Actual source code: test15.c
slepc-3.22.1 2024-10-28
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Test DSPEP.\n\n";
13: #include <slepcds.h>
15: int main(int argc,char **argv)
16: {
17: DS ds;
18: SlepcSC sc;
19: Mat X;
20: Vec x0;
21: PetscScalar *K,*C,*M,*wr,*wi,z=1.0;
22: PetscReal re,im,nrm,*pbc;
23: PetscInt i,j,n=10,d=2,ld;
24: PetscViewer viewer;
25: PetscBool verbose;
27: PetscFunctionBeginUser;
28: PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
29: PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
30: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Solve a Dense System of type PEP - n=%" PetscInt_FMT ".\n",n));
31: PetscCall(PetscOptionsHasName(NULL,NULL,"-verbose",&verbose));
33: /* Create DS object */
34: PetscCall(DSCreate(PETSC_COMM_WORLD,&ds));
35: PetscCall(DSSetType(ds,DSPEP));
36: PetscCall(DSSetFromOptions(ds));
37: PetscCall(DSPEPSetDegree(ds,d));
39: /* Set dimensions */
40: ld = n+2; /* test leading dimension larger than n */
41: PetscCall(DSAllocate(ds,ld));
42: PetscCall(DSSetDimensions(ds,n,0,0));
44: /* Set up viewer */
45: PetscCall(PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&viewer));
46: PetscCall(PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_INFO_DETAIL));
47: PetscCall(DSView(ds,viewer));
48: PetscCall(PetscViewerPopFormat(viewer));
49: if (verbose) PetscCall(PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_MATLAB));
51: /* Fill matrices */
52: PetscCall(DSGetArray(ds,DS_MAT_E0,&K));
53: for (i=0;i<n-1;i++) K[i+i*ld] = 2.0*n;
54: K[n-1+(n-1)*ld] = 1.0*n;
55: for (i=1;i<n;i++) {
56: K[i+(i-1)*ld] = -1.0*n;
57: K[(i-1)+i*ld] = -1.0*n;
58: }
59: PetscCall(DSRestoreArray(ds,DS_MAT_E0,&K));
60: PetscCall(DSGetArray(ds,DS_MAT_E1,&C));
61: C[n-1+(n-1)*ld] = 2.0*PETSC_PI/z;
62: PetscCall(DSRestoreArray(ds,DS_MAT_E1,&C));
63: PetscCall(DSGetArray(ds,DS_MAT_E2,&M));
64: for (i=0;i<n-1;i++) M[i+i*ld] = -4.0*PETSC_PI*PETSC_PI/n;
65: M[i+i*ld] = -2.0*PETSC_PI*PETSC_PI/n;
66: PetscCall(DSRestoreArray(ds,DS_MAT_E2,&M));
68: if (verbose) {
69: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Initial - - - - - - - - -\n"));
70: PetscCall(DSView(ds,viewer));
71: }
73: /* Solve */
74: PetscCall(PetscMalloc2(d*n,&wr,d*n,&wi));
75: PetscCall(DSGetSlepcSC(ds,&sc));
76: sc->comparison = SlepcCompareLargestReal;
77: sc->comparisonctx = NULL;
78: sc->map = NULL;
79: sc->mapobj = NULL;
80: PetscCall(DSSolve(ds,wr,wi));
81: PetscCall(DSSort(ds,wr,wi,NULL,NULL,NULL));
82: if (verbose) {
83: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"After solve - - - - - - - - -\n"));
84: PetscCall(DSView(ds,viewer));
85: }
87: /* Print polynomial coefficients */
88: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Polynomial coefficients (alpha,beta,gamma) =\n"));
89: PetscCall(DSPEPGetCoefficients(ds,&pbc));
90: for (j=0;j<3;j++) {
91: for (i=0;i<d+1;i++) PetscCall(PetscViewerASCIIPrintf(viewer," %.5f",(double)pbc[j+3*i]));
92: PetscCall(PetscViewerASCIIPrintf(viewer,"\n"));
93: }
94: PetscCall(PetscFree(pbc));
96: /* Print eigenvalues */
97: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Computed eigenvalues =\n"));
98: for (i=0;i<d*n;i++) {
99: #if defined(PETSC_USE_COMPLEX)
100: re = PetscRealPart(wr[i]);
101: im = PetscImaginaryPart(wr[i]);
102: #else
103: re = wr[i];
104: im = wi[i];
105: #endif
106: if (PetscAbs(im)<1e-10) PetscCall(PetscViewerASCIIPrintf(viewer," %.5f\n",(double)re));
107: else PetscCall(PetscViewerASCIIPrintf(viewer," %.5f%+.5fi\n",(double)re,(double)im));
108: }
110: /* Eigenvectors */
111: PetscCall(DSVectors(ds,DS_MAT_X,NULL,NULL)); /* all eigenvectors */
112: PetscCall(DSGetMat(ds,DS_MAT_X,&X));
113: PetscCall(MatCreateVecs(X,NULL,&x0));
114: PetscCall(MatGetColumnVector(X,x0,0));
115: PetscCall(VecNorm(x0,NORM_2,&nrm));
116: PetscCall(DSRestoreMat(ds,DS_MAT_X,&X));
117: PetscCall(VecDestroy(&x0));
118: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Norm of 1st vector = %.3f\n",(double)nrm));
119: if (verbose) {
120: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"After vectors - - - - - - - - -\n"));
121: PetscCall(DSView(ds,viewer));
122: }
124: PetscCall(PetscFree2(wr,wi));
125: PetscCall(DSDestroy(&ds));
126: PetscCall(SlepcFinalize());
127: return 0;
128: }
130: /*TEST
132: test:
133: suffix: 1
134: requires: !single
136: TEST*/