierr)
70 if (Istart .eq. 0) then

i = 0
col(1) = 0
col(2) = 1
value(1) = 2.0

75 value(2) = -1.0
call MatSetValues(A,1,i,2,col,value,INSERT_VALUES,ierr)
Istart = Istart+1

endif
if (Iend .eq. n) then

80 i = n-1
col(1) = n-2
col(2) = n-1
value(1) = -1.0
value(2) = 2.0

85 call MatSetValues(A,1,i,2,col,value,INSERT_VALUES,ierr)
Iend = Iend-1

endif
value(1) = -1.0
value(2) = 2.0

90 value(3) = -1.0
do i=Istart,Iend-1

col(1) = i-1
col(2) = i
col(3) = i+1

95 call MatSetValues(A,1,i,3,col,value,INSERT_VALUES,ierr)
enddo

call MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY,ierr)
call MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY,ierr)

100

! -
! Create the eigensolver and display info
! -

105 ! ** Create eigensolver context
call EPSCreate(PETSC_COMM_WORLD,eps,ierr)

! ** Set operators. In this case, it is a standard eigenvalue problem
call EPSSetOperators(eps,A,PETSC_NULL_OBJECT,ierr)

110 call EPSSetProblemType(eps,EPS_HEP,ierr)

! ** Set solver parameters at runtime

— 58 —

Chapter 5. Additional Information 5.6. Fortran Interface

call EPSSetFromOptions(eps,ierr)

115 ! -
! Solve the eigensystem
! -

call EPSSolve(eps,ierr)
120 call EPSGetIterationNumber(eps,its,ierr)

if (rank .eq. 0) then
write(*,110) its

endif
110 format (/’ Number of iterations of the method:’,I4)

125

! ** Optional: Get some information from the solver and display it
call EPSGetType(eps,type,ierr)
if (rank .eq. 0) then

write(*,120) type
130 endif

120 format (’ Solution method: ’,A)
call EPSGetDimensions(eps,nev,PETSC_NULL_INTEGER,ierr)
if (rank .eq. 0) then

write(*,130) nev
135 endif

130 format (’ Number of requested eigenvalues:’,I2)
call EPSGetTolerances(eps,tol,maxit,ierr)
if (rank .eq. 0) then

write(*,140) tol, maxit
140 endif

140 format (’ Stopping condition: tol=’,1P,E10.4,’, maxit=’,I4)

! -
! Display solution and clean up

145 ! -

! ** Get number of converged eigenpairs
call EPSGetConverged(eps,nconv,ierr)
if (rank .eq. 0) then

150 write(*,150) nconv
endif

150 format (’ Number of converged eigenpairs:’,I2/)

! ** Display eigenvalues and relative errors
155 if (nconv.gt.0) then

if (rank .eq. 0) then
write(*,*) ’ k ||Ax-kx||/||kx||’
write(*,*) ’ ----------------- ------------------’

endif
160 do i=0,nconv-1

! ** Get converged eigenpairs: i-th eigenvalue is stored in kr
! ** (real part) and ki (imaginary part)

call EPSGetEigenpair(eps,i,kr,ki,PETSC_NULL,PETSC_NULL,ierr)

165 ! ** Compute the relative error associated to each eigenpair
call EPSComputeRelativeError(eps,i,error,ierr)
if (rank .eq. 0) then

write(*,160) PetscRealPart(kr), error
endif

170 160 format (1P,’ ’,E12.4,’ ’,E12.4)

enddo
if (rank .eq. 0) then

write(*,*)
175 endif

— 59 —

5.6. Fortran Interface Chapter 5. Additional Information

endif

! ** Free work space
call EPSDestroy(eps,ierr)

180 call MatDestroy(A,ierr)

call SlepcFinalize(ierr)
end

— 60 —

Bibliography

Anderson, E., Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen (1992). LAPACK User’s Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Bai, Z., J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst (eds.) (2000). Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Balay, S., K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, B. F.
Smith, and H. Zhang (2007). PETSc Users Manual. Technical Report ANL-95/11 - Revision 2.3.3,
Argonne National Laboratory.

Balay, S., W. D. Gropp, L. C. McInnes, and B. F. Smith (1997). Efficient Management of Parallelism
in Object Oriented Numerical Software Libraries. In Modern Software Tools in Scientific Computing
(edited by E. Arge, A. M. Bruaset, and H. P. Langtangen), pp. 163–202. Birkhaüser.

Björck, Å. (1996). Numerical Methods for Least Squares Problems. Society for Industrial and Applied
Mathematics, Philadelphia.

Canning, A., L. W. Wang, A. Williamson, and A. Zunger (2000). Parallel Empirical Pseudopotential
Electronic Structure Calculations for Million Atom Systems. J. Comput. Phys., 160(1):29–41.

Ericsson, T. and A. Ruhe (1980). The Spectral Transformation Lanczos Method for the Numerical
Solution of Large Sparse Generalized Symmetric Eigenvalue Problems. Math. Comp., 35(152):1251–
1268.

Golub, G. H. and H. A. van der Vorst (2000). Eigenvalue Computation in the 20th Century. J. Comput.
Appl. Math., 123(1-2):35–65.

Hansen, P. C. (1998). Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear
Inversion. Society for Industrial and Applied Mathematics, Philadelphia, PA.

Knyazev, A. V. (2001). Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block
Preconditioned Conjugate Gradient Method. SIAM J. Sci. Statist. Comput., 23(2):517–541.

61

Bibliography

Lehoucq, R. B. and A. G. Salinger (2001). Large-Scale Eigenvalue Calculations for Stability Analysis
of Steady Flows on Massively Parallel Computers. International Journal for Numerical Methods in
Fluids, 36:309–327.

Lehoucq, R. B., D. C. Sorensen, and C. Yang (1998). ARPACK Users’ Guide, Solution of Large-Scale
Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Marques, O. A. (1995). BLZPACK: Description and User’s Guide. Technical Report TR/PA/95/30,
CERFACS, Toulouse, France.

Maschhoff, K. J. and D. C. Sorensen (1996). PARPACK: An Efficient Portable Large Scale Eigenvalue
Package for Distributed Memory Parallel Architectures. Lect. Notes Comp. Sci., 1184:478–486.

Meerbergen, K. and A. Spence (1997). Implicitly Restarted Arnoldi with Purification for the Shift-
Invert Transformation. Math. Comp., 66(218):667–689.

Meerbergen, K., A. Spence, and D. Roose (1994). Shift-invert and Cayley Transforms for Detection of
Rightmost Eigenvalues of Nonsymmetric Matrices. BIT , 34(3):409–423.

MPI Forum (1994). MPI: a Message-Passing Interface Standard. Int. J. Supercomp. Applic. High Perf.
Comp., 8(3/4):159–416.

Nour-Omid, B., B. N. Parlett, T. Ericsson, and P. S. Jensen (1987). How to Implement the Spectral
Transformation. Math. Comp., 48(178):663–673.

Parlett, B. N. (1980). The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, NJ.
Reissued with revisions by SIAM, Philadelphia, 1998.

Saad, Y. (1992). Numerical Methods for Large Eigenvalue Problems: Theory and Algorithms. John
Wiley and Sons, New York.

Scott, D. S. (1982). The Advantages of Inverted Operators in Rayleigh-Ritz Approximations. SIAM J.
Sci. Statist. Comput., 3(1):68–75.

Stathopoulos, A. (2007). Nearly Optimal Preconditioned Methods for Hermitian Eigenproblems under
Limited Memory. Part I: Seeking One Eigenvalue. SIAM J. Sci. Comput., 29(2):481–514.

Stewart, G. W. (2001). Matrix Algorithms. Volume II: Eigensystems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA.

Wu, K. and H. Simon (2001). Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems.
SIAM J. Matrix Anal. Appl., 22(2):602–616.

— 62 —

Bibliography

SLEPc Technical Reports (Note: these reports are available through the slepc web site.)

[STR-1] V. Hernández, J. E. Román, A. Tomás, V. Vidal. “Orthogonalization Routines in slepc.”

[STR-2] V. Hernández, J. E. Román, A. Tomás, V. Vidal. “Single Vector Iteration Methods in slepc.”

[STR-3] V. Hernández, J. E. Román, A. Tomás, V. Vidal. “Subspace Iteration in slepc.”

[STR-4] V. Hernández, J. E. Román, A. Tomás, V. Vidal. “Arnoldi Methods in slepc.”

[STR-5] V. Hernández, J. E. Román, A. Tomás, V. Vidal. “Lanczos Methods in slepc.”

[STR-6] V. Hernández, J. E. Román, A. Tomás, V. Vidal. “A Survey of Software for Sparse Eigenvalue
Problems.”

[STR-7] V. Hernández, J. E. Román, A. Tomás, V. Vidal. “Krylov-Schur Methods in slepc.”

[STR-8] V. Hernández, J. E. Román, A. Tomás. “Restarted Lanczos Bidiagonalization for the SVD in
slepc.”

— 63 —

http://www.grycap.upv.es/slepc

Bibliography

— 64 —

Index

arpack, i, 2, 20, 53–55
blas, 1
blopex, 20, 54, 56
blzpack, 20, 55, 56
lapack, 20, 44, 45, 54, 55
mpich, 7
parpack, 54
petsc, ii, 2–7, 10–13, 15, 17, 26, 28, 33–35, 43,

49–54, 56, 57
primme, 20, 55
trlan, 20, 56
EPSAttachDeflationSpace, 26
EPSBlzpackSetBlockSize, 56
EPSBlzpackSetInterval, 56
EPSBlzpackSetNSteps, 56
EPSComputeRelativeError, 23, 24
EPSComputeResidualNorm, 23
EPSCreate, 11, 15, 16
EPSDestroy, 11, 15, 17
EPSGetConverged, 11, 16, 21
EPSGetEigenpair, 11, 16, 21, 22
EPSGetErrorEstimate, 24
EPSGetInvariantSubspace, 23
EPSGetIterationNumber, 24
EPSGetST, 17, 28
EPSIsGeneralized, 18
EPSIsHermitian, 18
EPSMonitorSet, 24
EPSPRIMMESetBlockSize, 55
EPSPRIMMESetMethod, 55
EPSPRIMMESetPrecond, 55

EPSPRIMMESetRestart, 55
EPSProblemType, 18
EPSRegisterDynamic, 52
EPSRegister, 52
EPSSetDimensions, 18, 21
EPSSetFromOptions, 11, 15, 17
EPSSetInitialVector, 25
EPSSetOperators, 11, 16, 18
EPSSetProblemType, 11, 16–18, 36, 42
EPSSetTolerances, 17, 24
EPSSetType, 20
EPSSetUp, 17
EPSSetWhichEigenpairs, 19, 21, 26, 44
EPSSolve, 11, 16, 17, 21, 25
EPSType, 20
EPSView, 15, 17
EPS_HEP, 45
EPS_PGNHEP, 37
EPS, 10, 11, 13, 15–18, 20, 21, 24, 26–28, 30,

33, 34, 39, 41, 42, 44, 45, 50–52
IPInnerProduct, 36
KSP, 13, 15, 17, 29, 33, 34
MATOP_AXPY, 51
MATOP_GET_DIAGONAL, 35, 51
MATOP_MULT_TRANSPOSE, 51
MATOP_MULT, 51
MATOP_SHIFT, 51
MATOP_TRANSPOSE, 51
MatAXPY, 35
MatCreateShell, 17, 35, 51
MatMultTranspose, 43

65

Index

MatSetValues, 11
MatShellSetOperation, 51
MatShift, 35
PC, 28
PETSC_ARCH, 5, 6
PETSC_COMM_SELF, 7
PETSC_COMM_WORLD, 7
PETSC_DIR, 5, 6
PetscFinalize, 7
PetscGetTime, 49
PetscInitialize, 7
PetscScalar, 6
SLEPC_DIR, 5, 6
STApply, 28, 36
STBackTransform, 30–33
STCayleySetAntishift, 32
STCreate, 28
STDestroy, 28
STFoldSetLeftSide, 31
STGetKSP, 34
STSHELL, 51
STSetFromOptions, 28
STSetMatMode, 35
STSetMatStructure, 35
STSetShift, 28
STSetType, 28
STSetUp, 28
STShellSetApply, 51, 52
STShellSetBackTransform, 52
STShellSetName, 52
STType, 29
STView, 28, 52
ST, 11, 17, 27–29, 33, 45, 50–52
SVDComputeRelativeError, 47
SVDComputeResidualNorms, 47
SVDCreate, 42
SVDCrossGetEPS, 45
SVDCyclicGetEPS, 45
SVDCyclicSetExplicitMatrix, 45
SVDDestroy, 42
SVDGetConverged, 42, 46
SVDGetIterationNumber, 47

SVDGetSingularTriplet, 42, 46
SVDSetDimensions, 43, 46
SVDSetOperator, 42, 43
SVDSetTolerances, 47
SVDSetTransposeMode, 43, 51
SVDSetType, 44
SVDSetWhichSingularTriplets, 46
SVDSolve, 42, 46
SVDType, 45
SVD, 39, 42, 45–47, 51, 52
SlepcFinalize, 7
SlepcInitialize, 7

— 66 —

	1 Getting Started
	1.1 SLEPc and PETSc
	1.2 Installation
	1.3 Running SLEPc Programs
	1.4 Writing SLEPc Programs
	1.4.1 Simple SLEPc Example
	1.4.2 Writing Application Codes with SLEPc

	2 EPS: Eigenvalue Problem Solver
	2.1 Eigenvalue Problems
	2.2 Basic Usage
	2.3 Defining the Problem
	2.4 Selecting the Eigensolver
	2.5 Retrieving the Solution
	2.5.1 The Computed Solution
	2.5.2 Reliability of the Computed Solution
	2.5.3 Controlling and Monitoring Convergence

	2.6 Advanced Usage
	2.6.1 Initial Vectors
	2.6.2 Dealing with Deflation Subspaces
	2.6.3 Orthogonalization

	3 ST: Spectral Transformation
	3.1 General Description
	3.2 Basic Usage
	3.3 Available Transformations
	3.3.1 Shift of Origin
	3.3.2 Spectrum Folding
	3.3.3 Shift-and-invert
	3.3.4 Cayley

	3.4 Advanced Usage
	3.4.1 Solution of Linear Systems
	3.4.2 Explicit Computation of Coefficient Matrix
	3.4.3 Preserving the Symmetry in Generalized Eigenproblems
	3.4.4 Purification of Eigenvectors

	4 SVD: Singular Value Decomposition
	4.1 The Singular Value Decomposition
	4.2 Basic Usage
	4.3 Defining the Problem
	4.4 Selecting the SVD Solver
	4.5 Retrieving the Solution

	5 Additional Information
	5.1 Supported PETSc Features
	5.2 Supported Matrix Types
	5.3 Extending SLEPc
	5.4 Directory Structure
	5.5 Wrappers to External Libraries
	5.6 Fortran Interface

	Bibliography
	Index

