Actual source code: rginterval.c

slepc-3.22.2 2024-12-02
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    Interval of the real axis or more generally a (possibly open) rectangle
 12:    of the complex plane
 13: */

 15: #include <slepc/private/rgimpl.h>
 16: #include <petscdraw.h>

 18: typedef struct {
 19:   PetscReal   a,b;     /* interval in the real axis */
 20:   PetscReal   c,d;     /* interval in the imaginary axis */
 21: } RG_INTERVAL;

 23: static PetscErrorCode RGIntervalSetEndpoints_Interval(RG rg,PetscReal a,PetscReal b,PetscReal c,PetscReal d)
 24: {
 25:   RG_INTERVAL *ctx = (RG_INTERVAL*)rg->data;

 27:   PetscFunctionBegin;
 28:   PetscCheck(a || b || c || d,PetscObjectComm((PetscObject)rg),PETSC_ERR_ARG_WRONG,"At least one argument must be nonzero");
 29:   PetscCheck(a!=b || !a,PetscObjectComm((PetscObject)rg),PETSC_ERR_ARG_WRONG,"Badly defined interval, endpoints must be distinct (or both zero)");
 30:   PetscCheck(a<=b,PetscObjectComm((PetscObject)rg),PETSC_ERR_ARG_WRONG,"Badly defined interval, must be a<b");
 31:   PetscCheck(c!=d || !c,PetscObjectComm((PetscObject)rg),PETSC_ERR_ARG_WRONG,"Badly defined interval, endpoints must be distinct (or both zero)");
 32:   PetscCheck(c<=d,PetscObjectComm((PetscObject)rg),PETSC_ERR_ARG_WRONG,"Badly defined interval, must be c<d");
 33: #if !defined(PETSC_USE_COMPLEX)
 34:   PetscCheck(c==-d,PetscObjectComm((PetscObject)rg),PETSC_ERR_ARG_WRONG,"In real scalars the region must be symmetric wrt real axis");
 35: #endif
 36:   ctx->a = a;
 37:   ctx->b = b;
 38:   ctx->c = c;
 39:   ctx->d = d;
 40:   PetscFunctionReturn(PETSC_SUCCESS);
 41: }

 43: /*@
 44:    RGIntervalSetEndpoints - Sets the parameters defining the interval region.

 46:    Logically Collective

 48:    Input Parameters:
 49: +  rg  - the region context
 50: .  a - left endpoint of the interval in the real axis
 51: .  b - right endpoint of the interval in the real axis
 52: .  c - bottom endpoint of the interval in the imaginary axis
 53: -  d - top endpoint of the interval in the imaginary axis

 55:    Options Database Keys:
 56: .  -rg_interval_endpoints - the four endpoints

 58:    Note:
 59:    The region is defined as [a,b]x[c,d]. Particular cases are an interval on
 60:    the real axis (c=d=0), similar for the imaginary axis (a=b=0), the whole
 61:    complex plane (a=-inf,b=inf,c=-inf,d=inf), and so on.

 63:    When PETSc is built with real scalars, the region must be symmetric with
 64:    respect to the real axis.

 66:    Level: advanced

 68: .seealso: RGIntervalGetEndpoints()
 69: @*/
 70: PetscErrorCode RGIntervalSetEndpoints(RG rg,PetscReal a,PetscReal b,PetscReal c,PetscReal d)
 71: {
 72:   PetscFunctionBegin;
 78:   PetscTryMethod(rg,"RGIntervalSetEndpoints_C",(RG,PetscReal,PetscReal,PetscReal,PetscReal),(rg,a,b,c,d));
 79:   PetscFunctionReturn(PETSC_SUCCESS);
 80: }

 82: static PetscErrorCode RGIntervalGetEndpoints_Interval(RG rg,PetscReal *a,PetscReal *b,PetscReal *c,PetscReal *d)
 83: {
 84:   RG_INTERVAL *ctx = (RG_INTERVAL*)rg->data;

 86:   PetscFunctionBegin;
 87:   if (a) *a = ctx->a;
 88:   if (b) *b = ctx->b;
 89:   if (c) *c = ctx->c;
 90:   if (d) *d = ctx->d;
 91:   PetscFunctionReturn(PETSC_SUCCESS);
 92: }

 94: /*@
 95:    RGIntervalGetEndpoints - Gets the parameters that define the interval region.

 97:    Not Collective

 99:    Input Parameter:
100: .  rg - the region context

102:    Output Parameters:
103: +  a - left endpoint of the interval in the real axis
104: .  b - right endpoint of the interval in the real axis
105: .  c - bottom endpoint of the interval in the imaginary axis
106: -  d - top endpoint of the interval in the imaginary axis

108:    Level: advanced

110: .seealso: RGIntervalSetEndpoints()
111: @*/
112: PetscErrorCode RGIntervalGetEndpoints(RG rg,PetscReal *a,PetscReal *b,PetscReal *c,PetscReal *d)
113: {
114:   PetscFunctionBegin;
116:   PetscUseMethod(rg,"RGIntervalGetEndpoints_C",(RG,PetscReal*,PetscReal*,PetscReal*,PetscReal*),(rg,a,b,c,d));
117:   PetscFunctionReturn(PETSC_SUCCESS);
118: }

120: static PetscErrorCode RGView_Interval(RG rg,PetscViewer viewer)
121: {
122:   RG_INTERVAL    *ctx = (RG_INTERVAL*)rg->data;
123:   PetscBool      isdraw,isascii;
124:   int            winw,winh;
125:   PetscDraw      draw;
126:   PetscDrawAxis  axis;
127:   PetscReal      a,b,c,d,ab,cd,lx,ly,w,scale=1.2;

129:   PetscFunctionBegin;
130:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw));
131:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
132:   if (isascii) PetscCall(PetscViewerASCIIPrintf(viewer,"  region: [%g,%g]x[%g,%g]\n",RGShowReal(ctx->a),RGShowReal(ctx->b),RGShowReal(ctx->c),RGShowReal(ctx->d)));
133:   else if (isdraw) {
134:     PetscCall(PetscViewerDrawGetDraw(viewer,0,&draw));
135:     PetscCall(PetscDrawCheckResizedWindow(draw));
136:     PetscCall(PetscDrawGetWindowSize(draw,&winw,&winh));
137:     winw = PetscMax(winw,1); winh = PetscMax(winh,1);
138:     PetscCall(PetscDrawClear(draw));
139:     PetscCall(PetscDrawSetTitle(draw,"Interval region"));
140:     PetscCall(PetscDrawAxisCreate(draw,&axis));
141:     a  = ctx->a*rg->sfactor;
142:     b  = ctx->b*rg->sfactor;
143:     c  = ctx->c*rg->sfactor;
144:     d  = ctx->d*rg->sfactor;
145:     lx = b-a;
146:     ly = d-c;
147:     ab = (a+b)/2;
148:     cd = (c+d)/2;
149:     w  = scale*PetscMax(lx/winw,ly/winh)/2;
150:     PetscCall(PetscDrawAxisSetLimits(axis,ab-w*winw,ab+w*winw,cd-w*winh,cd+w*winh));
151:     PetscCall(PetscDrawAxisDraw(axis));
152:     PetscCall(PetscDrawAxisDestroy(&axis));
153:     PetscCall(PetscDrawRectangle(draw,a,c,b,d,PETSC_DRAW_BLUE,PETSC_DRAW_BLUE,PETSC_DRAW_BLUE,PETSC_DRAW_BLUE));
154:     PetscCall(PetscDrawFlush(draw));
155:     PetscCall(PetscDrawSave(draw));
156:     PetscCall(PetscDrawPause(draw));
157:   }
158:   PetscFunctionReturn(PETSC_SUCCESS);
159: }

161: static PetscErrorCode RGIsTrivial_Interval(RG rg,PetscBool *trivial)
162: {
163:   RG_INTERVAL *ctx = (RG_INTERVAL*)rg->data;

165:   PetscFunctionBegin;
166:   if (rg->complement) *trivial = (ctx->a==ctx->b && ctx->c==ctx->d)? PETSC_TRUE: PETSC_FALSE;
167:   else *trivial = (ctx->a<=-PETSC_MAX_REAL && ctx->b>=PETSC_MAX_REAL && ctx->c<=-PETSC_MAX_REAL && ctx->d>=PETSC_MAX_REAL)? PETSC_TRUE: PETSC_FALSE;
168:   PetscFunctionReturn(PETSC_SUCCESS);
169: }

171: static PetscErrorCode RGComputeContour_Interval(RG rg,PetscInt n,PetscScalar *cr,PetscScalar *ci)
172: {
173:   RG_INTERVAL *ctx = (RG_INTERVAL*)rg->data;
174:   PetscInt    i,N,Nv,Nh,k1,k0;
175:   PetscReal   hv,hh,t;

177:   PetscFunctionBegin;
178:   PetscCheck(ctx->a>-PETSC_MAX_REAL && ctx->b<PETSC_MAX_REAL && ctx->c>-PETSC_MAX_REAL && ctx->d<PETSC_MAX_REAL,PetscObjectComm((PetscObject)rg),PETSC_ERR_SUP,"Contour not defined in unbounded regions");
179:   if (ctx->a==ctx->b || ctx->c==ctx->d) {
180:     if (ctx->a==ctx->b) {hv = (ctx->d-ctx->c)/(n-1); hh = 0.0;}
181:     else {hh = (ctx->b-ctx->a)/(n-1); hv = 0.0;}
182:     for (i=0;i<n;i++) {
183: #if defined(PETSC_USE_COMPLEX)
184:       cr[i] = PetscCMPLX(ctx->a+hh*i,ctx->c+hv*i);
185: #else
186:       if (cr) cr[i] = ctx->a+hh*i;
187:       if (ci) ci[i] = ctx->c+hv*i;
188: #endif
189:     }
190:   } else {
191:     PetscCheck(n>3,PetscObjectComm((PetscObject)rg),PETSC_ERR_SUP,"Minimum number of contour points: 4");
192:     N = n/2;
193:     t = ((ctx->d-ctx->c)/(ctx->d-ctx->c+ctx->b-ctx->a))*N;
194:     Nv = t-PetscFloorReal(t)>0.5?PetscCeilReal(t):PetscFloorReal(t);
195:     if (Nv==0) Nv++;
196:     else if (Nv==N) Nv--;
197:     Nh = N-Nv;
198:     hh = (ctx->b-ctx->a)/Nh;
199:     hv = (ctx->d-ctx->c)/Nv;
200:     /* positive imaginary part first */
201:     k1 = Nv/2+1;
202:     k0 = Nv-k1;

204:     for (i=k1;i<Nv;i++) {
205: #if defined(PETSC_USE_COMPLEX)
206:       cr[i-k1]   = PetscCMPLX(ctx->b,ctx->c+i*hv);
207:       cr[i-k1+N] = PetscCMPLX(ctx->a,ctx->d-i*hv);
208: #else
209:       if (cr) {cr[i-k1] = ctx->b;      cr[i-k1+N] = ctx->a;}
210:       if (ci) {ci[i-k1] = ctx->c+i*hv; ci[i-k1+N] = ctx->d-i*hv;}
211: #endif
212:     }
213:     for (i=0;i<Nh;i++) {
214: #if defined(PETSC_USE_COMPLEX)
215:       cr[i+k0]   = PetscCMPLX(ctx->b-i*hh,ctx->d);
216:       cr[i+k0+N] = PetscCMPLX(ctx->a+i*hh,ctx->c);
217: #else
218:       if (cr) {cr[i+k0] = ctx->b-i*hh; cr[i+k0+N] = ctx->a+i*hh;}
219:       if (ci) {ci[i+k0] = ctx->d;      ci[i+k0+N] = ctx->c;}
220: #endif
221:     }
222:     for (i=0;i<k1;i++) {
223: #if defined(PETSC_USE_COMPLEX)
224:       cr[i+k0+Nh]   = PetscCMPLX(ctx->a,ctx->d-i*hv);
225:       cr[i+k0+Nh+N] = PetscCMPLX(ctx->b,ctx->c+i*hv);
226: #else
227:       if (cr) {cr[i+k0+Nh] = ctx->a; cr[i+k0+Nh+N] = ctx->b;}
228:       if (ci) {ci[i+k0+Nh] = ctx->d+i*hv; ci[i+k0+Nh+N] = ctx->c-i*hv;}
229: #endif
230:     }
231:   }
232:   PetscFunctionReturn(PETSC_SUCCESS);
233: }

235: static PetscErrorCode RGComputeBoundingBox_Interval(RG rg,PetscReal *a,PetscReal *b,PetscReal *c,PetscReal *d)
236: {
237:   RG_INTERVAL *ctx = (RG_INTERVAL*)rg->data;

239:   PetscFunctionBegin;
240:   if (a) *a = ctx->a;
241:   if (b) *b = ctx->b;
242:   if (c) *c = ctx->c;
243:   if (d) *d = ctx->d;
244:   PetscFunctionReturn(PETSC_SUCCESS);
245: }

247: static PetscErrorCode RGComputeQuadrature_Interval(RG rg,RGQuadRule quad,PetscInt n,PetscScalar *z,PetscScalar *zn,PetscScalar *w)
248: {
249:   RG_INTERVAL *ctx = (RG_INTERVAL*)rg->data;
250:   PetscReal   theta,max_w=0.0,radius=1.0;
251:   PetscScalar tmp,tmp2,center=0.0;
252:   PetscInt    i,j;

254:   PetscFunctionBegin;
255:   if (quad == RG_QUADRULE_CHEBYSHEV) {
256:     PetscCheck((ctx->c==ctx->d && ctx->c==0.0) || (ctx->a==ctx->b && ctx->a==0.0),PetscObjectComm((PetscObject)rg),PETSC_ERR_SUP,"Endpoints of the imaginary axis or the real axis must be both zero");
257:     for (i=0;i<n;i++) {
258:       theta = PETSC_PI*(i+0.5)/n;
259:       zn[i] = PetscCosReal(theta);
260:       w[i]  = PetscCosReal((n-1)*theta)/n;
261:       if (ctx->c==ctx->d) z[i] = ((ctx->b-ctx->a)*(zn[i]+1.0)/2.0+ctx->a)*rg->sfactor;
262:       else if (ctx->a==ctx->b) {
263: #if defined(PETSC_USE_COMPLEX)
264:         z[i] = ((ctx->d-ctx->c)*(zn[i]+1.0)/2.0+ctx->c)*rg->sfactor*PETSC_i;
265: #else
266:         SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Integration points on a vertical line require complex arithmetic");
267: #endif
268:       }
269:     }
270:   } else {  /* RG_QUADRULE_TRAPEZOIDAL */
271: #if defined(PETSC_USE_COMPLEX)
272:     center = rg->sfactor*PetscCMPLX(ctx->b+ctx->a,ctx->d+ctx->c)/2.0;
273: #else
274:     center = rg->sfactor*(ctx->b+ctx->a)/2.0;
275: #endif
276:     radius = PetscSqrtReal(PetscPowRealInt(rg->sfactor*(ctx->b-ctx->a)/2.0,2)+PetscPowRealInt(rg->sfactor*(ctx->d-ctx->c)/2.0,2));
277:     for (i=0;i<n;i++) {
278:       zn[i] = (z[i]-center)/radius;
279:       tmp = 1.0; tmp2 = 1.0;
280:       for (j=0;j<n;j++) {
281:         tmp *= z[j];
282:         if (i != j) tmp2 *= z[j]-z[i];
283:       }
284:       w[i] = tmp/tmp2;
285:       max_w = PetscMax(PetscAbsScalar(w[i]),max_w);
286:     }
287:     for (i=0;i<n;i++) w[i] /= (PetscScalar)max_w;
288:   }
289:   PetscFunctionReturn(PETSC_SUCCESS);
290: }

292: static PetscErrorCode RGCheckInside_Interval(RG rg,PetscReal dx,PetscReal dy,PetscInt *inside)
293: {
294:   RG_INTERVAL *ctx = (RG_INTERVAL*)rg->data;

296:   PetscFunctionBegin;
297:   if (dx>ctx->a && dx<ctx->b) *inside = 1;
298:   else if (dx==ctx->a || dx==ctx->b) *inside = 0;
299:   else *inside = -1;
300:   if (*inside>=0) {
301:     if (dy>ctx->c && dy<ctx->d) ;
302:     else if (dy==ctx->c || dy==ctx->d) *inside = 0;
303:     else *inside = -1;
304:   }
305:   PetscFunctionReturn(PETSC_SUCCESS);
306: }

308: static PetscErrorCode RGIsAxisymmetric_Interval(RG rg,PetscBool vertical,PetscBool *symm)
309: {
310:   RG_INTERVAL *ctx = (RG_INTERVAL*)rg->data;

312:   PetscFunctionBegin;
313:   if (vertical) *symm = (ctx->a == -ctx->b)? PETSC_TRUE: PETSC_FALSE;
314:   else *symm = (ctx->c == -ctx->d)? PETSC_TRUE: PETSC_FALSE;
315:   PetscFunctionReturn(PETSC_SUCCESS);
316: }

318: static PetscErrorCode RGSetFromOptions_Interval(RG rg,PetscOptionItems *PetscOptionsObject)
319: {
320:   PetscBool      flg;
321:   PetscInt       k;
322:   PetscReal      array[4]={0,0,0,0};

324:   PetscFunctionBegin;
325:   PetscOptionsHeadBegin(PetscOptionsObject,"RG Interval Options");

327:     k = 4;
328:     PetscCall(PetscOptionsRealArray("-rg_interval_endpoints","Interval endpoints (two or four real values separated with a comma without spaces)","RGIntervalSetEndpoints",array,&k,&flg));
329:     if (flg) {
330:       PetscCheck(k>1,PetscObjectComm((PetscObject)rg),PETSC_ERR_ARG_SIZ,"Must pass at least two values in -rg_interval_endpoints (comma-separated without spaces)");
331:       PetscCall(RGIntervalSetEndpoints(rg,array[0],array[1],array[2],array[3]));
332:     }

334:   PetscOptionsHeadEnd();
335:   PetscFunctionReturn(PETSC_SUCCESS);
336: }

338: static PetscErrorCode RGDestroy_Interval(RG rg)
339: {
340:   PetscFunctionBegin;
341:   PetscCall(PetscFree(rg->data));
342:   PetscCall(PetscObjectComposeFunction((PetscObject)rg,"RGIntervalSetEndpoints_C",NULL));
343:   PetscCall(PetscObjectComposeFunction((PetscObject)rg,"RGIntervalGetEndpoints_C",NULL));
344:   PetscFunctionReturn(PETSC_SUCCESS);
345: }

347: SLEPC_EXTERN PetscErrorCode RGCreate_Interval(RG rg)
348: {
349:   RG_INTERVAL    *interval;

351:   PetscFunctionBegin;
352:   PetscCall(PetscNew(&interval));
353:   interval->a = -PETSC_MAX_REAL;
354:   interval->b = PETSC_MAX_REAL;
355:   interval->c = -PETSC_MAX_REAL;
356:   interval->d = PETSC_MAX_REAL;
357:   rg->data = (void*)interval;

359:   rg->ops->istrivial         = RGIsTrivial_Interval;
360:   rg->ops->computecontour    = RGComputeContour_Interval;
361:   rg->ops->computebbox       = RGComputeBoundingBox_Interval;
362:   rg->ops->computequadrature = RGComputeQuadrature_Interval;
363:   rg->ops->checkinside       = RGCheckInside_Interval;
364:   rg->ops->isaxisymmetric    = RGIsAxisymmetric_Interval;
365:   rg->ops->setfromoptions    = RGSetFromOptions_Interval;
366:   rg->ops->view              = RGView_Interval;
367:   rg->ops->destroy           = RGDestroy_Interval;
368:   PetscCall(PetscObjectComposeFunction((PetscObject)rg,"RGIntervalSetEndpoints_C",RGIntervalSetEndpoints_Interval));
369:   PetscCall(PetscObjectComposeFunction((PetscObject)rg,"RGIntervalGetEndpoints_C",RGIntervalGetEndpoints_Interval));
370:   PetscFunctionReturn(PETSC_SUCCESS);
371: }